धातु-इन्सुलेटर संक्रमण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Change between conductive and non-conductive state}}
{{Short description|Change between conductive and non-conductive state}}
'''[[धातु]]-इन्सुलेटर संक्रमण''' धातु (विद्युत आवेशों की अच्छी विद्युत चालकता वाली सामग्री) से [[इन्सुलेटर (विद्युत)]] ( पदार्थ जहां आवेशों की चालकता शीघ्रता से दब जाती है) इस प्रकार पदार्थ के संक्रमण का उपयोग किया जाता है। और तापमान, जैसे विभिन्न परिवेश मापदंडों को धुन करके इन संक्रमणों को प्राप्त किया जा सकता है।<ref>{{Cite journal |last1=Zimmers |first1=A. |last2=Aigouy |first2=L. |last3=Mortier |first3=M. |last4=Sharoni |first4=A. |last5=Wang |first5=Siming |last6=West |first6=K. G. |last7=Ramirez |first7=J. G. |last8=Schuller |first8=Ivan K. |date=2013-01-29 |title=<nowiki>Role of Thermal Heating on the Voltage Induced Insulator-Metal Transition in ${\mathrm{VO}}_{2}$</nowiki> |url=https://link.aps.org/doi/10.1103/PhysRevLett.110.056601 |journal=Physical Review Letters |volume=110 |issue=5 |pages=056601 |doi=10.1103/PhysRevLett.110.056601|pmid=23414038 }}</ref> [[दबाव]]<ref name=":0">{{Cite book |last=Cox |first=P. A. |url=https://www.worldcat.org/oclc/14213060 |title=ठोस पदार्थों की इलेक्ट्रॉनिक संरचना और रसायन|date=1987 |publisher=Oxford University Press |isbn=0-19-855204-1 |location=Oxford [Oxfordshire] |oclc=14213060 |access-date=2023-04-03 |archive-date=2023-04-03 |archive-url=https://web.archive.org/web/20230403153441/https://www.worldcat.org/title/14213060 |url-status=live }}</ref> या, [[ अर्धचालक |अर्धचालक]] , [[डोपिंग (सेमीकंडक्टर)]] के स्थितियों में उपयोग किया जाता है ।
'''[[धातु]]-पृथक्करण संक्रमण''' धातु (विद्युत आवेशों की अच्छी विद्युत चालकता वाली सामग्री) से [[इन्सुलेटर (विद्युत)|पृथक्करण (विद्युत)]] ( पदार्थ जहां आवेशों की चालकता शीघ्रता से दब जाती है) इस प्रकार पदार्थ के संक्रमण का उपयोग किया जाता है। और तापमान, जैसे विभिन्न परिवेश मापदंडों को ट्यूनिंग करके इन संक्रमणों को प्राप्त किया जा सकता है।<ref>{{Cite journal |last1=Zimmers |first1=A. |last2=Aigouy |first2=L. |last3=Mortier |first3=M. |last4=Sharoni |first4=A. |last5=Wang |first5=Siming |last6=West |first6=K. G. |last7=Ramirez |first7=J. G. |last8=Schuller |first8=Ivan K. |date=2013-01-29 |title=<nowiki>Role of Thermal Heating on the Voltage Induced Insulator-Metal Transition in ${\mathrm{VO}}_{2}$</nowiki> |url=https://link.aps.org/doi/10.1103/PhysRevLett.110.056601 |journal=Physical Review Letters |volume=110 |issue=5 |pages=056601 |doi=10.1103/PhysRevLett.110.056601|pmid=23414038 }}</ref> [[दबाव]]<ref name=":0">{{Cite book |last=Cox |first=P. A. |url=https://www.worldcat.org/oclc/14213060 |title=ठोस पदार्थों की इलेक्ट्रॉनिक संरचना और रसायन|date=1987 |publisher=Oxford University Press |isbn=0-19-855204-1 |location=Oxford [Oxfordshire] |oclc=14213060 |access-date=2023-04-03 |archive-date=2023-04-03 |archive-url=https://web.archive.org/web/20230403153441/https://www.worldcat.org/title/14213060 |url-status=live }}</ref> या, [[ अर्धचालक |अर्धचालक]] , [[डोपिंग (सेमीकंडक्टर)|डोपिंग (अर्धचालक )]] के स्थितियों में उपयोग किया जाता है ।


== इतिहास ==
== इतिहास ==


1928/1929 में [[हंस बेथे]], [[अर्नोल्ड सोमरफेल्ड]] और [[फेलिक्स बलोच]] द्वारा धातुओं और इंसुलेटर के बीच मूलभूत अंतर प्रस्तावित किया गया था। इस प्रकार से यह कंडक्टिंग मेटल्स (आंशिक रूप से भरे हुए पट्टियों के साथ) और नॉनकंडक्टिंग इंसुलेटर के बीच अंतर करता है। चूंकि, 1937 में [[जान हेंड्रिक डी बोअर]] और एवर्ट वर्वे ने इस प्रकार प्रस्तुत किया कि यह आंशिक रूप से भरे डी-बैंड वाले अनेक [[संक्रमण-धातु ऑक्साइड]] (जैसे एनआईओ) व्यर्थ कंडक्टर थे, जो अधिकांशतः इन्सुलेट का उपयोग करते थे। उसी वर्ष, [[रुडोल्फ पीयरल्स]] द्वारा इलेक्ट्रॉन-इलेक्ट्रॉन सहसंबंध के महत्व को बताया गया था। जब से, इन सामग्रियों के साथ-साथ धातु और इन्सुलेटर के बीच संक्रमण का प्रदर्शन करने वाले अन्य लोगों का बड़े माप पर अध्ययन किया गया है, और इस अध्यन के पश्चात सर [[नेविल फ्रांसिस मोट]] द्वारा, जिनके नाम पर इंसुलेटिंग स्टेट का नाम [[मोट इंसुलेटर]] रखा गया है।
1928/1929 में [[हंस बेथे]], [[अर्नोल्ड सोमरफेल्ड]] और [[फेलिक्स बलोच]] द्वारा धातुओं और पृथक्करण के बीच मूलभूत अंतर प्रस्तावित किया गया था। इस प्रकार से यह धातुओं का संचालन (आंशिक रूप से संवाहकभरे हुए पट्टियों के साथ) और नॉनचालक पृथक्करण के बीच अंतर करता है। चूंकि, 1937 में [[जान हेंड्रिक डी बोअर]] और '''एवर्ट वर्वे''' ने इस प्रकार प्रस्तुत किया कि यह आंशिक रूप से भरे डी-बैंड वाले अनेक [[संक्रमण-धातु ऑक्साइड]] (जैसे एनआईओ) व्यर्थ संवाहक थे, जो अधिकांशतः पृथक्करण का उपयोग करते थे। उसी वर्ष, [[रुडोल्फ पीयरल्स]] द्वारा इलेक्ट्रॉन-इलेक्ट्रॉन सहसंबंध के महत्व को बताया गया था। जब से, इन सामग्रियों के साथ-साथ धातु और पृथक्करण के बीच संक्रमण का प्रदर्शन करने वाले अनेक लोगों का बड़े माप पर अध्ययन किया गया है, और इस अध्यन के पश्चात सर [[नेविल फ्रांसिस मोट]] द्वारा, जिनके नाम पर पृथक्करण स्टेट का नाम [[मोट इंसुलेटर|मोट पृथक्करण]] रखा गया है।


अतः 1940 के दशक में पाया जाने वाला प्रथम धातु-इन्सुलेटर संक्रमण [[मैग्नेटाइट]] का [[वेरवे संक्रमण]] का उपयोग किया गया था।<ref>{{Cite web |url=https://www.spacedaily.com/reports/Dancing_electrons_solve_a_longstanding_puzzle_in_the_oldest_magnetic_material_999.html |title=''नृत्य इलेक्ट्रॉन सबसे पुरानी चुंबकीय सामग्री में एक लंबी पहेली को हल करते हैं''|access-date=2023-04-03 |archive-date=2022-09-30 |archive-url=https://web.archive.org/web/20220930105700/https://www.spacedaily.com/reports/Dancing_electrons_solve_a_longstanding_puzzle_in_the_oldest_magnetic_material_999.html |url-status=live }}</ref>
अतः 1940 के दशक में पाया जाने वाला प्रथम धातु-पृथक्करण संक्रमण [[मैग्नेटाइट]] का [[वेरवे संक्रमण]] का उपयोग किया गया था।<ref>{{Cite web |url=https://www.spacedaily.com/reports/Dancing_electrons_solve_a_longstanding_puzzle_in_the_oldest_magnetic_material_999.html |title=''नृत्य इलेक्ट्रॉन सबसे पुरानी चुंबकीय सामग्री में एक लंबी पहेली को हल करते हैं''|access-date=2023-04-03 |archive-date=2022-09-30 |archive-url=https://web.archive.org/web/20220930105700/https://www.spacedaily.com/reports/Dancing_electrons_solve_a_longstanding_puzzle_in_the_oldest_magnetic_material_999.html |url-status=live }}</ref>
== सैद्धांतिक वर्णन ==
== सैद्धांतिक वर्णन ==


इस प्रकार से ठोस अवस्था भौतिकी की शास्त्रीय सॉलिड स्टेट फिजिक्स की मौलिक [[इलेक्ट्रॉनिक बैंड संरचना]] [[फर्मी स्तर]] को इंसुलेटर के लिए [[ऊर्जा अंतराल]] में और धातुओं के लिए [[चालन बैंड|प्रवाहकत्त्व बैंड]] में असत्य बोलने की भविष्यवाणी करती है, जिसका अर्थ इस प्रकार है कि आंशिक रूप से भरे बैंड वाले यौगिकों के लिए धातु का व्यवहार देखा जाता है। चूंकि, कुछ यौगिक पाए गए हैं जोकी आंशिक रूप से भरे बैंड के लिए भी इन्सुलेट व्यवहार दिखाते हैं। यह [[इलेक्ट्रॉनिक सहसंबंध]] | इलेक्ट्रॉन-इलेक्ट्रॉन सहसंबंध के कारण इस प्रकार है, क्योंकि यह इलेक्ट्रॉनों को परक्राम्य के रूप में नहीं देखा जा सकता है। मॉट प्रति अपनी ओर अनेक इलेक्ट्रॉन के साथ जाली मॉडल पर विचार करता है। अतः हम यह वार्तालाप को ध्यान में रखे बिना ही , इसमें प्रत्येक स्थान पर दो इलेक्ट्रॉनों का अधिकृत हो सकता है, और [[स्पिन (भौतिकी)]] के साथ और नीचे स्पिन के साथ वार्तालाप के पश्चात इलेक्ट्रॉनों को जब शक्तिशाली कूलम्ब प्रतिकर्षण का अनुभूत उपयोग होगा, जिसको ध्यान में रखते हुए मॉट ने अपना विचार दिया इस प्रकार कि बैंड दो में विभाजित हो जाता है। प्रतिस्थान इलेक्ट्रॉन होने से निचला बैंड भर जाता है जबकि ऊपरी बैंड खाली रहता है, जो यह बताता है कि प्रणाली के द्वारा इन्सुलेटर बन जाता है। इस इंटरेक्शन-चालित इंसुलेटिंग अवस्था को मॉट इंसुलेटर कहा जाता है। [[हबर्ड मॉडल]] साधारण मॉडल है जो सामान्यतः धातु-इन्सुलेटर ट्रांज़िशन और एमओटी इंसुलेटर के गठन का वर्णन करने के लिए उपयोग किया जाता है।
इस प्रकार से ठोस अवस्था भौतिकी की शास्त्रीय सॉलिड स्टेट फिजिक्स की मौलिक [[इलेक्ट्रॉनिक बैंड संरचना]] [[फर्मी स्तर]] को पृथक्करण के लिए [[ऊर्जा अंतराल]] में और धातुओं के लिए [[चालन बैंड|प्रवाहकत्त्व बैंड]] में असत्य बोलने की भविष्यवाणी करती है, जिसका अर्थ इस प्रकार है कि आंशिक रूप से भरे बैंड वाले यौगिकों के लिए धातु का व्यवहार देखा जाता है। चूंकि, कुछ यौगिक पाए गए हैं जोकी आंशिक रूप से भरे बैंड के लिए भी पृथक्करण व्यवहार दिखाते हैं। यह [[इलेक्ट्रॉनिक सहसंबंध]] | इलेक्ट्रॉन-इलेक्ट्रॉन सहसंबंध के कारण इस प्रकार है, क्योंकि यह इलेक्ट्रॉनों को परक्राम्य के रूप में नहीं देखा जा सकता है। मॉट प्रति अपनी ओर अनेक इलेक्ट्रॉन के साथ लैटिस मॉडल पर विचार करता है। अतः हम यह वार्तालाप को ध्यान में रखे बिना ही , इसमें प्रत्येक स्थान पर दो इलेक्ट्रॉनों का अधिकृत हो सकता है, और [[स्पिन (भौतिकी)]] के साथ और नीचे स्पिन के साथ परस्पर क्रिया के पश्चात इलेक्ट्रॉनों को जब शक्तिशाली कूलम्ब प्रतिकर्षण का अनुभूत उपयोग होगा, जिसको ध्यान में रखते हुए मॉट ने अपना विचार दिया इस प्रकार कि बैंड को दो रूप में विभाजित किया जाता है। और प्रतिस्थान इलेक्ट्रॉन होने से निचला बैंड भर जाता है की किन्तु ऊपरी बैंड खाली रहता है, जो यह बताता है कि प्रणाली के द्वारा पृथक्करण बन जाता है। इस इंटरेक्शन-चालित पृथक्करण अवस्था को मॉट पृथक्करण कहा जाता है। [[हबर्ड मॉडल]] साधारण मॉडल है जो सामान्यतः धातु-पृथक्करण ट्रांज़िशन और एमओटी पृथक्करण के गठन का वर्णन करने के लिए उपयोग किया जाता है।


== प्राथमिक तंत्र ==
== प्राथमिक तंत्र ==
धातु-इन्सुलेटर संक्रमण (एमआईटी) को उनके संक्रमण की उत्पत्ति के आधार पर वर्गीकृत किया जा सकता है। सबसे सामान्य एमआईटी गहन इलेक्ट्रॉन-इलेक्ट्रॉन सहसंबंध से उत्पन्न होता है जैसा कि एमओटी-हबर्ड एमआईटी द्वारा इस प्रकार उपयोग किया गया है।<ref>{{Cite journal |last=Mott |first=N. F. |date=July 1949 |title=धातुओं के इलेक्ट्रॉन सिद्धांत का आधार, संक्रमण धातुओं के विशेष संदर्भ में|url=https://doi.org/10.1088/0370-1298/62/7/303 |journal=Proceedings of the Physical Society. Section A |language=en |volume=62 |issue=7 |pages=416–422 |doi=10.1088/0370-1298/62/7/303 |bibcode=1949PPSA...62..416M |issn=0370-1298}}</ref>
धातु-पृथक्करण संक्रमण (एमआईटी) को उनके संक्रमण की उत्पत्ति के आधार पर वर्गीकृत किया जा सकता है। सबसे सामान्य एमआईटी गहन इलेक्ट्रॉन-इलेक्ट्रॉन सहसंबंध से उत्पन्न होता है जैसा कि एमओटी-हबर्ड एमआईटी द्वारा इस प्रकार उपयोग किया गया है।<ref>{{Cite journal |last=Mott |first=N. F. |date=July 1949 |title=धातुओं के इलेक्ट्रॉन सिद्धांत का आधार, संक्रमण धातुओं के विशेष संदर्भ में|url=https://doi.org/10.1088/0370-1298/62/7/303 |journal=Proceedings of the Physical Society. Section A |language=en |volume=62 |issue=7 |pages=416–422 |doi=10.1088/0370-1298/62/7/303 |bibcode=1949PPSA...62..416M |issn=0370-1298}}</ref>


अन्य उत्सव पर, इलेक्ट्रॉन-फोनन इंटरैक्शन के माध्यम से स्वयं जाली एमआईटी को जन्म दे सकती है जिसे पीईआईईआरएलए एमआईटी के रूप में जाना जाता है।<ref name=":1">{{Cite journal |last=Grüner |first=G. |date=1988-10-01 |title=चार्ज-घनत्व तरंगों की गतिशीलता|url=https://link.aps.org/doi/10.1103/RevModPhys.60.1129 |journal=Reviews of Modern Physics |volume=60 |issue=4 |pages=1129–1181 |doi=10.1103/RevModPhys.60.1129 |bibcode=1988RvMP...60.1129G |access-date=2023-04-03 |archive-date=2023-04-03 |archive-url=https://web.archive.org/web/20230403153435/https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.60.1129 |url-status=live }}</ref> इस पीईआईईआरएलएस इन्सुलेटर का उदाहरण [[नीला कांस्य]] K<sub>0.3</sub>MoO<sub>3</sub>, है, जो T = 180 K पर एमआईटी से निकलता है।
अन्य उत्सव पर, इलेक्ट्रॉन-फोनन इंटरैक्शन के माध्यम से स्वयं जाली एमआईटी को जन्म दे सकती है जिसे पीईआईईआरएलए एमआईटी के रूप में जाना जाता है।<ref name=":1">{{Cite journal |last=Grüner |first=G. |date=1988-10-01 |title=चार्ज-घनत्व तरंगों की गतिशीलता|url=https://link.aps.org/doi/10.1103/RevModPhys.60.1129 |journal=Reviews of Modern Physics |volume=60 |issue=4 |pages=1129–1181 |doi=10.1103/RevModPhys.60.1129 |bibcode=1988RvMP...60.1129G |access-date=2023-04-03 |archive-date=2023-04-03 |archive-url=https://web.archive.org/web/20230403153435/https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.60.1129 |url-status=live }}</ref> इस पीईआईईआरएलएस पृथक्करण का उदाहरण [[नीला कांस्य]] K<sub>0.3</sub>MoO<sub>3</sub>, है, जो T = 180 K पर एमआईटी से निकलता है।


धातुओं में विसंवाहक व्यवहार विकृतियों और जाली दोषों से भी उत्पन्न हो सकता है, जिसके संक्रमण को एंडरसन एमआईटी के रूप में जाना जाता है।<ref>{{Cite journal |last1=Evers |first1=Ferdinand |last2=Mirlin |first2=Alexander D. |date=2008-10-17 |title=एंडरसन संक्रमण|url=https://link.aps.org/doi/10.1103/RevModPhys.80.1355 |journal=Reviews of Modern Physics |volume=80 |issue=4 |pages=1355–1417 |doi=10.1103/RevModPhys.80.1355 |arxiv=0707.4378 |bibcode=2008RvMP...80.1355E |s2cid=119165035 |access-date=2023-04-03 |archive-date=2023-04-03 |archive-url=https://web.archive.org/web/20230403153501/https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.80.1355 |url-status=live }}</ref>
धातुओं में विसंवाहक व्यवहार विकृतियों और जाली दोषों से भी उत्पन्न हो सकता है, जिसके संक्रमण को एंडरसन एमआईटी के रूप में जाना जाता है।<ref>{{Cite journal |last1=Evers |first1=Ferdinand |last2=Mirlin |first2=Alexander D. |date=2008-10-17 |title=एंडरसन संक्रमण|url=https://link.aps.org/doi/10.1103/RevModPhys.80.1355 |journal=Reviews of Modern Physics |volume=80 |issue=4 |pages=1355–1417 |doi=10.1103/RevModPhys.80.1355 |arxiv=0707.4378 |bibcode=2008RvMP...80.1355E |s2cid=119165035 |access-date=2023-04-03 |archive-date=2023-04-03 |archive-url=https://web.archive.org/web/20230403153501/https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.80.1355 |url-status=live }}</ref>
== ध्रुवीकरण आपदा ==
== ध्रुवीकरण आपदा ==
'''ध्रुवीकरण आपदा''' मॉडल इन्सुलेटर से धातु में पदार्थ के संक्रमण का वर्णन करता है। यह प्रतिमान ठोस होने पर इलेक्ट्रॉनों को ऑसिलेटर के रूप में कार्य करने के लिए प्रेरित करता है और इस संक्रमण के होने की स्थिति में पदार्थ की प्रति इकाई मात्रा ऑसिलेटर की संख्या से निर्धारित होती है। चूँकि प्रत्येक दोलक की आवृत्ति (ω<sub>0</sub>) हम ठोस के ढांकता हुआ कार्य का वर्णन कर सकते हैं,
'''ध्रुवीकरण आपदा''' मॉडल पृथक्करण से धातु में पदार्थ के संक्रमण का वर्णन करता है। यह प्रतिमान ठोस होने पर इलेक्ट्रॉनों को ऑसिलेटर के रूप में कार्य करने के लिए प्रेरित करता है और इस संक्रमण के होने की स्थिति में पदार्थ की प्रति इकाई मात्रा ऑसिलेटर की संख्या से निर्धारित होती है। चूँकि प्रत्येक दोलक की आवृत्ति (ω<sub>0</sub>) हम ठोस के ढांकता हुआ कार्य का वर्णन कर सकते हैं,


ε(ω) = 1+(Ne<sup>2</sup>/ε<sub>0</sub>m)/[ω<sub>0</sub><sup>2</sup>-(Ne<sup>2</sup>/3ε<sub>0</sub>m) -ω<sup>2</sup>-iω/tao] (1)
ε(ω) = 1+(Ne<sup>2</sup>/ε<sub>0</sub>m)/[ω<sub>0</sub><sup>2</sup>-(Ne<sup>2</sup>/3ε<sub>0</sub>m) -ω<sup>2</sup>-iω/tao] (1)
Line 28: Line 28:
ε<sub>s</sub> = 1+(Ne<sup>2</sup>/ε<sub>0</sub>m)/[ω<sub>0</sub><sup>2</sup>-(Ne<sup>2</sup>/3ε<sub>0</sub>m)] (2)
ε<sub>s</sub> = 1+(Ne<sup>2</sup>/ε<sub>0</sub>m)/[ω<sub>0</sub><sup>2</sup>-(Ne<sup>2</sup>/3ε<sub>0</sub>m)] (2)


जहां ε<sub>s</sub> स्थिर ढांकता हुआ स्थिरांक है। यदि हम प्रति इकाई आयतन में ऑसिलेटरों की संख्या को अलग करने के लिए समीकरण (2) को पुनर्व्यवस्थित करते हैं तो हमें ऑसिलेटर्स (N) की महत्वपूर्ण सांद्रता मिलती है<sub>c</sub>) जिस पर ई<sub>s</sub> अनंत हो जाता है, धात्विक ठोस और इन्सुलेटर से धातु में संक्रमण का संकेत देता है।
जहां ε<sub>s</sub> स्थिर ढांकता हुआ स्थिरांक है। यदि हम प्रति इकाई आयतन में ऑसिलेटरों की संख्या को अलग करने के लिए समीकरण (2) को पुनर्व्यवस्थित करते हैं तो हमें ऑसिलेटर्स (N) की महत्वपूर्ण सांद्रता मिलती है<sub>c</sub>) जिस पर ई<sub>s</sub> अनंत हो जाता है, धात्विक ठोस और पृथक्करण से धातु में संक्रमण का संकेत देता है।


N<sub>c</sub> = 3ε<sub>0</sub>mω<sub>0</sub><sup>2</sup>/e<sup>2</sup> (3)
N<sub>c</sub> = 3ε<sub>0</sub>mω<sub>0</sub><sup>2</sup>/e<sup>2</sup> (3)


यह अभिव्यक्ति सीमा बनाती है जो इन्सुलेटर से धातु तक पदार्थ के संक्रमण को परिभाषित करती है। इस घटना को ध्रुवीकरण परिवर्तन के रूप में जाना जाता है।
यह अभिव्यक्ति सीमा बनाती है जो पृथक्करण से धातु तक पदार्थ के संक्रमण को परिभाषित करती है। इस घटना को ध्रुवीकरण परिवर्तन के रूप में जाना जाता है।


ध्रुवीकरण परिवर्तन मॉडल का सिद्धांत इस प्रकार दिया गया है। कि, उच्च पर्याप्त घनत्व के साथ, और यह कम पर्याप्त मोलर आयतन के साथ, कोई भी ठोस पात्र में धात्विक का उपयोग किया गया है।<ref name=":0" /> यह अनुमान लगाना कि कोई पदार्थ धात्विक होगी या इंसुलेटिंग R/V अनुपात लेकर की जा सकती है, जहाँ R मोलर अपवर्तकता है, जिसे कभी-कभी A द्वारा दर्शाया जाता है, और V मोलर आयतन है। ऐसे स्थितियों में जहां R/V 1 से कम है, पदार्थ में गैर-धात्विक, या इन्सुलेट गुण होंगे, जबकि से अधिक आर/वी मूल्य धातु के परिवर्तन का उत्पादन करता है।<ref>{{Cite journal |last1=Edwards |first1=Peter P. |last2=Sienko |first2=M. J. |date=1982-03-01 |title=धात्विक अवस्था में संक्रमण|url=https://pubs.acs.org/doi/pdf/10.1021/ar00075a004 |journal=Accounts of Chemical Research |volume=15 |issue=3 |pages=87–93 |doi=10.1021/ar00075a004 |issn=0001-4842}}</ref>
ध्रुवीकरण परिवर्तन मॉडल का सिद्धांत इस प्रकार दिया गया है। कि, उच्च पर्याप्त घनत्व के साथ, और यह कम पर्याप्त मोलर आयतन के साथ, कोई भी ठोस पात्र में धात्विक का उपयोग किया गया है।<ref name=":0" /> यह अनुमान लगाना कि कोई पदार्थ धात्विक होगी या इंसुलेटिंग R/V अनुपात लेकर की जा सकती है, जहाँ R मोलर अपवर्तकता है, जिसे कभी-कभी A द्वारा दर्शाया जाता है, और V मोलर आयतन है। ऐसे स्थितियों में जहां R/V 1 से कम है, पदार्थ में गैर-धात्विक, या इन्सुलेट गुण होंगे, जबकि से अधिक आर/वी मूल्य धातु के परिवर्तन का उत्पादन करता है।<ref>{{Cite journal |last1=Edwards |first1=Peter P. |last2=Sienko |first2=M. J. |date=1982-03-01 |title=धात्विक अवस्था में संक्रमण|url=https://pubs.acs.org/doi/pdf/10.1021/ar00075a004 |journal=Accounts of Chemical Research |volume=15 |issue=3 |pages=87–93 |doi=10.1021/ar00075a004 |issn=0001-4842}}</ref>
== यह भी देखें ==
== यह भी देखें ==
* {{annotated link|Superconductor Insulator Transition}}
* {{annotated link|अतिचालक पृथक्करण संक्रमण}}


==संदर्भ==
==संदर्भ==
Line 46: Line 46:
* {{cite journal|last=Imada|first=M.|author2=Fujimori, Tokura|title=Metal–insulator transitions|journal=Rev. Mod. Phys.|year=1998|volume=70|issue=4|pages=1039|doi=10.1103/revmodphys.70.1039|bibcode=1998RvMP...70.1039I}} http://rmp.aps.org/abstract/RMP/v70/i4/p1039_1
* {{cite journal|last=Imada|first=M.|author2=Fujimori, Tokura|title=Metal–insulator transitions|journal=Rev. Mod. Phys.|year=1998|volume=70|issue=4|pages=1039|doi=10.1103/revmodphys.70.1039|bibcode=1998RvMP...70.1039I}} http://rmp.aps.org/abstract/RMP/v70/i4/p1039_1


{{DEFAULTSORT:Metal-Insulator Transition}}[[Category: संघनित पदार्थ भौतिकी]] [[Category: चरण संक्रमण]]
{{DEFAULTSORT:Metal-Insulator Transition}}


 
[[Category:CS1 English-language sources (en)]]
 
[[Category:Created On 09/06/2023|Metal-Insulator Transition]]
[[Category: Machine Translated Page]]
[[Category:Lua-based templates|Metal-Insulator Transition]]
[[Category:Created On 09/06/2023]]
[[Category:Machine Translated Page|Metal-Insulator Transition]]
[[Category:Pages with script errors|Metal-Insulator Transition]]
[[Category:Templates Vigyan Ready|Metal-Insulator Transition]]
[[Category:Templates that add a tracking category|Metal-Insulator Transition]]
[[Category:Templates that generate short descriptions|Metal-Insulator Transition]]
[[Category:Templates using TemplateData|Metal-Insulator Transition]]
[[Category:चरण संक्रमण|Metal-Insulator Transition]]
[[Category:संघनित पदार्थ भौतिकी|Metal-Insulator Transition]]

Latest revision as of 11:21, 23 June 2023

धातु-पृथक्करण संक्रमण धातु (विद्युत आवेशों की अच्छी विद्युत चालकता वाली सामग्री) से पृथक्करण (विद्युत) ( पदार्थ जहां आवेशों की चालकता शीघ्रता से दब जाती है) इस प्रकार पदार्थ के संक्रमण का उपयोग किया जाता है। और तापमान, जैसे विभिन्न परिवेश मापदंडों को ट्यूनिंग करके इन संक्रमणों को प्राप्त किया जा सकता है।[1] दबाव[2] या, अर्धचालक , डोपिंग (अर्धचालक ) के स्थितियों में उपयोग किया जाता है ।

इतिहास

1928/1929 में हंस बेथे, अर्नोल्ड सोमरफेल्ड और फेलिक्स बलोच द्वारा धातुओं और पृथक्करण के बीच मूलभूत अंतर प्रस्तावित किया गया था। इस प्रकार से यह धातुओं का संचालन (आंशिक रूप से संवाहकभरे हुए पट्टियों के साथ) और नॉनचालक पृथक्करण के बीच अंतर करता है। चूंकि, 1937 में जान हेंड्रिक डी बोअर और एवर्ट वर्वे ने इस प्रकार प्रस्तुत किया कि यह आंशिक रूप से भरे डी-बैंड वाले अनेक संक्रमण-धातु ऑक्साइड (जैसे एनआईओ) व्यर्थ संवाहक थे, जो अधिकांशतः पृथक्करण का उपयोग करते थे। उसी वर्ष, रुडोल्फ पीयरल्स द्वारा इलेक्ट्रॉन-इलेक्ट्रॉन सहसंबंध के महत्व को बताया गया था। जब से, इन सामग्रियों के साथ-साथ धातु और पृथक्करण के बीच संक्रमण का प्रदर्शन करने वाले अनेक लोगों का बड़े माप पर अध्ययन किया गया है, और इस अध्यन के पश्चात सर नेविल फ्रांसिस मोट द्वारा, जिनके नाम पर पृथक्करण स्टेट का नाम मोट पृथक्करण रखा गया है।

अतः 1940 के दशक में पाया जाने वाला प्रथम धातु-पृथक्करण संक्रमण मैग्नेटाइट का वेरवे संक्रमण का उपयोग किया गया था।[3]

सैद्धांतिक वर्णन

इस प्रकार से ठोस अवस्था भौतिकी की शास्त्रीय सॉलिड स्टेट फिजिक्स की मौलिक इलेक्ट्रॉनिक बैंड संरचना फर्मी स्तर को पृथक्करण के लिए ऊर्जा अंतराल में और धातुओं के लिए प्रवाहकत्त्व बैंड में असत्य बोलने की भविष्यवाणी करती है, जिसका अर्थ इस प्रकार है कि आंशिक रूप से भरे बैंड वाले यौगिकों के लिए धातु का व्यवहार देखा जाता है। चूंकि, कुछ यौगिक पाए गए हैं जोकी आंशिक रूप से भरे बैंड के लिए भी पृथक्करण व्यवहार दिखाते हैं। यह इलेक्ट्रॉनिक सहसंबंध | इलेक्ट्रॉन-इलेक्ट्रॉन सहसंबंध के कारण इस प्रकार है, क्योंकि यह इलेक्ट्रॉनों को परक्राम्य के रूप में नहीं देखा जा सकता है। मॉट प्रति अपनी ओर अनेक इलेक्ट्रॉन के साथ लैटिस मॉडल पर विचार करता है। अतः हम यह वार्तालाप को ध्यान में रखे बिना ही , इसमें प्रत्येक स्थान पर दो इलेक्ट्रॉनों का अधिकृत हो सकता है, और स्पिन (भौतिकी) के साथ और नीचे स्पिन के साथ परस्पर क्रिया के पश्चात इलेक्ट्रॉनों को जब शक्तिशाली कूलम्ब प्रतिकर्षण का अनुभूत उपयोग होगा, जिसको ध्यान में रखते हुए मॉट ने अपना विचार दिया इस प्रकार कि बैंड को दो रूप में विभाजित किया जाता है। और प्रतिस्थान इलेक्ट्रॉन होने से निचला बैंड भर जाता है की किन्तु ऊपरी बैंड खाली रहता है, जो यह बताता है कि प्रणाली के द्वारा पृथक्करण बन जाता है। इस इंटरेक्शन-चालित पृथक्करण अवस्था को मॉट पृथक्करण कहा जाता है। हबर्ड मॉडल साधारण मॉडल है जो सामान्यतः धातु-पृथक्करण ट्रांज़िशन और एमओटी पृथक्करण के गठन का वर्णन करने के लिए उपयोग किया जाता है।

प्राथमिक तंत्र

धातु-पृथक्करण संक्रमण (एमआईटी) को उनके संक्रमण की उत्पत्ति के आधार पर वर्गीकृत किया जा सकता है। सबसे सामान्य एमआईटी गहन इलेक्ट्रॉन-इलेक्ट्रॉन सहसंबंध से उत्पन्न होता है जैसा कि एमओटी-हबर्ड एमआईटी द्वारा इस प्रकार उपयोग किया गया है।[4]

अन्य उत्सव पर, इलेक्ट्रॉन-फोनन इंटरैक्शन के माध्यम से स्वयं जाली एमआईटी को जन्म दे सकती है जिसे पीईआईईआरएलए एमआईटी के रूप में जाना जाता है।[5] इस पीईआईईआरएलएस पृथक्करण का उदाहरण नीला कांस्य K0.3MoO3, है, जो T = 180 K पर एमआईटी से निकलता है।

धातुओं में विसंवाहक व्यवहार विकृतियों और जाली दोषों से भी उत्पन्न हो सकता है, जिसके संक्रमण को एंडरसन एमआईटी के रूप में जाना जाता है।[6]

ध्रुवीकरण आपदा

ध्रुवीकरण आपदा मॉडल पृथक्करण से धातु में पदार्थ के संक्रमण का वर्णन करता है। यह प्रतिमान ठोस होने पर इलेक्ट्रॉनों को ऑसिलेटर के रूप में कार्य करने के लिए प्रेरित करता है और इस संक्रमण के होने की स्थिति में पदार्थ की प्रति इकाई मात्रा ऑसिलेटर की संख्या से निर्धारित होती है। चूँकि प्रत्येक दोलक की आवृत्ति (ω0) हम ठोस के ढांकता हुआ कार्य का वर्णन कर सकते हैं,

ε(ω) = 1+(Ne20m)/[ω02-(Ne2/3ε0m) -ω2-iω/tao] (1)

जहां ε(ω) परावैद्युत फलन है, प्रति इकाई आयतन में दोलित्रों की संख्या N है, मौलिक दोलन आवृत्ति ω0 है, दोलक द्रव्यमान m है, और उत्तेजना आवृत्ति ω है।

धातु होने के लिए पदार्थ के लिए, परिभाषा के अनुसार उत्तेजना आवृत्ति (ω) शून्य होनी चाहिए,[2] जो तब हमें स्थिर ढांकता हुआ स्थिरांक देता है,

εs = 1+(Ne20m)/[ω02-(Ne2/3ε0m)] (2)

जहां εs स्थिर ढांकता हुआ स्थिरांक है। यदि हम प्रति इकाई आयतन में ऑसिलेटरों की संख्या को अलग करने के लिए समीकरण (2) को पुनर्व्यवस्थित करते हैं तो हमें ऑसिलेटर्स (N) की महत्वपूर्ण सांद्रता मिलती हैc) जिस पर ईs अनंत हो जाता है, धात्विक ठोस और पृथक्करण से धातु में संक्रमण का संकेत देता है।

Nc = 3ε002/e2 (3)

यह अभिव्यक्ति सीमा बनाती है जो पृथक्करण से धातु तक पदार्थ के संक्रमण को परिभाषित करती है। इस घटना को ध्रुवीकरण परिवर्तन के रूप में जाना जाता है।

ध्रुवीकरण परिवर्तन मॉडल का सिद्धांत इस प्रकार दिया गया है। कि, उच्च पर्याप्त घनत्व के साथ, और यह कम पर्याप्त मोलर आयतन के साथ, कोई भी ठोस पात्र में धात्विक का उपयोग किया गया है।[2] यह अनुमान लगाना कि कोई पदार्थ धात्विक होगी या इंसुलेटिंग R/V अनुपात लेकर की जा सकती है, जहाँ R मोलर अपवर्तकता है, जिसे कभी-कभी A द्वारा दर्शाया जाता है, और V मोलर आयतन है। ऐसे स्थितियों में जहां R/V 1 से कम है, पदार्थ में गैर-धात्विक, या इन्सुलेट गुण होंगे, जबकि से अधिक आर/वी मूल्य धातु के परिवर्तन का उत्पादन करता है।[7]

यह भी देखें

संदर्भ

  1. Zimmers, A.; Aigouy, L.; Mortier, M.; Sharoni, A.; Wang, Siming; West, K. G.; Ramirez, J. G.; Schuller, Ivan K. (2013-01-29). "Role of Thermal Heating on the Voltage Induced Insulator-Metal Transition in ${\mathrm{VO}}_{2}$". Physical Review Letters. 110 (5): 056601. doi:10.1103/PhysRevLett.110.056601. PMID 23414038.
  2. 2.0 2.1 2.2 Cox, P. A. (1987). ठोस पदार्थों की इलेक्ट्रॉनिक संरचना और रसायन. Oxford [Oxfordshire]: Oxford University Press. ISBN 0-19-855204-1. OCLC 14213060. Archived from the original on 2023-04-03. Retrieved 2023-04-03.
  3. "नृत्य इलेक्ट्रॉन सबसे पुरानी चुंबकीय सामग्री में एक लंबी पहेली को हल करते हैं". Archived from the original on 2022-09-30. Retrieved 2023-04-03.
  4. Mott, N. F. (July 1949). "धातुओं के इलेक्ट्रॉन सिद्धांत का आधार, संक्रमण धातुओं के विशेष संदर्भ में". Proceedings of the Physical Society. Section A (in English). 62 (7): 416–422. Bibcode:1949PPSA...62..416M. doi:10.1088/0370-1298/62/7/303. ISSN 0370-1298.
  5. Grüner, G. (1988-10-01). "चार्ज-घनत्व तरंगों की गतिशीलता". Reviews of Modern Physics. 60 (4): 1129–1181. Bibcode:1988RvMP...60.1129G. doi:10.1103/RevModPhys.60.1129. Archived from the original on 2023-04-03. Retrieved 2023-04-03.
  6. Evers, Ferdinand; Mirlin, Alexander D. (2008-10-17). "एंडरसन संक्रमण". Reviews of Modern Physics. 80 (4): 1355–1417. arXiv:0707.4378. Bibcode:2008RvMP...80.1355E. doi:10.1103/RevModPhys.80.1355. S2CID 119165035. Archived from the original on 2023-04-03. Retrieved 2023-04-03.
  7. Edwards, Peter P.; Sienko, M. J. (1982-03-01). "धात्विक अवस्था में संक्रमण". Accounts of Chemical Research. 15 (3): 87–93. doi:10.1021/ar00075a004. ISSN 0001-4842.

अग्रिम पठन