नम्यता पद्धति: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Technique for computing member forces and displacements in a structure}} {{Refimprove|date=September 2014}} संरचनात्मक इंजीन...")
 
No edit summary
 
(30 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Short description|Technique for computing member forces and displacements in a structure}}
{{Short description|Technique for computing member forces and displacements in a structure}}
{{Refimprove|date=September 2014}}
संरचनात्मक इंजीनियरिंग में, '''नम्यता पद्धति विधि''' जिसे लगातार [[विरूपण (यांत्रिकी)|विकृतियों]] की विधि भी कहा जाता है, संरचनात्मक प्रणालियों में सदस्य बल और [[विरूपण (यांत्रिकी)|विस्थापन]] की गणना के लिए पारंपरिक विधि है। इकाईयोंके नम्यता [[मैट्रिक्स (गणित)|मैट्रिक्स]] के संदर्भ में तैयार किए गए इसके आधुनिक संस्करण को प्राथमिक अज्ञात इकाईयों के रूप में इकाईयों बलों के उपयोग के कारण इसे मैट्रिक्स बल विधि का नाम भी दिया गया है।<ref name="IUST">{{cite web|title=मैट्रिक्स बल विधि|url=http://www.iust.ac.ir/files/cefsse/pg.cef/Contents/force_method_ch6.pdf|publisher=IUST|access-date=29 December 2012}}</ref>
संरचनात्मक इंजीनियरिंग में, लचीलापन विधि, जिसे निरंतर [[विरूपण (यांत्रिकी)]] की विधि भी कहा जाता है, संरचनात्मक प्रणालियों में सदस्य बल और [[विस्थापन (वेक्टर)]] की गणना के लिए पारंपरिक विधि है। सदस्यों के लचीलेपन [[मैट्रिक्स (गणित)]] के संदर्भ में तैयार किए गए इसके आधुनिक संस्करण में प्राथमिक अज्ञात के रूप में सदस्य बलों के उपयोग के कारण मैट्रिक्स बल विधि का नाम भी है।<ref name=IUST>{{cite web|title=मैट्रिक्स बल विधि|url=http://www.iust.ac.ir/files/cefsse/pg.cef/Contents/force_method_ch6.pdf|publisher=IUST|access-date=29 December 2012}}</ref>
== इकाई नम्यता ==
नम्यता संदृढ़ता का विलोम होता है। उदाहरण के लिए, एक स्प्रिंग पर विचार करें जिसमें Q और q क्रमशः इसकी ऊर्जा और विरूपण होते है:
* स्प्रिंग की संदृढ़ता का संबंध Q = k q है जहां k स्प्रिंग की संदृढ़ता से है
* इसका नम्यता संबंध q = f Q है, जहाँ f स्प्रिंग का नम्यता होती है
* इसलिए, f = 1/k। है


 
एक विशिष्ट इकाईयों की नम्यता के संबंध में निम्नलिखित सामान्य रूप से है:
== सदस्य लचीलापन ==
लचीलापन [[कठोरता]] का विलोम है। उदाहरण के लिए, एक स्प्रिंग पर विचार करें जिसमें क्यू और क्यू क्रमशः इसकी शक्ति और विरूपण है:
* वसंत की कठोरता का संबंध Q = k q है जहां k वसंत की कठोरता है।
* इसका लचीलापन संबंध q = f Q है, जहाँ f वसंत का लचीलापन है।
* इसलिए, f = 1/k।
 
एक विशिष्ट सदस्य लचीलेपन के संबंध में निम्नलिखित सामान्य रूप हैं:


{{NumBlk|:|<math>\mathbf{q}^m = \mathbf{f}^m \mathbf{Q}^m + \mathbf{q}^{om}</math>|{{EquationRef|1}}}}
{{NumBlk|:|<math>\mathbf{q}^m = \mathbf{f}^m \mathbf{Q}^m + \mathbf{q}^{om}</math>|{{EquationRef|1}}}}
कहाँ
जहाँ
: एम = सदस्य संख्या एम।
: m = इकाई संख्या m है
:<math>\mathbf{q}^m </math> = सदस्य की विशिष्ट विकृतियों का वेक्टर।
:<math>\mathbf{q}^m </math> = इकइयो की विशिष्ट विकृतियों का सदिश है
:<math>\mathbf{f}^m </math> = सदस्य लचीलापन मैट्रिक्स जो बल के तहत विकृत होने के लिए सदस्य की संवेदनशीलता को दर्शाता है।
:<math>\mathbf{f}^m </math> = इकाई नम्यता मैट्रिक्स बल के अनुसार विकृत होने के लिए इकाईयों की संवेदनशीलता को दर्शाता है
:<math>\mathbf{Q}^m </math> = सदस्य की स्वतंत्र चारित्रिक शक्तियों का सदिश, जो अज्ञात आंतरिक बल हैं। ये स्वतंत्र बल सदस्य संतुलन द्वारा सभी सदस्य-अंत बलों को जन्म देते हैं।
:<math>\mathbf{Q}^m </math> = इकाई की स्वतंत्र चारित्रिक ऊर्जा का सदिश, जो अज्ञात आंतरिक बल होता है। ये स्वतंत्र बल इकाईयों के संतुलन द्वारा सभी इकाई -अंत बलों को उत्पन्न करता है
:<math>\mathbf{q}^{om} </math> = बाहरी प्रभाव (जैसे ज्ञात बल और तापमान परिवर्तन) के कारण सदस्यों की विशेषता विकृति पृथक, डिस्कनेक्ट किए गए सदस्य (यानी के साथ) पर लागू होती है <math>\mathbf{Q}^m = 0 </math>).
:<math>\mathbf{q}^{om} </math> = बाहरी प्रभाव के कारण इकाईयों की विशेषता विकृति वियुक्त, असंगत किए गए इकाईयों पर लागू होती है <math>\mathbf{Q}^m = 0 </math>).


नोड्स नामक बिंदुओं पर परस्पर जुड़े कई सदस्यों से बनी एक प्रणाली के लिए, सदस्यों के लचीलेपन संबंधों को एक एकल मैट्रिक्स समीकरण में एक साथ रखा जा सकता है, सुपरस्क्रिप्ट m को छोड़ कर:
नोड्स नामक बिंदुओं पर परस्पर जुड़े कई इकाईयों से बनी एक प्रणाली के लिए, इकाईयों के नम्यता संबंधों को एक एकल मैट्रिक्स समीकरण में एक साथ रखा जा सकता है, अधिलेख m को छोड़ कर:


{{NumBlk|:|<math>\mathbf{q}_{M \times 1} = \mathbf{f}_{M \times M} \mathbf{Q}_{M \times 1} + \mathbf{q}^{o}_{M \times 1} </math>|{{EquationRef|2}}}}
{{NumBlk|:|<math>\mathbf{q}_{M \times 1} = \mathbf{f}_{M \times M} \mathbf{Q}_{M \times 1} + \mathbf{q}^{o}_{M \times 1} </math>|{{EquationRef|2}}}}


जहां एम प्रणाली में सदस्यों की विशेषता विकृतियों या बलों की कुल संख्या है।
जहां M समीकरण में इकाईयों की विशेषता विकृतियों या बलों की कुल संख्या होती है


[[मैट्रिक्स कठोरता विधि]] के विपरीत, जहां सदस्यों की कठोरता संबंधों को नोडल संतुलन और अनुकूलता स्थितियों के माध्यम से आसानी से एकीकृत किया जा सकता है, समीकरण का वर्तमान लचीलापन रूप ({{EquationNote|2}}) गंभीर कठिनाई उत्पन्न करता है। सदस्य बलों के साथ <math> \mathbf{Q}_{M \times 1} </math> प्राथमिक अज्ञात के रूप में, नोडल संतुलन समीकरणों की संख्या समाधान के लिए अपर्याप्त है, सामान्य तौर पर - जब तक कि प्रणाली [[स्थिर रूप से निर्धारित]] न हो।
[[मैट्रिक्स कठोरता विधि|मैट्रिक्स संदृढ़ता विधि]] के विपरीत, जहां इकाईयों की संदृढ़ता संबंधों को नोडल संतुलन और अनुकूलता स्थितियों के माध्यम से आसानी से एकीकृत किया जा सकता है, समीकरण का वर्तमान नम्यता रूप ({{EquationNote|2}}) गंभीर कठिनाई उत्पन्न करता है। इकाईयों बलों के साथ <math> \mathbf{Q}_{M \times 1} </math> प्राथमिक अज्ञात के रूप में, नोडल संतुलन समीकरणों की संख्या समाधान के लिए अपर्याप्त होती है, सामान्यतः - जब तक कि समीकरण [[स्थिर रूप से निर्धारित]] नहीं होती है।


== नोडल संतुलन समीकरण ==
== नोडल संतुलन समीकरण ==
इस कठिनाई को हल करने के लिए, स्वतंत्र अज्ञात सदस्य बलों की संख्या को कम करने के लिए पहले हम नोडल संतुलन समीकरणों का उपयोग करते हैं। सिस्टम के लिए नोडल संतुलन समीकरण का रूप है:
इस कठिनाई को हल करने के लिए, स्वतंत्र अज्ञात इकाईयों बलों की संख्या को कम करने के लिए पहले हम नोडल संतुलन समीकरणों का उपयोग करते है। समीकरण के लिए नोडल संतुलन समीकरण का रूप होता है:


{{NumBlk|:|<math>\mathbf{R}_{N \times 1} = \mathbf{b}_{N \times M} \mathbf{Q}_{M \times 1} + \mathbf{W}_{N \times 1} </math>|{{EquationRef|3}}}}
{{NumBlk|:|<math>\mathbf{R}_{N \times 1} = \mathbf{b}_{N \times M} \mathbf{Q}_{M \times 1} + \mathbf{W}_{N \times 1} </math>|{{EquationRef|3}}}}


कहाँ
जहाँ
: <math> \mathbf{R}_{N \times 1} </math>: सिस्टम की स्वतंत्रता (इंजीनियरिंग) की सभी एन डिग्री पर नोडल बलों का वेक्टर।
: <math> \mathbf{R}_{N \times 1} </math>: समीकरण की स्वतंत्रता N डिग्री नोडल बलों का सदिश है
: <math> \mathbf{b}_{N \times M} </math>: परिणामी नोडल संतुलन मैट्रिक्स
: <math> \mathbf{b}_{N \times M} </math>: परिणामी नोडल संतुलन मैट्रिक्स है
: <math> \mathbf{W}_{N \times 1} </math>: सदस्यों पर भार डालने से उत्पन्न होने वाली शक्तियों का सदिश।
: <math> \mathbf{W}_{N \times 1} </math>: इकाईयों पर भार डालने से उत्पन्न होने वाली ऊर्जा का सदिश होती है


निर्धारित प्रणालियों के मामले में, मैट्रिक्स बी वर्ग है और क्यू के लिए समाधान तुरंत पाया जा सकता है ({{EquationNote|3}}) बशर्ते कि सिस्टम स्थिर हो।
निर्धारित समीकरणों के स्थिति में, मैट्रिक्स B वर्ग है और q के लिए उपाय तुरंत पाया जा सकता है ({{EquationNote|3}})


== प्राथमिक प्रणाली ==
== प्राथमिक समीकरण ==
सांख्यिकीय रूप से अनिश्चित प्रणालियों के लिए, एम> एन, और इसलिए, हम वृद्धि कर सकते हैं ({{EquationNote|3}}) I = M−N फॉर्म के समीकरणों के साथ:
सांख्यिकीय रूप से अनिश्चित प्रणालियों के लिए, M > N, और इसलिए, फॉर्म के I = M-N समीकरणों के साथ ({{EquationNote|3}}) के बढ़ा सकते हैं


{{NumBlk|:|<math> X_i = \alpha Q_j + \beta Q_k + \cdots \qquad i=1,2,\ldots, I </math>|{{EquationRef|4}}}}
{{NumBlk|:|<math> X_i = \alpha Q_j + \beta Q_k + \cdots \qquad i=1,2,\ldots, I </math>|{{EquationRef|4}}}}


वेक्टर X [[अतिरेक (इंजीनियरिंग)]] बलों का तथाकथित वेक्टर है और ''I'' सिस्टम की स्थैतिक अनिश्चितता की डिग्री है। हम आमतौर पर ''जे'', ''के'', ... चुनते हैं। <math> \alpha </math>, और <math> \beta </math> ऐसा है कि <math> X_i </math> एक समर्थन प्रतिक्रिया या एक आंतरिक सदस्य-अंत बल है। निरर्थक बलों के उपयुक्त विकल्पों के साथ, समीकरण प्रणाली ({{EquationNote|3}}) द्वारा संवर्धित ({{EquationNote|4}}) अब प्राप्त करने के लिए हल किया जा सकता है:
सदिश X [[अतिरेक (इंजीनियरिंग)|अतिरेक]] बलों का तथाकथित सदिश है और ''I'' समीकरण की स्थैतिक अनिश्चितता की डिग्री है। हम सामान्यतः ''j'', ''k'', …, अल्फा, और\बीटा कि एक समर्थन प्रतिक्रिया या एक आंतरिक इकाईयों-अंत बल है। निरर्थक बलों के उपयुक्त विकल्पों के साथ, समीकरण ({{EquationNote|3}}) द्वारा संवर्धित समीकरण प्रणाली ({{EquationNote|4}}) को अब प्राप्त करने के लिए हल किया जा सकता है:


{{NumBlk|:|<math>\mathbf{Q}_{M \times 1} = \mathbf{B}_R \mathbf{R}_{N \times 1} + \mathbf{B}_X \mathbf{X}_{I \times 1} + \mathbf{Q}_{v \cdot M \times 1} </math>|{{EquationRef|5}}}}
{{NumBlk|:|<math>\mathbf{Q}_{M \times 1} = \mathbf{B}_R \mathbf{R}_{N \times 1} + \mathbf{B}_X \mathbf{X}_{I \times 1} + \mathbf{Q}_{v \cdot M \times 1} </math>|{{EquationRef|5}}}}
Line 56: Line 53:
  + \mathbf{q}^{o}_{M \times 1} </math>|{{EquationRef|6}}}}
  + \mathbf{q}^{o}_{M \times 1} </math>|{{EquationRef|6}}}}


समीकरण ({{EquationNote|5}}) और ({{EquationNote|6}}) प्राथमिक प्रणाली के लिए समाधान हैं जो मूल प्रणाली है जिसे अनावश्यक बलों को उजागर करने वाले कटों द्वारा स्थिर रूप से निर्धारित किया गया है <math>\mathbf{X} </math>. समीकरण ({{EquationNote|5}}) अज्ञात बलों के सेट को प्रभावी ढंग से कम कर देता है <math>\mathbf{X} </math>.
समीकरण ({{EquationNote|5}}) और ({{EquationNote|6}}) प्राथमिक प्रणाली के लिए समाधान हैं जो मूल प्रणाली है जिसे कटौती द्वारा सांख्यिकीय रूप से निर्धारित किया गया है जो अनावश्यक ताकतों को उजागर करता है <math>\mathbf{X} </math>. समीकरण ({{EquationNote|5}}) प्रभावी रूप से अज्ञात बलों के समुच्चय को कम कर देता है <math>\mathbf{X} </math>.


== संगतता समीकरण और समाधान ==
== संगतता समीकरण और समाधान ==
अगला, हमें स्थापित करने की आवश्यकता है  <math> I </math> खोजने के लिए अनुकूलता समीकरण <math>\mathbf{X} </math>. अनुकूलता समीकरण संबंधित विस्थापनों को सेट करके कट सेक्शन में आवश्यक निरंतरता को बहाल करते हैं <math>\mathbf{r}_{X}</math> निरर्थक X से शून्य पर। अर्थात्, [[इकाई डमी बल विधि]] का उपयोग करना:
अगला, हमें <math> I </math> प्राप्त करना के लिए संगतता समीकरण सेट अप करने की आवश्यकता होती है <math>\mathbf{X} </math> अनुकूलता समीकरण संबंधित विस्थापनों को सेट करके कट सेक्शन में आवश्यक निरंतरता को बहाल करते हैं <math>\mathbf{r}_{X}</math> अनावश्यक, अर्थात्, [[इकाई डमी बल विधि]] का उपयोग करते है:


{{NumBlk|:|<math>\mathbf{r}_{X} = \mathbf{B}_X^T \mathbf{q} = \mathbf{B}_X^T \Big[ \mathbf{f}
{{NumBlk|:|<math>\mathbf{r}_{X} = \mathbf{B}_X^T \mathbf{q} = \mathbf{B}_X^T \Big[ \mathbf{f}
\Big( \mathbf{B}_R \mathbf{R} + \mathbf{B}_X \mathbf{X} + \mathbf{Q}_v \Big) + \mathbf{q}^{o} \Big] = 0 </math>|{{EquationRef|7a}}}}
\Big( \mathbf{B}_R \mathbf{R} + \mathbf{B}_X \mathbf{X} + \mathbf{Q}_v \Big) + \mathbf{q}^{o} \Big] = 0 </math>|{{EquationRef|7a}}}}


{{NumBlk|:|or <math>\mathbf{r}_{X} = \mathbf{F}_{XX} \mathbf{X} + \mathbf{r}^o_X = 0 </math>|{{EquationRef|7b}}}}
{{NumBlk|:|या <math>\mathbf{r}_{X} = \mathbf{F}_{XX} \mathbf{X} + \mathbf{r}^o_X = 0 </math>|{{EquationRef|7b}}}}
कहाँ
जहाँ
: <math> \mathbf{F}_{XX} = \mathbf{B}_X^T \mathbf{f} \mathbf{B}_X </math>
: <math> \mathbf{F}_{XX} = \mathbf{B}_X^T \mathbf{f} \mathbf{B}_X </math>
:<math> \mathbf{r}^o_X = \mathbf{B}_X^T \Big[ \mathbf{f}
:<math> \mathbf{r}^o_X = \mathbf{B}_X^T \Big[ \mathbf{f}
\Big( \mathbf{B}_R \mathbf{R} + \mathbf{Q}_v \Big) + \mathbf{q}^{o} \Big] </math>
\Big( \mathbf{B}_R \mathbf{R} + \mathbf{Q}_v \Big) + \mathbf{q}^{o} \Big] </math>
समीकरण ({{EquationNote|7b}}) एक्स के लिए हल किया जा सकता है, और सदस्य बल अगले से पाए जाते हैं ({{EquationNote|5}}) जबकि नोडल विस्थापन द्वारा पाया जा सकता है
समीकरण ({{EquationNote|7b}}) X के लिए हल किया जा सकता है, और इकाईयों बल अगले से पाए जाते है ({{EquationNote|5}}) जबकि नोडल विस्थापन द्वारा पाया जा सकता है


:<math>\mathbf{r}_{R} = \mathbf{B}_R^T \mathbf{q} = \mathbf{F}_{RR} \mathbf{R} + \mathbf{r}^o_R </math>
:<math>\mathbf{r}_{R} = \mathbf{B}_R^T \mathbf{q} = \mathbf{F}_{RR} \mathbf{R} + \mathbf{r}^o_R </math>
कहाँ
जहाँ
: <math> \mathbf{F}_{RR} = \mathbf{B}_R^T \mathbf{f} \mathbf{B}_R </math> सिस्टम लचीलापन मैट्रिक्स है।
: <math> \mathbf{F}_{RR} = \mathbf{B}_R^T \mathbf{f} \mathbf{B}_R </math> समीकरण नम्यता मैट्रिक्स है।


:<math> \mathbf{r}^o_R = \mathbf{B}_R^T \Big[ \mathbf{f}
:<math> \mathbf{r}^o_R = \mathbf{B}_R^T \Big[ \mathbf{f}
\Big( \mathbf{B}_X \mathbf{X} + \mathbf{Q}_v \Big) + \mathbf{q}^{o} \Big] </math>
\Big( \mathbf{B}_X \mathbf{X} + \mathbf{Q}_v \Big) + \mathbf{q}^{o} \Big] </math>
बेमानी पर होने वाले समर्थन आंदोलनों को समीकरण के दाहिने हाथ में शामिल किया जा सकता है ({{EquationNote|7}}), जबकि अन्य स्थानों पर समर्थन के आंदोलनों को शामिल किया जाना चाहिए <math> \mathbf{r}^o_X </math> और <math> \mathbf{r}^o_R </math> भी।
समर्थन को समीकरण के दाहिने हाथ में सम्मलित किया जा सकता है ({{EquationNote|7}}), जबकि अन्य स्थानों पर समर्थन के <math> \mathbf{r}^o_X </math> और <math> \mathbf{r}^o_R </math> को सम्मलित किया जाना चाहिए।


== फायदे और नुकसान ==
== लाभ और हानियां ==
जबकि निरर्थक बलों का चुनाव ({{EquationNote|4}}) स्वचालित गणना के लिए मनमाना और परेशानी भरा प्रतीत होता है, इस आपत्ति को आगे बढ़ने से दूर किया जा सकता है ({{EquationNote|3}}) सीधे ({{EquationNote|5}}) एक संशोधित गॉस-जॉर्डन उन्मूलन प्रक्रिया का उपयोग करना। यह एक मजबूत प्रक्रिया है जो संख्यात्मक स्थिरता सुनिश्चित करने के लिए स्वचालित रूप से अनावश्यक बलों का एक अच्छा सेट चुनती है।
जबकि ({{EquationNote|4}}) निरर्थक बलों का चुनाव स्वचालित संगणना के लिए यादृच्छिक और असुविधा से भरा प्रतीत होता है, संशोधित गॉस-जॉर्डन उन्मूलन प्रक्रिया का उपयोग करके ({{EquationNote|3}}) सीधे ({{EquationNote|5}}) से आगे बढ़कर इस आपत्ति को दूर किया जा सकता है।यह एक मजबूत प्रक्रिया है जो संख्यात्मक स्थिरता सुनिश्चित करने के लिए स्वचालित रूप से अनावश्यक बलों का एक अच्छा सेट चुनती है।


उपरोक्त प्रक्रिया से यह स्पष्ट है कि स्वचालित गणना के लिए मैट्रिक्स कठोरता विधि को समझना और लागू करना आसान है। उन्नत अनुप्रयोगों जैसे गैर-रैखिक विश्लेषण, स्थिरता, कंपन आदि के लिए विस्तार करना भी आसान है। इन कारणों से, मैट्रिक्स कठोरता विधि सामान्य प्रयोजन संरचनात्मक विश्लेषण सॉफ्टवेयर पैकेजों में उपयोग के लिए पसंद की विधि है। दूसरी ओर, रैखिक प्रणालियों के लिए स्थैतिक अनिश्चितता की कम डिग्री के साथ, लचीलेपन की विधि में कम्प्यूटेशनल रूप से कम गहन होने का लाभ होता है। हालाँकि, यह लाभ एक विवादास्पद बिंदु है क्योंकि व्यक्तिगत कंप्यूटर व्यापक रूप से उपलब्ध हैं और अधिक शक्तिशाली हैं। आजकल इस पद्धति को सीखने में मुख्य रिडीमिंग कारक इसके ऐतिहासिक मूल्य के अलावा संतुलन और अनुकूलता की अवधारणाओं को प्रदान करने में इसका शैक्षिक मूल्य है। इसके विपरीत, प्रत्यक्ष कठोरता पद्धति की प्रक्रिया इतनी यांत्रिक है कि यह संरचनात्मक व्यवहारों की अधिक समझ के बिना उपयोग किए जाने का जोखिम उठाती है।
उपरोक्त प्रक्रिया से यह स्पष्ट है कि स्वचालित गणना के लिए मैट्रिक्स संदृढ़ता विधि को समझना और लागू करना आसान होता है। इन कारणों से, मैट्रिक्स संदृढ़ता विधि सामान्य प्रयोजन संरचनात्मक विश्लेषण सॉफ्टवेयर पैकेजों में उपयोग के लिए पसंदीदा विधि है। दूसरी ओर, रैखिक समीकरणों के लिए स्थैतिक अनिश्चितता की कम डिग्री के साथ, नम्यता पद्धति में अभिकलनीयतः रूप से कम गहन होने का लाभ होता है। चूँकि, यह लाभ एक विवादास्पद बिंदु है क्योंकि व्यक्तिगत कंप्यूटर व्यापक रूप से उपलब्ध होते है और अधिक ऊर्जाशाली होते है। आजकल इस पद्धति को सीखने में मुख्य रिडीमिंग कारक इसके ऐतिहासिक मूल्य के अतिरिक्त संतुलन और अनुकूलता की अवधारणाओं को प्रदान करने में इसका शैक्षिक मूल्य होता है। इसके विपरीत, प्रत्यक्ष संदृढ़ता पद्धति की प्रक्रिया इतनी यांत्रिक है कि यह संरचनात्मक व्यवहारों की अधिक समझ के बिना उपयोग किए जाने का जोखिम उठाती है।


ऊपरी तर्क 1990 के दशक के अंत तक मान्य थे। हालाँकि, संख्यात्मक कंप्यूटिंग में हालिया प्रगति ने बल पद्धति की वापसी दिखाई है, विशेष रूप से अरैखिक प्रणालियों के मामले में। नए ढांचे विकसित किए गए हैं जो सिस्टम गैर-रैखिकताओं के प्रकार या प्रकृति के बावजूद सटीक फॉर्मूलेशन की अनुमति देते हैं। लचीलेपन की विधि का मुख्य लाभ यह है कि परिणाम त्रुटि मॉडल के विवेक से स्वतंत्र है और यह वास्तव में एक बहुत तेज़ तरीका है। उदाहरण के लिए, बल विधि का उपयोग करते हुए एक निरंतर बीम के लोचदार-प्लास्टिक समाधान के लिए केवल 4 बीम तत्वों की आवश्यकता होती है, जबकि एक वाणिज्यिक कठोरता आधारित परिमित तत्व विधि कोड को समान सटीकता के साथ परिणाम देने के लिए 500 तत्वों की आवश्यकता होती है। निष्कर्ष निकालने के लिए, कोई यह कह सकता है कि जहां समस्या के समाधान के लिए बल क्षेत्र के पुनरावर्ती मूल्यांकन की आवश्यकता होती है जैसे संरचनात्मक अनुकूलन या [[सिस्टम पहचान]] के मामले में, लचीलेपन की विधि की दक्षता निर्विवाद है।
ऊपरी तर्क 1990 के दशक के अंत तक मान्य थे। चूँकि, संख्यात्मक कंप्यूटिंग में हालिया प्रगति ने बल पद्धति की वापसी दिखाई है, विशेष रूप से अरैखिक प्रणालियों के स्थितियों में। नए ढांचे विकसित किए गए है जो समीकरण गैर-रैखिकताओं प्रकार या प्रकृति के अतिरिक्त त्रुटिहीन योगों की अनुमति देते हैं, नम्यता पद्धति की विधि का मुख्य लाभ यह है कि परिणाम त्रुटि मॉडल के विवेक से स्वतंत्र है और यह वास्तव में एक विधि है। उदाहरण के लिए, बल विधि का उपयोग करते हुए एक सतत बीम के लोचदार-प्लास्टिक समाधान के लिए केवल 4 बीम तत्वों की आवश्यकता होती है जबकि एक वाणिज्यिक "संदृढ़ आधारित" एफईएम कोड को समान सटीकता के साथ परिणाम देने के लिए 500 तत्वों की आवश्यकता होती है। निष्कर्ष निकालने के लिए, कोई यह कह सकता है कि जहां समस्या के समाधान के लिए बल क्षेत्र के पुनरावर्ती मूल्यांकन की आवश्यकता होती है जैजैसे संरचनात्मक अनुकूलन या [[सिस्टम पहचान|समीकरण पहचान]] के स्थिति में, नम्यता पद्धति की दक्षता निर्विवाद होती है।


== यह भी देखें ==
== यह भी देखें ==
*[[संरचनात्मक यांत्रिकी में परिमित तत्व विधि]]
*[[संरचनात्मक यांत्रिकी में परिमित तत्व विधि]]
*[[संरचनात्मक विश्लेषण]]
*[[संरचनात्मक विश्लेषण]]
* [[प्रत्यक्ष कठोरता विधि]]
* [[प्रत्यक्ष कठोरता विधि|प्रत्यक्ष संदृढ़ता विधि]]


==संदर्भ==
==संदर्भ==


{{reflist}}
{{reflist}}
==बाहरी संबंध==
==बाहरी संबंध==
*[http://www.public.iastate.edu/~fanous/ce332/force/homepage.html Consistent Deformations - Force Method]
*[http://www.public.iastate.edu/~fanous/ce332/force/homepage.html Consistent Deformations - Force Method]


{{Structural engineering topics}}[[Category: संरचनात्मक विश्लेषण]] [[Category: सीमित तत्व विधि]]
[[Category: Machine Translated Page]]
[[Category:Created On 21/03/2023]]
[[Category:Created On 21/03/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:संरचनात्मक विश्लेषण]]
[[Category:सीमित तत्व विधि]]

Latest revision as of 12:41, 23 June 2023

संरचनात्मक इंजीनियरिंग में, नम्यता पद्धति विधि जिसे लगातार विकृतियों की विधि भी कहा जाता है, संरचनात्मक प्रणालियों में सदस्य बल और विस्थापन की गणना के लिए पारंपरिक विधि है। इकाईयोंके नम्यता मैट्रिक्स के संदर्भ में तैयार किए गए इसके आधुनिक संस्करण को प्राथमिक अज्ञात इकाईयों के रूप में इकाईयों बलों के उपयोग के कारण इसे मैट्रिक्स बल विधि का नाम भी दिया गया है।[1]

इकाई नम्यता

नम्यता संदृढ़ता का विलोम होता है। उदाहरण के लिए, एक स्प्रिंग पर विचार करें जिसमें Q और q क्रमशः इसकी ऊर्जा और विरूपण होते है:

  • स्प्रिंग की संदृढ़ता का संबंध Q = k q है जहां k स्प्रिंग की संदृढ़ता से है
  • इसका नम्यता संबंध q = f Q है, जहाँ f स्प्रिंग का नम्यता होती है
  • इसलिए, f = 1/k। है

एक विशिष्ट इकाईयों की नम्यता के संबंध में निम्नलिखित सामान्य रूप से है:

 

 

 

 

(1)

जहाँ

m = इकाई संख्या m है
= इकइयो की विशिष्ट विकृतियों का सदिश है
= इकाई नम्यता मैट्रिक्स बल के अनुसार विकृत होने के लिए इकाईयों की संवेदनशीलता को दर्शाता है
= इकाई की स्वतंत्र चारित्रिक ऊर्जा का सदिश, जो अज्ञात आंतरिक बल होता है। ये स्वतंत्र बल इकाईयों के संतुलन द्वारा सभी इकाई -अंत बलों को उत्पन्न करता है
= बाहरी प्रभाव के कारण इकाईयों की विशेषता विकृति वियुक्त, असंगत किए गए इकाईयों पर लागू होती है ).

नोड्स नामक बिंदुओं पर परस्पर जुड़े कई इकाईयों से बनी एक प्रणाली के लिए, इकाईयों के नम्यता संबंधों को एक एकल मैट्रिक्स समीकरण में एक साथ रखा जा सकता है, अधिलेख m को छोड़ कर:

 

 

 

 

(2)

जहां M समीकरण में इकाईयों की विशेषता विकृतियों या बलों की कुल संख्या होती है

मैट्रिक्स संदृढ़ता विधि के विपरीत, जहां इकाईयों की संदृढ़ता संबंधों को नोडल संतुलन और अनुकूलता स्थितियों के माध्यम से आसानी से एकीकृत किया जा सकता है, समीकरण का वर्तमान नम्यता रूप (2) गंभीर कठिनाई उत्पन्न करता है। इकाईयों बलों के साथ प्राथमिक अज्ञात के रूप में, नोडल संतुलन समीकरणों की संख्या समाधान के लिए अपर्याप्त होती है, सामान्यतः - जब तक कि समीकरण स्थिर रूप से निर्धारित नहीं होती है।

नोडल संतुलन समीकरण

इस कठिनाई को हल करने के लिए, स्वतंत्र अज्ञात इकाईयों बलों की संख्या को कम करने के लिए पहले हम नोडल संतुलन समीकरणों का उपयोग करते है। समीकरण के लिए नोडल संतुलन समीकरण का रूप होता है:

 

 

 

 

(3)

जहाँ

: समीकरण की स्वतंत्रता N डिग्री नोडल बलों का सदिश है
: परिणामी नोडल संतुलन मैट्रिक्स है
: इकाईयों पर भार डालने से उत्पन्न होने वाली ऊर्जा का सदिश होती है

निर्धारित समीकरणों के स्थिति में, मैट्रिक्स B वर्ग है और q के लिए उपाय तुरंत पाया जा सकता है (3)

प्राथमिक समीकरण

सांख्यिकीय रूप से अनिश्चित प्रणालियों के लिए, M > N, और इसलिए, फॉर्म के I = M-N समीकरणों के साथ (3) के बढ़ा सकते हैं

 

 

 

 

(4)

सदिश X अतिरेक बलों का तथाकथित सदिश है और I समीकरण की स्थैतिक अनिश्चितता की डिग्री है। हम सामान्यतः j, k, …, अल्फा, और\बीटा कि एक समर्थन प्रतिक्रिया या एक आंतरिक इकाईयों-अंत बल है। निरर्थक बलों के उपयुक्त विकल्पों के साथ, समीकरण (3) द्वारा संवर्धित समीकरण प्रणाली (4) को अब प्राप्त करने के लिए हल किया जा सकता है:

 

 

 

 

(5)

में प्रतिस्थापन (2) देता है:

 

 

 

 

(6)

समीकरण (5) और (6) प्राथमिक प्रणाली के लिए समाधान हैं जो मूल प्रणाली है जिसे कटौती द्वारा सांख्यिकीय रूप से निर्धारित किया गया है जो अनावश्यक ताकतों को उजागर करता है . समीकरण (5) प्रभावी रूप से अज्ञात बलों के समुच्चय को कम कर देता है .

संगतता समीकरण और समाधान

अगला, हमें प्राप्त करना के लिए संगतता समीकरण सेट अप करने की आवश्यकता होती है अनुकूलता समीकरण संबंधित विस्थापनों को सेट करके कट सेक्शन में आवश्यक निरंतरता को बहाल करते हैं अनावश्यक, अर्थात्, इकाई डमी बल विधि का उपयोग करते है:

 

 

 

 

(7a)

या

 

 

 

 

(7b)

जहाँ

समीकरण (7b) X के लिए हल किया जा सकता है, और इकाईयों बल अगले से पाए जाते है (5) जबकि नोडल विस्थापन द्वारा पाया जा सकता है

जहाँ

समीकरण नम्यता मैट्रिक्स है।

समर्थन को समीकरण के दाहिने हाथ में सम्मलित किया जा सकता है (7), जबकि अन्य स्थानों पर समर्थन के और को सम्मलित किया जाना चाहिए।

लाभ और हानियां

जबकि (4) निरर्थक बलों का चुनाव स्वचालित संगणना के लिए यादृच्छिक और असुविधा से भरा प्रतीत होता है, संशोधित गॉस-जॉर्डन उन्मूलन प्रक्रिया का उपयोग करके (3) सीधे (5) से आगे बढ़कर इस आपत्ति को दूर किया जा सकता है।यह एक मजबूत प्रक्रिया है जो संख्यात्मक स्थिरता सुनिश्चित करने के लिए स्वचालित रूप से अनावश्यक बलों का एक अच्छा सेट चुनती है।

उपरोक्त प्रक्रिया से यह स्पष्ट है कि स्वचालित गणना के लिए मैट्रिक्स संदृढ़ता विधि को समझना और लागू करना आसान होता है। इन कारणों से, मैट्रिक्स संदृढ़ता विधि सामान्य प्रयोजन संरचनात्मक विश्लेषण सॉफ्टवेयर पैकेजों में उपयोग के लिए पसंदीदा विधि है। दूसरी ओर, रैखिक समीकरणों के लिए स्थैतिक अनिश्चितता की कम डिग्री के साथ, नम्यता पद्धति में अभिकलनीयतः रूप से कम गहन होने का लाभ होता है। चूँकि, यह लाभ एक विवादास्पद बिंदु है क्योंकि व्यक्तिगत कंप्यूटर व्यापक रूप से उपलब्ध होते है और अधिक ऊर्जाशाली होते है। आजकल इस पद्धति को सीखने में मुख्य रिडीमिंग कारक इसके ऐतिहासिक मूल्य के अतिरिक्त संतुलन और अनुकूलता की अवधारणाओं को प्रदान करने में इसका शैक्षिक मूल्य होता है। इसके विपरीत, प्रत्यक्ष संदृढ़ता पद्धति की प्रक्रिया इतनी यांत्रिक है कि यह संरचनात्मक व्यवहारों की अधिक समझ के बिना उपयोग किए जाने का जोखिम उठाती है।

ऊपरी तर्क 1990 के दशक के अंत तक मान्य थे। चूँकि, संख्यात्मक कंप्यूटिंग में हालिया प्रगति ने बल पद्धति की वापसी दिखाई है, विशेष रूप से अरैखिक प्रणालियों के स्थितियों में। नए ढांचे विकसित किए गए है जो समीकरण गैर-रैखिकताओं प्रकार या प्रकृति के अतिरिक्त त्रुटिहीन योगों की अनुमति देते हैं, नम्यता पद्धति की विधि का मुख्य लाभ यह है कि परिणाम त्रुटि मॉडल के विवेक से स्वतंत्र है और यह वास्तव में एक विधि है। उदाहरण के लिए, बल विधि का उपयोग करते हुए एक सतत बीम के लोचदार-प्लास्टिक समाधान के लिए केवल 4 बीम तत्वों की आवश्यकता होती है जबकि एक वाणिज्यिक "संदृढ़ आधारित" एफईएम कोड को समान सटीकता के साथ परिणाम देने के लिए 500 तत्वों की आवश्यकता होती है। निष्कर्ष निकालने के लिए, कोई यह कह सकता है कि जहां समस्या के समाधान के लिए बल क्षेत्र के पुनरावर्ती मूल्यांकन की आवश्यकता होती है जैजैसे संरचनात्मक अनुकूलन या समीकरण पहचान के स्थिति में, नम्यता पद्धति की दक्षता निर्विवाद होती है।

यह भी देखें

संदर्भ

  1. "मैट्रिक्स बल विधि" (PDF). IUST. Retrieved 29 December 2012.

बाहरी संबंध