विद्युत धारिता आयतन टोमोग्राफी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 5: Line 5:
== सिद्धांत ==
== सिद्धांत ==


=== ईसीवीटी में धारिता और फील्ड समीकरण ===
=== ईसीवीटी में धारिता और क्षेत्र समीकरण ===


अलग-अलग विद्युत क्षमता <math>V</math> पर रखे गए दो धातु इलेक्ट्रोड और एक परिमित दूरी से अलग होने से उनके बीच और आसपास के क्षेत्र में एक विद्युत क्षेत्र <math>E</math> उत्पन्न होगा। क्षेत्र वितरण समस्या की ज्यामिति और संवैधानिक माध्यम गुणों जैसे परमिटिटिविटी \varepsilon और चालकता \sigma द्वारा निर्धारित किया जाता है। प्लेटों के बीच के क्षेत्र में एक स्थिर या अर्ध-स्थैतिक शासन और दोषरहित ढांकता हुआ माध्यम की उपस्थिति, जैसे कि एक पूर्ण [[इन्सुलेटर (बिजली)]], क्षेत्र निम्नलिखित समीकरण का पालन करता है:
अलग-अलग विद्युत क्षमता <math>V</math> पर रखे गए दो धातु इलेक्ट्रोड और एक परिमित दूरी से अलग होने पर उनके बीच और आसपास के क्षेत्र में विद्युत क्षेत्र <math>E</math> उत्पन्न होगा। क्षेत्र वितरण समस्या की ज्यामिति और संवैधानिक माध्यम गुणों जैसे विद्युतशीलता '''ԑ''' और चालकता '''ᓂ''' द्वारा निर्धारित किया जाता है। प्लेटों के बीच के क्षेत्र में एक स्थिर या अर्ध-स्थैतिक शासन और दोषरहित आवरण के माध्यम की उपस्थिति जैसे कि एक पूर्ण [[इन्सुलेटर (बिजली)|अवरोधक (विद्युत)]] क्षेत्र मे निम्नलिखित समीकरण का अनुसरण करता है:


<math>
<math>
\nabla.(\varepsilon \nabla \varphi)=0
\nabla.(\varepsilon \nabla \varphi)=0
</math>
</math>
कहाँ <math>\varphi</math> विद्युत संभावित वितरण को दर्शाता है। वर्दी के साथ एक [[सजातीय]] माध्यम में <math>\varepsilon</math>, यह समीकरण [[लाप्लास समीकरण]] को कम करता है। जल जैसे परिमित चालकता वाले [[हानिपूर्ण]] माध्यम में, क्षेत्र एम्पीयर के परिपथीय नियम का पालन करता है,
 
जहाँ <math>\varphi</math> विद्युत संभावित वितरण को दर्शाता है। अपरिवर्तनशीलता के साथ एक [[सजातीय]] माध्यम में <math>\varepsilon</math>, यह समीकरण [[लाप्लास समीकरण]] को कम करता है। जैसे परिमित चालकता वाले [[हानिपूर्ण]] माध्यम में, क्षेत्र एम्पीयर के परिपथीय नियम का अनुसरण करता है,


<math>
<math>
\nabla \times H= \sigma E + j \omega \varepsilon E
\nabla \times H= \sigma E + j \omega \varepsilon E
</math>
</math>
इस समीकरण का [[विचलन]] करके और इस तथ्य का उपयोग करके कि <math>E=-\nabla \varphi</math>, यह इस प्रकार है:
 
इस समीकरण का [[विचलन]] करके और इस तथ्य का उपयोग करके <math>E=-\nabla \varphi</math> का अनुसरण करता है:


<math>
<math>
\nabla.((\sigma + j\omega \varepsilon)\nabla\varphi)=0
\nabla.((\sigma + j\omega \varepsilon)\nabla\varphi)=0
</math>
</math>
जब प्लेटें आवृत्ति के साथ समय-हार्मोनिक वोल्टेज क्षमता से उत्तेजित होती हैं <math>\omega</math>.


धारिता <math>C</math> [[विद्युत ऊर्जा]] का माप है <math>W</math> माध्यम में संग्रहीत, जिसे निम्नलिखित संबंध द्वारा परिमाणित किया जा सकता है:
जब प्लेटें आवृत्ति के साथ समय-सजातीय वोल्टेज क्षमता <math>\omega</math> से उत्तेजित होती हैं।
 
धारिता <math>C</math> माध्यम में संग्रहीत [[विद्युत ऊर्जा]] <math>W</math> की एक माप है, जिसे निम्नलिखित संबंध के माध्यम से निर्धारित किया जा सकता है:


<math>
<math>
W =\frac{1}{2}\int_{}^{}\varepsilon E^2\, dv = \frac{1}{2} CV^2
W =\frac{1}{2}\int_{}^{}\varepsilon E^2\, dv = \frac{1}{2} CV^2
</math>
</math>
कहाँ <math>E^2</math> विद्युत क्षेत्र का वर्ग परिमाण है। धारिता ढांकता हुआ पारगम्यता के एक गैर-रैखिक कार्य के रूप में बदलती है <math>\varepsilon</math> क्योंकि उपरोक्त इंटीग्रल में विद्युत क्षेत्र वितरण भी एक कार्य है <math>\varepsilon</math>.


=== सॉफ्ट-फील्ड टोमोग्राफी ===
 
जहाँ <math>E^2</math> विद्युत क्षेत्र का वर्ग परिमाण है। धारिता परावैद्युत पारगम्यता <math>\varepsilon</math> के एक अरैखिक फलन के रूप में परिवर्तित होती है क्योंकि उपरोक्त समाकल में विद्युत क्षेत्र वितरण भी <math>\varepsilon</math> का एक फलन है।


सॉफ्ट-फील्ड टोमोग्राफी काल्पनिक तौर-तरीकों के एक सेट को संदर्भित करता है जैसे [[विद्युत प्रतिबाधा टोमोग्राफी]] (ईसीटी), विद्युत प्रतिबाधा टोमोग्राफी (ईआईटी), [[विद्युत प्रतिरोधकता टोमोग्राफी]] (ईआरटी), आदि, जिसमें विद्युत (या चुंबकीय) क्षेत्र रेखाएं उपस्थिति में परिवर्तन से गुजरती हैं। माध्यम में गड़बड़ी का। यह एक्स-रे सीटी जैसे हार्ड-फील्ड टोमोग्राफी के विपरीत है, जहां परीक्षण विषय की उपस्थिति में विद्युत क्षेत्र रेखाएं नहीं बदलती हैं। सॉफ्ट-फील्ड टोमोग्राफी की एक मूलभूत विशेषता इसकी अस्पष्टता है।<ref name="Discrete Inverse Problems: Insight and Algorithms">{{Cite book|last1=Hansen|first1=P.C.|title=Discrete Inverse Problems: Insight and Algorithms|journal=Ser. Fundamentals of Algorithms, N. J. Higham, Ed. Philadelphia, PA: SIAM|date=2010|doi=10.1137/1.9780898718836|isbn=978-0-89871-696-2}}</ref> हार्ड-फील्ड टोमोग्राफी की तुलना में सॉफ्ट-फील्ड टोमोग्राफी में अच्छे स्थानिक संकल्प को प्राप्त करने के लिए पुनर्निर्माण को और अधिक चुनौतीपूर्ण बनाने में योगदान देता है। कई तकनीकों, जैसे कि तिखोनोव नियमितीकरण, का उपयोग बीमार स्थिति को कम करने के लिए किया जा सकता है।<ref name="विद्युत समाई टोमोग्राफी के लिए छवि पुनर्निर्माण एल्गोरिदम">{{cite journal|last1=Yang|first1=W.Q.|last2=Peng|first2=L.H.|title=विद्युत समाई टोमोग्राफी के लिए छवि पुनर्निर्माण एल्गोरिदम|journal=Meas. Sci. Technol.|date=Jan 2003|volume=14|issue=1|page=R1–R13|doi=10.1088/0957-0233/14/1/201}}</ref> दाईं ओर का आंकड़ा ईसीवीटी और एमआरआई के बीच छवि रिज़ॉल्यूशन में तुलना दिखाता है।
=== सॉफ्ट-क्षेत्र टोमोग्राफी ===
 
सॉफ्ट-क्षेत्र टोमोग्राफी काल्पनिक रूप से समूह को संदर्भित करती है जैसे [[विद्युत प्रतिबाधा टोमोग्राफी]] (ईसीटी), विद्युत धारिता टोमोग्राफी (ईआईटी), [[विद्युत प्रतिरोधकता टोमोग्राफी]] (ईआरटी) आदि जिसमें विद्युत या चुंबकीय क्षेत्र रेखाएं उपस्थिति में परिवर्तन माध्यम से गुजरती हैं। यह एक्स-रे सीटी जैसे उच्च क्षेत्र टोमोग्राफी के विपरीत है, जहां परीक्षण विषय की उपस्थिति में विद्युत क्षेत्र रेखाएं नहीं परिवर्तित होती हैं। सॉफ्ट-क्षेत्र टोमोग्राफी की एक मूलभूत विशेषता इसकी अस्पष्टता है।<ref name="Discrete Inverse Problems: Insight and Algorithms">{{Cite book|last1=Hansen|first1=P.C.|title=Discrete Inverse Problems: Insight and Algorithms|journal=Ser. Fundamentals of Algorithms, N. J. Higham, Ed. Philadelphia, PA: SIAM|date=2010|doi=10.1137/1.9780898718836|isbn=978-0-89871-696-2}}</ref> उच्च-क्षेत्र टोमोग्राफी की तुलना में सॉफ्ट-क्षेत्र टोमोग्राफी में अच्छे स्थानिक संकल्प को प्राप्त करने के लिए पुनर्निर्माण को और अधिक चुनौतीपूर्ण बनाने में योगदान देता है। कई तकनीकों जैसे कि तिखोनोव नियमितीकरण का उपयोग जटिल स्थिति को अपेक्षाकृत कम करने के लिए किया जा सकता है।<ref name="विद्युत समाई टोमोग्राफी के लिए छवि पुनर्निर्माण एल्गोरिदम">{{cite journal|last1=Yang|first1=W.Q.|last2=Peng|first2=L.H.|title=विद्युत समाई टोमोग्राफी के लिए छवि पुनर्निर्माण एल्गोरिदम|journal=Meas. Sci. Technol.|date=Jan 2003|volume=14|issue=1|page=R1–R13|doi=10.1088/0957-0233/14/1/201}}</ref> दाईं ओर का आंकड़ा ईसीवीटी और एमआरआई के बीच छवि विश्लेषण में तुलना दिखाता है।


=== ईसीवीटी मापन अधिग्रहण प्रणाली ===
=== ईसीवीटी मापन अधिग्रहण प्रणाली ===


ईसीवीटी सिस्टम के हार्डवेयर में सेंसिंग इलेक्ट्रोड प्लेट्स, डेटा अधिग्रहण सर्किट्री और कंप्यूटर समग्र प्रणाली को नियंत्रित करने और डेटा को संसाधित करने के लिए होते हैं। ईसीवीटी अपने संपर्क रहित संचालन के कारण एक गैर-घुसपैठ और गैर-विस्तृत काल्पनिक पद्धति है। वास्तविक माप से पहले, एक अंशांकन और सामान्यीकरण प्रक्रिया आवारा धारिता के प्रभाव को रद्द करने के लिए आवश्यक है और इलेक्ट्रोड और ब्याज के क्षेत्र के बीच किसी भी इन्सुलेटिंग दीवार को चित्रित किया जाना चाहिए। अंशांकन और सामान्यीकरण के बाद, माप को अधिग्रहण के अनुक्रम में विभाजित किया जा सकता है जहां दो अलग-अलग इलेक्ट्रोड सम्मिलित होते हैं: एक इलेक्ट्रोड (TX) अर्ध-इलेक्ट्रोस्टैटिक शासन में एसी वोल्टेज स्रोत से उत्साहित होता है, आमतौर पर 10 मेगाहर्ट्ज से नीचे, जबकि दूसरा इलेक्ट्रोड ( RX) परिणामी धारा को मापने के लिए उपयोग की जाने वाली जमीनी क्षमता पर रखा गया है। शेष इलेक्ट्रोड को भी जमीनी क्षमता पर रखा जाता है।
ईसीवीटी प्रणाली के हार्डवेयर में संवेदन इलेक्ट्रोड प्लेट्स, डेटा अधिग्रहण परिपथ और कंप्यूटर समग्र प्रणाली को नियंत्रित करने और डेटा को संसाधित करने के लिए होते हैं। ईसीवीटी अपने संपर्क रहित संचालन के कारण एक गैर-आक्रामक और गैर-विस्तृत काल्पनिक पद्धति है। वास्तविक माप से पहले एक अंशांकन और सामान्यीकरण प्रक्रिया अस्पष्ट धारिता के प्रभाव को नष्ट करने के लिए आवश्यक है। इलेक्ट्रोड और ब्याज के क्षेत्र के बीच किसी भी अवरोधक दीवार को चित्रित किया जाना चाहिए। अंशांकन और सामान्यीकरण के बाद माप को अधिग्रहण के अनुक्रम में विभाजित किया जा सकता है जहां दो अलग-अलग इलेक्ट्रोड सम्मिलित होते हैं: एक इलेक्ट्रोड (टीएक्स) अर्ध-इलेक्ट्रोस्टैटिक शासन में एसी वोल्टेज स्रोत से उत्साहित होता है। सामान्यतः 10 मेगाहर्ट्ज से नीचे, जबकि दूसरा इलेक्ट्रोड (आरएक्स) परिणामी धारा को मापने के लिए उपयोग की जाने वाली सतह क्षमता पर रखा गया है और शेष सभी इलेक्ट्रोड को भी सतह क्षमता पर रखा जाता है।


यह प्रक्रिया सभी संभावित इलेक्ट्रोड जोड़े के लिए दोहराई जाती है। ध्यान दें कि TX और RX इलेक्ट्रोड की भूमिकाओं को उलटने से पारस्परिकता के कारण समान पारस्परिक धारिता होगी। परिणामस्वरूप, प्लेटों की N संख्या वाली ईसीवीटी प्रणालियों के लिए, स्वतंत्र मापन की संख्या N(N-1)/2 के बराबर होती है। यह प्रक्रिया आमतौर पर डेटा अधिग्रहण सर्किट्री के माध्यम से स्वचालित होती है। माप प्रणाली के प्रति सेकंड ऑपरेशन आवृत्ति, प्लेटों की संख्या और फ्रेम दर के आधार पर, एक पूर्ण माप चक्र भिन्न हो सकता है; हालाँकि, यह कुछ सेकंड या उससे कम के क्रम में है। ईसीवीटी सिस्टम के सबसे महत्वपूर्ण भागों में से एक संवेदक डिज़ाइन है। जैसा कि पिछली चर्चा से पता चलता है, इलेक्ट्रोड की संख्या बढ़ने से रुचि के क्षेत्र के बारे में स्वतंत्र जानकारी की मात्रा भी बढ़ जाती है। हालांकि इसका परिणाम छोटे इलेक्ट्रोड आकार में होता है जिसके परिणामस्वरूप कम सिग्नल-टू-शोर अनुपात होता है।<ref name="Electrical Capacitance Volume Tomography: Design and Applications">{{cite journal|last1=Wang|first1=F.|last2=Marashdeh|first2=Q.M.|last3=Fan|first3=L.-S.|last4=Warsito|first4=W.|date=2010|title=Electrical Capacitance Volume Tomography: Design and Applications|journal=Sensors (Basel, Switzerland)|volume=10|issue=3|pages=1890–1917|doi=10.3390/s100301890|pmid=22294905|pmc=3264458}}</ref> दूसरी ओर, इलेक्ट्रोड के आकार को बढ़ाने से प्लेटों पर गैर-समान चार्ज वितरण नहीं होता है, जो समस्या की दुर्भावना को बढ़ा सकता है।<ref name="अनुकूली विद्युत क्षमता आयतन टोमोग्राफी">{{cite journal|last1=Marashdeh|first1=Q.M.|last2=Teixeira|first2=F.L.|last3=Fan|first3=L.-S.|date=2014|title=अनुकूली विद्युत क्षमता आयतन टोमोग्राफी|journal=IEEE Sensors Journal|volume=14|issue=4|page=1253,1259|doi=10.1109/JSEN.2013.2294533|bibcode=2014ISenJ..14.1253M|s2cid=15609458}}</ref> संवेदक आयाम भी संवेदन इलेक्ट्रोड के बीच अंतराल से सीमित है। फ्रिंज इफेक्ट के कारण ये महत्वपूर्ण हैं। इन प्रभावों को कम करने के लिए इलेक्ट्रोड के बीच गार्ड प्लेटों का उपयोग दिखाया गया है। इच्छित अनुप्रयोग के आधार पर, ईसीवीटी संवेदक अक्षीय दिशा के साथ एकल या अधिक परतों से बना हो सकता है। ईसीवीटी के साथ मात्रा टोमोग्राफी 2डी स्कैन के विलय से नहीं बल्कि 3डी डिस्क्रीटाइज्ड वोक्सल्स सेंसिटिविटी से प्राप्त की जाती है।
यह प्रक्रिया सभी संभावित इलेक्ट्रोड जोड़े के लिए दोहराई जाती है। ध्यान दें कि TX और RX इलेक्ट्रोड की भूमिकाओं को उत्क्रमित करने से पारस्परिकता के कारण समान पारस्परिक धारिता होती है जिसके  परिणामस्वरूप, प्लेटों की N संख्या वाली ईसीवीटी प्रणालियों के लिए स्वतंत्र मापन की संख्या N(N-1)/2 के बराबर होती है। यह प्रक्रिया सामान्यतः डेटा अधिग्रहण परिपथ के माध्यम से स्वचालित होती है। माप प्रणाली के प्रति सेकंड संचालन आवृत्ति, प्लेटों की संख्या और फ्रेम दर के आधार पर एक पूर्ण माप चक्र भिन्न हो सकता है। हालाँकि यह कुछ सेकंड या उससे कम के क्रम में है। ईसीवीटी प्रणाली के सबसे महत्वपूर्ण भागों में से एक संवेदक डिज़ाइन है। जैसा कि पिछली चर्चा से पता चलता है कि इलेक्ट्रोड की संख्या बढ़ने से रुचि के क्षेत्र के विषय में स्वतंत्र जानकारी की मात्रा भी बढ़ जाती है। हालांकि इसका परिणाम छोटे इलेक्ट्रोड आकार में होता है। जिसके परिणामस्वरूप अपेक्षाकृत कम ध्वनि संकेत अनुपात होता है।<ref name="Electrical Capacitance Volume Tomography: Design and Applications">{{cite journal|last1=Wang|first1=F.|last2=Marashdeh|first2=Q.M.|last3=Fan|first3=L.-S.|last4=Warsito|first4=W.|date=2010|title=Electrical Capacitance Volume Tomography: Design and Applications|journal=Sensors (Basel, Switzerland)|volume=10|issue=3|pages=1890–1917|doi=10.3390/s100301890|pmid=22294905|pmc=3264458}}</ref> दूसरी ओर इलेक्ट्रोड के आकार को बढ़ाने से प्लेटों पर गैर-समान आवेश वितरण नहीं होता है, जो समस्या की दुर्भावना को बढ़ा सकता है।<ref name="अनुकूली विद्युत क्षमता आयतन टोमोग्राफी">{{cite journal|last1=Marashdeh|first1=Q.M.|last2=Teixeira|first2=F.L.|last3=Fan|first3=L.-S.|date=2014|title=अनुकूली विद्युत क्षमता आयतन टोमोग्राफी|journal=IEEE Sensors Journal|volume=14|issue=4|page=1253,1259|doi=10.1109/JSEN.2013.2294533|bibcode=2014ISenJ..14.1253M|s2cid=15609458}}</ref> संवेदक आयाम भी संवेदन इलेक्ट्रोड के बीच अंतराल से सीमित है। फ्रिंज प्रभाव के कारण ये महत्वपूर्ण हैं। इन प्रभावों को अपेक्षाकृत कम करने के लिए इलेक्ट्रोड के बीच गार्ड प्लेटों का उपयोग दिखाया गया है। इच्छित अनुप्रयोग के आधार पर ईसीवीटी संवेदक अक्षीय दिशा के साथ एकल या अधिक परतों से बना हो सकता है। ईसीवीटी के साथ मात्रा टोमोग्राफी 2डी अवलोकन के विलय से नहीं प्राप्त की जाती है लेकिन 3डी असंततकरण त्रुटि संवेदनशीलता से प्राप्त की जा सकती है।


जांच के तहत डोमेन के आकार से इलेक्ट्रोड का डिज़ाइन भी तय होता है। कुछ डोमेन अपेक्षाकृत सरल ज्यामिति (बेलनाकार, आयताकार प्रिज्म, आदि) हो सकते हैं जहां सममित इलेक्ट्रोड प्लेसमेंट का उपयोग किया जा सकता है। हालाँकि, जटिल ज्यामिति (कोने के जोड़, टी-आकार के डोमेन, आदि) को डोमेन को ठीक से घेरने के लिए विशेष रूप से डिज़ाइन किए गए इलेक्ट्रोड की आवश्यकता होती है। ईसीवीटी का लचीलापन इसे फील्ड अनुप्रयोगों के लिए बहुत उपयोगी बनाता है जहां संवेदन प्लेटों को सममित रूप से नहीं रखा जा सकता है। चूंकि लाप्लास समीकरण में एक विशिष्ट लंबाई (जैसे हेल्महोल्ट्ज़ समीकरण में तरंग दैर्ध्य) का अभाव है, ईसीवीटी समस्या का मौलिक भौतिकी आकार में स्केलेबल है, जब तक कि अर्ध-स्थैतिक शासन गुण संरक्षित हैं।
जांच के अंतर्गत डोमेन के आकार से इलेक्ट्रोड का डिज़ाइन भी तय होता है। कुछ डोमेन अपेक्षाकृत सरल ज्यामिति (बेलनाकार, आयताकार प्रिज्म, आदि) हो सकते हैं जहां सममित इलेक्ट्रोड प्लेसमेंट का उपयोग किया जा सकता है। हालाँकि, जटिल ज्यामिति (कोने के जोड़, टी-आकार के डोमेन, आदि) के डोमेन को ठीक से घेरने के लिए विशेष रूप से डिज़ाइन किए गए इलेक्ट्रोड की आवश्यकता होती है। ईसीवीटी कि नम्यता इसे क्षेत्र अनुप्रयोगों के लिए बहुत उपयोगी बनाती है जहां संवेदन प्लेटों को सममित रूप से नहीं रखा जा सकता है। चूंकि लाप्लास समीकरण में एक विशिष्ट लंबाई (जैसे हेल्महोल्ट्ज़ समीकरण में तरंग दैर्ध्य) का अभाव है, ईसीवीटी समस्या का मौलिक भौतिकी आकार मापनीय है, जब तक कि अर्ध-स्थैतिक प्रवृत्ति विशेषता संरक्षित होती हैं।


== ईसीवीटी के लिए छवि पुनर्निर्माण के तरीके ==
== ईसीवीटी के लिए छवि पुनर्निर्माण के प्रकार ==
[[File:Image Reconstruction with ECVT.png|thumb|ईसीवीटी में छवि पुनर्निर्माण (ए) दो ढांकता हुआ क्षेत्रों को घेरने वाला एक ईसीवीटी संवेदक (<math>\varepsilon _r = 1.5</math>), (बी) लैंडवेबर पुनरावृत्ति का उपयोग करके पुनर्गठित परमिटिटिविटी वितरण<ref name=":1">{{Cite journal|last1=Chowdhury|first1=S.|last2=Marashdeh|first2=Q.M.|last3=Teixeira|first3=F.L.|date=2016|title=कैपेसिटिव सेंसर सेंसिटिविटी ग्रैडिएंट का उपयोग करके मल्टीफ़ेज़ फ्लो का वेलोसिटी प्रोफाइलिंग|journal=IEEE Sensors Journal|volume=16|issue=23|pages=8365–8373}}</ref>]]पुनर्निर्माण के तरीके ईसीवीटी काल्पनिक की उलटी समस्या को संबोधित करते हैं, यानी मात्राेट्रिक परमिटिटिविटी डिस्ट्रीब्यूशन को निर्धारित करने के लिए आपसी धारिता माप। परंपरागत रूप से, व्युत्क्रम समस्या को धारिता और भौतिक पारगम्यता समीकरण के बीच (नॉनलाइनियर) संबंध के रेखीयकरण के माध्यम से जन्म सन्निकटन का उपयोग करके नियंत्रित किया जाता है। आमतौर पर, यह सन्निकटन केवल छोटे पारगम्यता विरोधाभासों के लिए मान्य है। अन्य मामलों के लिए, विद्युत क्षेत्र वितरण की अरैखिक प्रकृति 2डी और 3डी छवि पुनर्निर्माण दोनों के लिए एक चुनौती बन जाती है, जिससे पुनर्निर्माण के तरीके बेहतर छवि गुणवत्ता के लिए एक सक्रिय अनुसंधान क्षेत्र बन जाते हैं। ईसीवीटी/ईसीटी के लिए पुनर्निर्माण विधियों को पुनरावृत्ति और गैर-पुनरावृत्ति (एकल चरण) विधियों के रूप में वर्गीकृत किया जा सकता है।<ref name="Image reconstruction algorithms for electrical capacitance tomography" /> गैर-पुनरावृत्त विधियों के उदाहरण रैखिक बैक प्रोजेक्शन (LBP) हैं, और एकवचन मूल्य अपघटन और तिखोनोव नियमितीकरण पर आधारित प्रत्यक्ष विधि है। ये एल्गोरिदम कम्प्यूटेशनल रूप से सस्ते हैं; हालांकि, मात्रात्मक जानकारी के बिना उनका समझौता कम सटीक चित्र है। पुनरावृत्त विधियों को मोटे तौर पर प्रक्षेपण-आधारित और अनुकूलन-आधारित विधियों में वर्गीकृत किया जा सकता है। ईसीवीटी के लिए उपयोग किए जाने वाले कुछ रैखिक प्रक्षेपण पुनरावृत्त एल्गोरिदम में न्यूटन-रैफसन, लैंडवेबर पुनरावृत्ति और स्टीपेस्ट डिसेंट बीजगणितीय पुनर्निर्माण और एक साथ पुनर्निर्माण तकनीक और मॉडल-आधारित पुनरावृत्ति सम्मिलित हैं। एकल चरण विधियों के समान, ये एल्गोरिदम भी डोमेन के अंदर परमिटिटिविटी वितरण प्राप्त करने के अनुमानों के लिए रैखिक संवेदनशीलता मैट्रिक्स का उपयोग करते हैं। प्रोजेक्शन-आधारित पुनरावृत्त विधियां आमतौर पर गैर-पुनरावृत्त एल्गोरिदम की तुलना में बेहतर छवियां प्रदान करती हैं, फिर भी अधिक कम्प्यूटेशनल संसाधनों की आवश्यकता होती है। दूसरे प्रकार के पुनरावृत्त पुनर्निर्माण तरीके अनुकूलन-आधारित पुनर्निर्माण एल्गोरिदम हैं जैसे कि तंत्रिका नेटवर्क अनुकूलन।<ref name="एक संयुक्त तंत्रिका नेटवर्क दृष्टिकोण का उपयोग करके ईसीटी के लिए गैर-रैखिक छवि पुनर्निर्माण तकनीक">{{cite journal|last1=Marashdeh|first1=Q.|last2=Warsito|first2=W.|last3=Fan|first3=L.-S.|last4=Teixeira|first4=F.L.|date=2006|title=एक संयुक्त तंत्रिका नेटवर्क दृष्टिकोण का उपयोग करके ईसीटी के लिए गैर-रैखिक छवि पुनर्निर्माण तकनीक|journal=Meas. Sci. Technol.|volume=17|issue=8|pages=2097–2103|bibcode=2006MeScT..17.2097M|doi=10.1088/0957-0233/17/8/007}}</ref> कार्यान्वयन के लिए अतिरिक्त जटिलता के साथ-साथ इन विधियों को पहले बताए गए तरीकों की तुलना में अधिक कम्प्यूटेशनल संसाधनों की आवश्यकता है। अनुकूलन पुनर्निर्माण विधियाँ कई उद्देश्य कार्यों को नियोजित करती हैं और उन्हें कम करने के लिए पुनरावृत्त प्रक्रिया का उपयोग करती हैं। परिणामी छवियों में गैर-रैखिक प्रकृति से कम कलाकृतियाँ होती हैं और मात्रात्मक अनुप्रयोगों के लिए अधिक विश्वसनीय होती हैं।
[[File:Image Reconstruction with ECVT.png|thumb|ईसीवीटी में छवि पुनर्निर्माण (ए) दो ढांकता हुआ क्षेत्रों को घेरने वाला एक ईसीवीटी संवेदक (<math>\varepsilon _r = 1.5</math>), (बी) लैंडवेबर पुनरावृत्ति का उपयोग करके पुनर्गठित परमिटिटिविटी वितरण<ref name=":1">{{Cite journal|last1=Chowdhury|first1=S.|last2=Marashdeh|first2=Q.M.|last3=Teixeira|first3=F.L.|date=2016|title=कैपेसिटिव सेंसर सेंसिटिविटी ग्रैडिएंट का उपयोग करके मल्टीफ़ेज़ फ्लो का वेलोसिटी प्रोफाइलिंग|journal=IEEE Sensors Journal|volume=16|issue=23|pages=8365–8373}}</ref>]]'''पुनर्निर्माण के तरीके ईसीवीटी काल्पनिक की उलटी समस्या को संबोधित करते हैं, अर्थात मात्राेट्रिक परमिटिटिविटी डिस्ट्रीब्यूशन को निर्धारित करने के लिए आपसी धारिता माप। परंपरागत रूप से,''' व्युत्क्रम समस्या को धारिता और भौतिक पारगम्यता समीकरण के बीच (नॉनलाइनियर) संबंध के रेखीयकरण के माध्यम से जन्म सन्निकटन का उपयोग करके नियंत्रित किया जाता है। सामान्यतः, यह सन्निकटन केवल छोटे पारगम्यता विरोधाभासों के लिए मान्य है। अन्य मामलों के लिए, विद्युत क्षेत्र वितरण की अरैखिक प्रकृति 2डी और 3डी छवि पुनर्निर्माण दोनों के लिए एक चुनौती बन जाती है, जिससे पुनर्निर्माण के तरीके बेहतर छवि गुणवत्ता के लिए एक सक्रिय अनुसंधान क्षेत्र बन जाते हैं। ईसीवीटी/ईसीटी के लिए पुनर्निर्माण विधियों को पुनरावृत्ति और गैर-पुनरावृत्ति (एकल चरण) विधियों के रूप में वर्गीकृत किया जा सकता है।<ref name="Image reconstruction algorithms for electrical capacitance tomography" /> गैर-पुनरावृत्त विधियों के उदाहरण रैखिक बैक प्रोजेक्शन (LBP) हैं, और एकवचन मूल्य अपघटन और तिखोनोव नियमितीकरण पर आधारित प्रत्यक्ष विधि है। ये एल्गोरिदम कम्प्यूटेशनल रूप से सस्ते हैं; हालांकि, मात्रात्मक जानकारी के बिना उनका समझौता कम सटीक चित्र है। पुनरावृत्त विधियों को मोटे तौर पर प्रक्षेपण-आधारित और अनुकूलन-आधारित विधियों में वर्गीकृत किया जा सकता है। ईसीवीटी के लिए उपयोग किए जाने वाले कुछ रैखिक प्रक्षेपण पुनरावृत्त एल्गोरिदम में न्यूटन-रैफसन, लैंडवेबर पुनरावृत्ति और स्टीपेस्ट डिसेंट बीजगणितीय पुनर्निर्माण और एक साथ पुनर्निर्माण तकनीक और मॉडल-आधारित पुनरावृत्ति सम्मिलित हैं। एकल चरण विधियों के समान, ये एल्गोरिदम भी डोमेन के अंदर परमिटिटिविटी वितरण प्राप्त करने के अनुमानों के लिए रैखिक संवेदनशीलता मैट्रिक्स का उपयोग करते हैं। प्रोजेक्शन-आधारित पुनरावृत्त विधियां सामान्यतः गैर-पुनरावृत्त एल्गोरिदम की तुलना में बेहतर छवियां प्रदान करती हैं, फिर भी अधिक कम्प्यूटेशनल संसाधनों की आवश्यकता होती है। दूसरे प्रकार के पुनरावृत्त पुनर्निर्माण तरीके अनुकूलन-आधारित पुनर्निर्माण एल्गोरिदम हैं जैसे कि तंत्रिका नेटवर्क अनुकूलन।<ref name="एक संयुक्त तंत्रिका नेटवर्क दृष्टिकोण का उपयोग करके ईसीटी के लिए गैर-रैखिक छवि पुनर्निर्माण तकनीक">{{cite journal|last1=Marashdeh|first1=Q.|last2=Warsito|first2=W.|last3=Fan|first3=L.-S.|last4=Teixeira|first4=F.L.|date=2006|title=एक संयुक्त तंत्रिका नेटवर्क दृष्टिकोण का उपयोग करके ईसीटी के लिए गैर-रैखिक छवि पुनर्निर्माण तकनीक|journal=Meas. Sci. Technol.|volume=17|issue=8|pages=2097–2103|bibcode=2006MeScT..17.2097M|doi=10.1088/0957-0233/17/8/007}}</ref> कार्यान्वयन के लिए अतिरिक्त जटिलता के साथ-साथ इन विधियों को पहले बताए गए तरीकों की तुलना में अधिक कम्प्यूटेशनल संसाधनों की आवश्यकता है। अनुकूलन पुनर्निर्माण विधियाँ कई उद्देश्य कार्यों को नियोजित करती हैं और उन्हें कम करने के लिए पुनरावृत्त प्रक्रिया का उपयोग करती हैं। परिणामी छवियों में गैर-रैखिक प्रकृति से कम कलाकृतियाँ होती हैं और मात्रात्मक अनुप्रयोगों के लिए अधिक विश्वसनीय होती हैं।


===विस्थापन-वर्तमान चरण टोमोग्राफी (डीसीपीटी)===
===विस्थापन-वर्तमान चरण टोमोग्राफी (डीसीपीटी)===
Line 52: Line 58:
=== मल्टी-फ्रीक्वेंसी ईसीवीटी ऑपरेशन ===
=== मल्टी-फ्रीक्वेंसी ईसीवीटी ऑपरेशन ===


बहुफ़ेज़ प्रवाह हमेशा जटिल होते हैं। इस तरह के बहुफ़ेज़ प्रवाह में फेज़ होल्ड अप की निगरानी और मात्रा निर्धारित करने के लिए उन्नत मापन तकनीकों की आवश्यकता होती है। अधिग्रहण की उनकी अपेक्षाकृत तेज गति और गैर-दखल देने वाली विशेषताओं के कारण, उद्योगों में ईसीटी और ईसीवीटी का प्रवाह निगरानी के लिए व्यापक रूप से उपयोग किया जाता है। हालांकि, तीन या अधिक चरणों (जैसे, तेल, वायु और पानी का संयोजन) वाले बहुफ़ेज़ प्रवाह के लिए ईसीटी/ईसीवीटी की प्रवाह अपघटन और निगरानी क्षमता कुछ हद तक सीमित है। बहु-आवृत्ति उत्तेजनाओं और मापों का शोषण किया गया है और उन मामलों में ईसीटी <ref name="विद्युत समाई टोमोग्राफी सेंसर के आधार पर मल्टीफ़ेज़ प्रवाह अपघटन की ओर">{{cite journal|last1=Rasel|first1=R.K.|last2=Zuccarelli|first2=C.E.|last3=Marashdeh|first3=Q.M.|last4=Fan|first4=L.-S.|last5=Teixeira|first5=F.L.|title=विद्युत समाई टोमोग्राफी सेंसर के आधार पर मल्टीफ़ेज़ प्रवाह अपघटन की ओर|journal=IEEE Sensors Journal|volume=17|issue=24|pages=8027–8036|date=2017|doi=10.1109/JSEN.2017.2687828|bibcode=2017ISenJ..17.8027R|doi-access=free}}</ref> छवि पुनर्निर्माण में सफलतापूर्वक उपयोग किया गया है। मल्टी-फ़्रीक्वेंसी मापन मैक्सवेल-वैगनर-सिलर्स (एमडब्ल्यूएस) प्रभाव को एक्साइटेशन फ़्रीक्वेंसी के एक फ़ंक्शन के रूप में मापे गए डेटा (जैसे, प्रवेश, धारिता, आदि) की प्रतिक्रिया पर उपयोग करने की स्वीकृति देता है।<ref name="Towards multiphase flow decomposition based on electrical capacitance tomography sensors" /> यह प्रभाव सबसे पहले 1982 <ref>{{cite book|last1=Maxwell|first1=J.C.|title='बिजली और चुंबकत्व पर एक ग्रंथ|url=https://archive.org/details/atreatiseonelec02thomgoog|date=1892|location=Clarendon, Oxford|publisher=Oxford, Clarendon}}</ref> में मैक्सवेल द्वारा खोजा गया था और बाद में वैगनर और सिलियर्स द्वारा अध्ययन किया गया था।<ref name="Towards multiphase flow decomposition based on electrical capacitance tomography sensors" /><ref name="पायस और संबंधित प्रणालियों के ढांकता हुआ गुण">{{cite journal|last1=Becher|first1=P.|title=पायस और संबंधित प्रणालियों के ढांकता हुआ गुण|journal=Encyclopedia of Emulsion Technology|date=1983|volume=1}}</ref> एमडब्ल्यूएस प्रभाव सामग्री के बीच इंटरफेस पर सतह प्रवासन ध्रुवीकरण का परिणाम है जब उनमें से कम से कम एक संचालन कर रहा है।<ref>{{cite journal|last1=Wagner|first1=K.W.|title=डाइलेक्ट्रिक्स में बाद का प्रभाव|journal=Arch. Elektrotech.|date=1914|volume=2|pages=371–387|doi=10.1007/bf01657322|s2cid=107379416|url=https://zenodo.org/record/2504532}}</ref><ref>{{cite journal|last1=Sillars|first1=R.W.|title=विभिन्न आकृतियों के अर्धचालक कणों वाले एक ढांकता हुआ के गुण|journal= Journal of the Institution of Electrical Engineers|date=1937|volume=80|issue=484|pages=378–394|doi=10.1049/jiee-1.1937.0058}}</ref> आमतौर पर एक ढांकता हुआ पदार्थ माइक्रोवेव आवृत्तियों पर डेबी-प्रकार का विश्राम प्रभाव प्रस्तुत करता है। हालांकि, एमडब्ल्यूएस प्रभाव (या एमडब्ल्यूएस ध्रुवीकरण) की उपस्थिति के कारण कम से कम एक संचालन चरण वाला मिश्रण इस छूट को बहुत कम आवृत्तियों पर प्रदर्शित करेगा। एमडब्ल्यूएस प्रभाव कई कारकों पर निर्भर करता है जैसे कि प्रत्येक चरण का आयतन अंश, चरण अभिविन्यास, चालकता और अन्य मिश्रण पैरामीटर। तनु मिश्रण के लिए वैगनर सूत्र<ref>{{cite journal|last1=Bruggeman|first1=D.A.|title=विषमांगी पदार्थों के विभिन्न भौतिक नियतांकों की गणना|journal=Annalen der Physik|date=1935|volume=24|issue=7|pages=636–664|doi=10.1002/andp.19354160705}}</ref> और घने मिश्रण के लिए ब्रुगमैन सूत्र [20] प्रभावी परावैद्युत स्थिरांक के सबसे उल्लेखनीय योगों में से हैं। जटिल डाइइलेक्ट्रिक स्थिरांक के हनाई का सूत्रीकरण, प्रभावी डाइइलेक्ट्रिक स्थिरांक के ब्रुगमैन सूत्र का एक विस्तार, जटिल डाइइलेक्ट्रिक स्थिरांक के लिए एमडब्ल्यूएस प्रभाव का विश्लेषण करने में सहायक है। जटिल ढांकता हुआ के लिए हनाई का सूत्र इस प्रकार लिखता है
बहुफ़ेज़ प्रवाह हमेशा जटिल होते हैं। इस तरह के बहुफ़ेज़ प्रवाह में फेज़ होल्ड अप की निगरानी और मात्रा निर्धारित करने के लिए उन्नत मापन तकनीकों की आवश्यकता होती है। अधिग्रहण की उनकी अपेक्षाकृत तेज गति और गैर-दखल देने वाली विशेषताओं के कारण, उद्योगों में ईसीटी और ईसीवीटी का प्रवाह निगरानी के लिए व्यापक रूप से उपयोग किया जाता है। हालांकि, तीन या अधिक चरणों (जैसे, तेल, वायु और पानी का संयोजन) वाले बहुफ़ेज़ प्रवाह के लिए ईसीटी/ईसीवीटी की प्रवाह अपघटन और निगरानी क्षमता कुछ हद तक सीमित है। बहु-आवृत्ति उत्तेजनाओं और मापों का शोषण किया गया है और उन मामलों में ईसीटी <ref name="विद्युत समाई टोमोग्राफी सेंसर के आधार पर मल्टीफ़ेज़ प्रवाह अपघटन की ओर">{{cite journal|last1=Rasel|first1=R.K.|last2=Zuccarelli|first2=C.E.|last3=Marashdeh|first3=Q.M.|last4=Fan|first4=L.-S.|last5=Teixeira|first5=F.L.|title=विद्युत समाई टोमोग्राफी सेंसर के आधार पर मल्टीफ़ेज़ प्रवाह अपघटन की ओर|journal=IEEE Sensors Journal|volume=17|issue=24|pages=8027–8036|date=2017|doi=10.1109/JSEN.2017.2687828|bibcode=2017ISenJ..17.8027R|doi-access=free}}</ref> छवि पुनर्निर्माण में सफलतापूर्वक उपयोग किया गया है। मल्टी-फ़्रीक्वेंसी मापन मैक्सवेल-वैगनर-सिलर्स (एमडब्ल्यूएस) प्रभाव को एक्साइटेशन फ़्रीक्वेंसी के एक फ़ंक्शन के रूप में मापे गए डेटा (जैसे, प्रवेश, धारिता, आदि) की प्रतिक्रिया पर उपयोग करने की स्वीकृति देता है।<ref name="Towards multiphase flow decomposition based on electrical capacitance tomography sensors" /> यह प्रभाव सबसे पहले 1982 <ref>{{cite book|last1=Maxwell|first1=J.C.|title='बिजली और चुंबकत्व पर एक ग्रंथ|url=https://archive.org/details/atreatiseonelec02thomgoog|date=1892|location=Clarendon, Oxford|publisher=Oxford, Clarendon}}</ref> में मैक्सवेल द्वारा खोजा गया था और बाद में वैगनर और सिलियर्स द्वारा अध्ययन किया गया था।<ref name="Towards multiphase flow decomposition based on electrical capacitance tomography sensors" /><ref name="पायस और संबंधित प्रणालियों के ढांकता हुआ गुण">{{cite journal|last1=Becher|first1=P.|title=पायस और संबंधित प्रणालियों के ढांकता हुआ गुण|journal=Encyclopedia of Emulsion Technology|date=1983|volume=1}}</ref> एमडब्ल्यूएस प्रभाव सामग्री के बीच इंटरफेस पर सतह प्रवासन ध्रुवीकरण का परिणाम है जब उनमें से कम से कम एक संचालन कर रहा है।<ref>{{cite journal|last1=Wagner|first1=K.W.|title=डाइलेक्ट्रिक्स में बाद का प्रभाव|journal=Arch. Elektrotech.|date=1914|volume=2|pages=371–387|doi=10.1007/bf01657322|s2cid=107379416|url=https://zenodo.org/record/2504532}}</ref><ref>{{cite journal|last1=Sillars|first1=R.W.|title=विभिन्न आकृतियों के अर्धचालक कणों वाले एक ढांकता हुआ के गुण|journal= Journal of the Institution of Electrical Engineers|date=1937|volume=80|issue=484|pages=378–394|doi=10.1049/jiee-1.1937.0058}}</ref> सामान्यतः एक ढांकता हुआ पदार्थ माइक्रोवेव आवृत्तियों पर डेबी-प्रकार का विश्राम प्रभाव प्रस्तुत करता है। हालांकि, एमडब्ल्यूएस प्रभाव (या एमडब्ल्यूएस ध्रुवीकरण) की उपस्थिति के कारण कम से कम एक संचालन चरण वाला मिश्रण इस छूट को बहुत कम आवृत्तियों पर प्रदर्शित करेगा। एमडब्ल्यूएस प्रभाव कई कारकों पर निर्भर करता है जैसे कि प्रत्येक चरण का आयतन अंश, चरण अभिविन्यास, चालकता और अन्य मिश्रण पैरामीटर। तनु मिश्रण के लिए वैगनर सूत्र<ref>{{cite journal|last1=Bruggeman|first1=D.A.|title=विषमांगी पदार्थों के विभिन्न भौतिक नियतांकों की गणना|journal=Annalen der Physik|date=1935|volume=24|issue=7|pages=636–664|doi=10.1002/andp.19354160705}}</ref> और घने मिश्रण के लिए ब्रुगमैन सूत्र [20] प्रभावी परावैद्युत स्थिरांक के सबसे उल्लेखनीय योगों में से हैं। जटिल डाइइलेक्ट्रिक स्थिरांक के हनाई का सूत्रीकरण, प्रभावी डाइइलेक्ट्रिक स्थिरांक के ब्रुगमैन सूत्र का एक विस्तार, जटिल डाइइलेक्ट्रिक स्थिरांक के लिए एमडब्ल्यूएस प्रभाव का विश्लेषण करने में सहायक है। जटिल ढांकता हुआ के लिए हनाई का सूत्र इस प्रकार लिखता है
[[File:MWS Three Phase Decomposition with ECVT.png|thumb|बाएं से, प्रवाह मॉडल, कंडक्टिंग फेज और नॉनकंडक्टिंग फेज की पुनर्निर्मित छवियां।<ref name="Towards multiphase flow decomposition based on electrical capacitance tomography sensors" />]]
[[File:MWS Three Phase Decomposition with ECVT.png|thumb|बाएं से, प्रवाह मॉडल, कंडक्टिंग फेज और नॉनकंडक्टिंग फेज की पुनर्निर्मित छवियां।<ref name="Towards multiphase flow decomposition based on electrical capacitance tomography sensors" />]]
<math>
<math>
Line 60: Line 66:
कहाँ <math>\varepsilon_1^*</math>, <math>\varepsilon_2^*</math>, और <math>\varepsilon^*</math> छितरे हुए चरण, निरंतर चरण और मिश्रण की क्रमशः जटिल प्रभावी पारगम्यता हैं। <math>\phi</math> छितरी हुई अवस्था का आयतन अंश है।
कहाँ <math>\varepsilon_1^*</math>, <math>\varepsilon_2^*</math>, और <math>\varepsilon^*</math> छितरे हुए चरण, निरंतर चरण और मिश्रण की क्रमशः जटिल प्रभावी पारगम्यता हैं। <math>\phi</math> छितरी हुई अवस्था का आयतन अंश है।


यह जानते हुए कि एक मिश्रण एमडब्ल्यूएस प्रभाव के कारण ढांकता हुआ विश्राम प्रदर्शित करेगा, कम से कम एक चरण के संचालन के दौरान बहुफ़ेज़ प्रवाह को विघटित करने के लिए इस अतिरिक्त माप आयाम का उपयोग किया जा सकता है। दाईं ओर का आंकड़ा प्रायोगिक डेटा से शोषित एमडब्ल्यूएस प्रभाव द्वारा निकाले गए प्रवाह मॉडल, संचालन चरण और गैर-संचालन चरणों की पुनर्निर्मित छवियों को दिखाता है।
यह जानते हुए कि एक मिश्रण एमडब्ल्यूएस प्रभाव के कारण ढांकता हुआ विश्राम प्रदर्शित करेगा, कम से कम एक चरण के संचालन के समय बहुफ़ेज़ प्रवाह को विघटित करने के लिए इस अतिरिक्त माप आयाम का उपयोग किया जा सकता है। दाईं ओर का आंकड़ा प्रायोगिक डेटा से शोषित एमडब्ल्यूएस प्रभाव द्वारा निकाले गए प्रवाह मॉडल, संचालन चरण और गैर-संचालन चरणों की पुनर्निर्मित छवियों को दिखाता है।


=== ईसीवीटी वेलोसिमेट्री ===
=== ईसीवीटी वेलोसिमेट्री ===
[[File:ECVT Velocimetry.png|thumb|सामान्यीकृत संवेदनशीलता वितरण, इलेक्ट्रोड की एक जोड़ी के बीच संवेदनशीलता ढाल, पुनर्निर्मित वेग प्रोफ़ाइल जब गोले को 3डी प्रोफ़ाइल में ले जाया जाता है, और विमान में 2डी प्रोफ़ाइल में।<ref name=":1" />]]वेलोसिमेट्री तरल पदार्थ के वेग को मापने के लिए उपयोग की जाने वाली तकनीकों को संदर्भित करती है। संवेदनशीलता प्रवणता का उपयोग एक ईसीवीटी संवेदक का उपयोग करके 3डी वेग प्रोफाइल के पुनर्निर्माण को सक्षम बनाता है<ref name=":1" />, जो द्रव गतिशीलता की जानकारी आसानी से प्रदान कर सकता है। संवेदनशीलता ढाल के रूप में परिभाषित किया गया है
[[File:ECVT Velocimetry.png|thumb|सामान्यीकृत संवेदनशीलता वितरण, इलेक्ट्रोड की एक जोड़ी के बीच संवेदनशीलता ढाल, पुनर्निर्मित वेग प्रोफ़ाइल जब गोले को 3डी प्रोफ़ाइल में ले जाया जाता है, और विमान में 2डी प्रोफ़ाइल में।<ref name=":1" />]]वेलोसिमेट्री द्रव पदार्थ के वेग को मापने के लिए उपयोग की जाने वाली तकनीकों को संदर्भित करती है। संवेदनशीलता प्रवणता का उपयोग एक ईसीवीटी संवेदक का उपयोग करके 3डी वेग प्रोफाइल के पुनर्निर्माण को सक्षम बनाता है<ref name=":1" />, जो द्रव गतिशीलता की जानकारी आसानी से प्रदान कर सकता है। संवेदनशीलता ढाल के रूप में परिभाषित किया गया है


<math>F = \nabla S = \hat{a}_x \frac{\partial S}{\partial x} + \hat{a}_y \frac{\partial S}{\partial y} + \hat{a}_z \frac{\partial S}{\partial z}</math>
<math>F = \nabla S = \hat{a}_x \frac{\partial S}{\partial x} + \hat{a}_y \frac{\partial S}{\partial y} + \hat{a}_z \frac{\partial S}{\partial z}</math>
Line 80: Line 86:


=== स्केलेबल ===
=== स्केलेबल ===
ईसीवीटी बहुत बड़े तरंग दैर्ध्य पर संचालित होता है, आमतौर पर इलेक्ट्रोड को उत्तेजित करने के लिए 10 मेगाहर्ट्ज से कम आवृत्तियों का उपयोग करता है। ये लंबी तरंग दैर्ध्य प्रौद्योगिकी को अर्ध-इलेक्ट्रोस्टैटिक शासन के तहत संचालित करने की स्वीकृति देती हैं। जब तक संवेदक का व्यास तरंग की लंबाई से बहुत छोटा होता है, तब तक ये धारणा मान्य होती है। उदाहरण के लिए, जब 2 मेगाहर्ट्ज एसी सिग्नल के साथ रोमांचक होता है, तो तरंग दैर्ध्य 149.9 मीटर होता है। संवेदक व्यास आमतौर पर इस सीमा से काफी नीचे डिज़ाइन किए जाते हैं। इसके अतिरिक्त, धारिता शक्ति <math>C</math>, इलेक्ट्रोड क्षेत्र <math>A</math> के अनुसार आनुपातिक रूप से मापता है, और प्लेट <math>d</math> या संवेदक के व्यास के बीच की दूरी। इसलिए जैसे-जैसे संवेदक का व्यास बड़ा होता जाता है, वैसे-वैसे प्लेट क्षेत्र का आकार बढ़ता जाता है, तो किसी भी दिए गए संवेदक के डिजाइन को सिग्नल की ताकत पर न्यूनतम प्रभाव के साथ आसानी से ऊपर या नीचे बढ़ाया जा सकता है।
ईसीवीटी बहुत बड़े तरंग दैर्ध्य पर संचालित होता है, सामान्यतः इलेक्ट्रोड को उत्तेजित करने के लिए 10 मेगाहर्ट्ज से कम आवृत्तियों का उपयोग करता है। ये लंबी तरंग दैर्ध्य प्रौद्योगिकी को अर्ध-इलेक्ट्रोस्टैटिक शासन के अंतर्गत संचालित करने की स्वीकृति देती हैं। जब तक संवेदक का व्यास तरंग की लंबाई से बहुत छोटा होता है, तब तक ये धारणा मान्य होती है। उदाहरण के लिए, जब 2 मेगाहर्ट्ज एसी सिग्नल के साथ रोमांचक होता है, तो तरंग दैर्ध्य 149.9 मीटर होता है। संवेदक व्यास सामान्यतः इस सीमा से काफी नीचे डिज़ाइन किए जाते हैं। इसके अतिरिक्त, धारिता शक्ति <math>C</math>, इलेक्ट्रोड क्षेत्र <math>A</math> के अनुसार आनुपातिक रूप से मापता है, और प्लेट <math>d</math> या संवेदक के व्यास के बीच की दूरी। इसलिए जैसे-जैसे संवेदक का व्यास बड़ा होता जाता है, वैसे-वैसे प्लेट क्षेत्र का आकार बढ़ता जाता है, तो किसी भी दिए गए संवेदक के डिजाइन को सिग्नल की ताकत पर न्यूनतम प्रभाव के साथ आसानी से ऊपर या नीचे बढ़ाया जा सकता है।


<math>C\varpropto \frac{A}{d}</math>
<math>C\varpropto \frac{A}{d}</math>
=== कम लागत और प्रोफाइल ===
=== कम लागत और प्रोफाइल ===
अन्य संवेदन और काल्पनिक उपकरण जैसे गामा विकिरण, एक्स-रे, या एमआरआई मशीनों की तुलना में, ईसीवीटी निर्माण और संचालन के लिए अपेक्षाकृत सस्ता है। प्रौद्योगिकी की इस गुणवत्ता का एक हिस्सा इसके कम ऊर्जा उत्सर्जन के कारण है, जिसमें अपशिष्ट रखने या उच्च शक्ति आउटपुट को इन्सुलेट करने के लिए किसी अतिरिक्त तंत्र की आवश्यकता नहीं होती है। कम लागत में जोड़ना एक संवेदक बनाने के लिए विभिन्न प्रकार की सामग्रियों की उपलब्धता है। इलेक्ट्रॉनिक्स को संवेदक से दूर भी रखा जा सकता है जो मानक पर्यावरण इलेक्ट्रॉनिक्स को डेटा अधिग्रहण के लिए उपयोग करने की स्वीकृति देता है, भले ही संवेदक अत्यधिक तापमान या अन्य स्थितियों के अधीन हो, जो आमतौर पर इलेक्ट्रॉनिक इंस्ट्रूमेंटेशन को नियोजित करना मुश्किल बनाते हैं।
अन्य संवेदन और काल्पनिक उपकरण जैसे गामा विकिरण, एक्स-रे, या एमआरआई मशीनों की तुलना में, ईसीवीटी निर्माण और संचालन के लिए अपेक्षाकृत सस्ता है। प्रौद्योगिकी की इस गुणवत्ता का एक हिस्सा इसके कम ऊर्जा उत्सर्जन के कारण है, जिसमें अपशिष्ट रखने या उच्च शक्ति आउटपुट को इन्सुलेट करने के लिए किसी अतिरिक्त तंत्र की आवश्यकता नहीं होती है। कम लागत में जोड़ना एक संवेदक बनाने के लिए विभिन्न प्रकार की सामग्रियों की उपलब्धता है। इलेक्ट्रॉनिक्स को संवेदक से दूर भी रखा जा सकता है जो मानक पर्यावरण इलेक्ट्रॉनिक्स को डेटा अधिग्रहण के लिए उपयोग करने की स्वीकृति देता है, भले ही संवेदक अत्यधिक तापमान या अन्य स्थितियों के अधीन हो, जो सामान्यतः इलेक्ट्रॉनिक इंस्ट्रूमेंटेशन को नियोजित करना मुश्किल बनाते हैं।


=== उच्च लौकिक संकल्प (तेज) ===
=== उच्च लौकिक संकल्प (तेज) ===
सामान्य शब्दों में, ईसीवीटी के साथ उपयोग की जाने वाली डाटा अधिग्रहण की विधि बहुत तेज है। संवेदक डिज़ाइन में प्लेट जोड़े की संख्या और डेटा अधिग्रहण प्रणाली के एनालॉग डिज़ाइन (यानी घड़ी की गति, समानांतर सर्किटरी, आदि) के आधार पर डेटा को प्रति सेकंड कई हज़ार बार नमूना लिया जा सकता है। बहुत तेज़ी से डेटा एकत्र करने की क्षमता प्रौद्योगिकी को उन उद्योगों के लिए बहुत आकर्षक बनाती है जिनकी प्रक्रियाएँ बहुत तेज़ी से होती हैं या उच्च गति पर परिवहन करती हैं। यह एमआरआई के लिए एक बड़ा विपरीत है जिसमें उच्च स्थानिक संकल्प है लेकिन अक्सर बहुत खराब अस्थायी समाधान होता है।
सामान्य शब्दों में, ईसीवीटी के साथ उपयोग की जाने वाली डाटा अधिग्रहण की विधि बहुत तेज है। संवेदक डिज़ाइन में प्लेट जोड़े की संख्या और डेटा अधिग्रहण प्रणाली के एनालॉग डिज़ाइन (अर्थात घड़ी की गति, समानांतर सर्किटरी, आदि) के आधार पर डेटा को प्रति सेकंड कई हज़ार बार नमूना लिया जा सकता है। बहुत तेज़ी से डेटा एकत्र करने की क्षमता प्रौद्योगिकी को उन उद्योगों के लिए बहुत आकर्षक बनाती है जिनकी प्रक्रियाएँ बहुत तेज़ी से होती हैं या उच्च गति पर परिवहन करती हैं। यह एमआरआई के लिए एक बड़ा विपरीत है जिसमें उच्च स्थानिक संकल्प है लेकिन अक्सर बहुत खराब अस्थायी समाधान होता है।


जैसा कि ऊपर उल्लेख किया गया है, स्थानिक संकल्प ईसीटी/ईसीवीटी में एक मौलिक चुनौती है। स्थानिक संकल्प ईसीटी/ईसीवीटी की सॉफ्ट-फील्ड प्रकृति और इस तथ्य से सीमित है कि ईसीटी/ईसीवीटी में पूछताछ करने वाला विद्युत क्षेत्र प्रकृति में अर्ध-स्थैतिक है। बाद की संपत्ति का तात्पर्य है कि प्लेटों के बीच संभावित वितरण लाप्लास समीकरण का एक समाधान है। नतीजतन, प्लेटों के बीच संभावित वितरण के लिए कोई रिश्तेदार मिनिमा या मैक्सिमा नहीं हो सकता है और इसलिए कोई फोकल स्पॉट नहीं बनाया जा सकता है।
जैसा कि ऊपर उल्लेख किया गया है, स्थानिक संकल्प ईसीटी/ईसीवीटी में एक मौलिक चुनौती है। स्थानिक संकल्प ईसीटी/ईसीवीटी की सॉफ्ट-क्षेत्र प्रकृति और इस तथ्य से सीमित है कि ईसीटी/ईसीवीटी में पूछताछ करने वाला विद्युत क्षेत्र प्रकृति में अर्ध-स्थैतिक है। बाद की संपत्ति का तात्पर्य है कि प्लेटों के बीच संभावित वितरण लाप्लास समीकरण का एक समाधान है। नतीजतन, प्लेटों के बीच संभावित वितरण के लिए कोई रिश्तेदार मिनिमा या मैक्सिमा नहीं हो सकता है और इसलिए कोई फोकल स्पॉट नहीं बनाया जा सकता है।


स्थानिक संकल्प को बढ़ाने के लिए, दो बुनियादी रणनीतियों का अनुसरण किया जा सकता है। पहली रणनीति में माप डेटा को समृद्ध करना सम्मिलित है। यह (ए) सिंथेटिक इलेक्ट्रोड के साथ अनुकूली अधिग्रहण द्वारा किया जा सकता है,<ref name="Adaptive Electrical Capacitance Volume Tomography" /> (बी) स्पेसियो-टेम्पोरल सैंपलिंग अतिरिक्त माप का उपयोग करते हुए प्राप्त किया जाता है जब ऑब्जेक्ट संवेदक के अंदर विभिन्न स्थितियों में होते हैं,<ref>{{Cite journal|last1=Wanta|first1=D.|last2=Smolik|first2=W.T. |last3=Kryszyn|first3=J. |last4=Midura|first4=M. |last5=Wróblewski|first5=P.|date=2022|title= Image reconstruction using Z-axis spatio-temporal sampling in 3D electrical capacitance tomography|journal= Measurement Science and Technology |pages=1–13|doi=10.1088/1361-6501/ac8220|doi-access=free}}</ref> (सी) शोषण करने के लिए बहु-आवृत्ति ऑपरेशन एमडब्ल्यूएस प्रभाव के कारण आवृत्ति के साथ पारगम्यता भिन्नता<ref name="Towards multiphase flow decomposition based on electrical capacitance tomography sensors" /> और (d) अन्य संवेदन तौर-तरीकों के साथ ECT / ईसीवीटी का संयोजन, या तो एक ही हार्डवेयर (जैसे डीसीपीटी) या अतिरिक्त हार्डवेयर (जैसे माइक्रोवेव टोमोग्राफी) पर आधारित है। स्थानिक संकल्प को बढ़ाने की दूसरी रणनीति में बहु-स्तरीय छवि पुनर्निर्माण का विकास सम्मिलित है जिसमें प्राथमिक जानकारी और प्रशिक्षण डेटा सेट और स्थानिक अनुकूलता सम्मिलित है।
स्थानिक संकल्प को बढ़ाने के लिए, दो बुनियादी रणनीतियों का अनुसरण किया जा सकता है। पहली रणनीति में माप डेटा को समृद्ध करना सम्मिलित है। यह (ए) सिंथेटिक इलेक्ट्रोड के साथ अनुकूली अधिग्रहण द्वारा किया जा सकता है,<ref name="Adaptive Electrical Capacitance Volume Tomography" /> (बी) स्पेसियो-टेम्पोरल सैंपलिंग अतिरिक्त माप का उपयोग करते हुए प्राप्त किया जाता है जब ऑब्जेक्ट संवेदक के अंदर विभिन्न स्थितियों में होते हैं,<ref>{{Cite journal|last1=Wanta|first1=D.|last2=Smolik|first2=W.T. |last3=Kryszyn|first3=J. |last4=Midura|first4=M. |last5=Wróblewski|first5=P.|date=2022|title= Image reconstruction using Z-axis spatio-temporal sampling in 3D electrical capacitance tomography|journal= Measurement Science and Technology |pages=1–13|doi=10.1088/1361-6501/ac8220|doi-access=free}}</ref> (सी) शोषण करने के लिए बहु-आवृत्ति ऑपरेशन एमडब्ल्यूएस प्रभाव के कारण आवृत्ति के साथ पारगम्यता भिन्नता<ref name="Towards multiphase flow decomposition based on electrical capacitance tomography sensors" /> और (d) अन्य संवेदन तौर-तरीकों के साथ ECT / ईसीवीटी का संयोजन, या तो एक ही हार्डवेयर (जैसे डीसीपीटी) या अतिरिक्त हार्डवेयर (जैसे माइक्रोवेव टोमोग्राफी) पर आधारित है। स्थानिक संकल्प को बढ़ाने की दूसरी रणनीति में बहु-स्तरीय छवि पुनर्निर्माण का विकास सम्मिलित है जिसमें प्राथमिक जानकारी और प्रशिक्षण डेटा सेट और स्थानिक अनुकूलता सम्मिलित है।
Line 96: Line 102:


=== बहु-चरण प्रवाह ===
=== बहु-चरण प्रवाह ===
बहु-चरण प्रवाह विभिन्न भौतिक अवस्थाओं या रासायनिक संरचनाओं की सामग्रियों के एक साथ प्रवाह को संदर्भित करता है, और पेट्रोलियम, रासायनिक और जैव रासायनिक उद्योगों में भारी रूप से सम्मिलित है। अतीत में, ईसीवीटी का बड़े पैमाने पर प्रयोगशाला और साथ ही औद्योगिक सेटिंग्स में बहु-चरण प्रवाह प्रणालियों की एक विस्तृत श्रृंखला में परीक्षण किया गया है।<ref name="Electrical Capacitance Volume Tomography: Design and Applications" /> ईसीवीटी की अपेक्षाकृत कम लागत पर विभिन्न तापमान और दबाव स्थितियों के तहत जटिल ज्यामिति के साथ सिस्टम के रीयल-टाइम गैर-विस्तृत स्थानिक दृश्यता प्राप्त करने की अद्वितीय क्षमता इसे बड़े पैमाने पर प्रसंस्करण उद्योगों में मौलिक द्रव यांत्रिकी अनुसंधान और अनुप्रयोगों दोनों के लिए अनुकूल बनाती है। इन दो पहलुओं की खोज में हाल के शोध प्रयासों का सारांश नीचे दिया गया है।
बहु-चरण प्रवाह विभिन्न भौतिक अवस्थाओं या रासायनिक संरचनाओं की धातुओ के एक साथ प्रवाह को संदर्भित करता है जो पेट्रोलियम, रासायनिक और जैव रासायनिक उद्योगों में अत्यधिक रूप में सम्मिलित है। अतीत में, ईसीवीटी का बड़े पैमाने पर प्रयोगशाला और साथ ही औद्योगिक सेटिंग्स में बहु-चरण प्रवाह प्रणालियों की एक विस्तृत श्रृंखला में परीक्षण किया गया है।<ref name="Electrical Capacitance Volume Tomography: Design and Applications" /> ईसीवीटी की अपेक्षाकृत कम लागत पर विभिन्न तापमान और दाब स्थितियों के अंतर्गत जटिल ज्यामिति के साथ प्रणाली का वास्तविक समय गैर-विस्तृत स्थानिक दृश्यता प्राप्त करने की अद्वितीय क्षमता इसे बड़े पैमाने पर प्रसंस्करण उद्योगों में मौलिक द्रव यांत्रिकी अनुसंधान और अनुप्रयोगों दोनों के लिए अनुकूल बनाती है। इन दो दृष्टिकोणों की खोज में हाल के शोध प्रयासों का सारांश नीचे दिया गया है।


==== गैस-ठोस ====
==== गैस-ठोस ====
[[File:ECVT in Gas-Solid Fluidized Bed Riser.png|thumb|सीएफबी रिएक्टर (बाएं), मोड़ (मध्य) पर ईसीवीटी संवेदक कॉन्फ़िगरेशन का चित्रण, और मोड़ (दाएं) में ठोस होल्डअप वितरण की पुनर्निर्मित छवियां।<ref name=":0">{{Cite journal|last1=Wang|first1=F.|last2=Marashdeh|first2=Q.|last3=Wang|first3=A.|last4=Fan|first4=L.-S.|date=2012|title=Electrical Capacitance Volume Tomography Imaging of Three-Dimensional Flow Structures and Solids Concentration Distributions in a Riser and a Bend of a Gas–Solid Circulating Fluidized Bed|journal=Industrial & Engineering Chemistry Research|volume=51|issue=33|pages=10968–10976|doi=10.1021/ie300746q}}</ref>]]गैस-ठोस द्रवित बिस्तर एक विशिष्ट गैस-ठोस प्रवाह प्रणाली है, और इसकी बेहतर गर्मी और बड़े पैमाने पर स्थानांतरण और ठोस परिवहन और हैंडलिंग के कारण रासायनिक उद्योगों में व्यापक रूप से नियोजित किया गया है। ईसीवीटी को सिस्टम गुण मापन और गतिशील व्यवहार दृश्यता के लिए गैस-ठोस द्रवीकृत बेड सिस्टम पर सफलतापूर्वक प्रयुक्त किया गया है। एक उदाहरण 12-चैनल बेलनाकार ईसीवीटी संवेदक के साथ 0.1 मीटर आईडी गैस-ठोस परिसंचारी द्रवित बिस्तर में चोकिंग घटना का अध्ययन है<ref>{{Cite journal|last1=Du|first1=B.|last2=Warsito|first2=W.|last3=Fan|first3=L.-S.|date=2006|title=Imaging the Choking Transition in Gas−Solid Risers Using Electrical Capacitance Tomography|journal=Industrial & Engineering Chemistry Research|volume=45|issue=15|pages=5384–5395|doi=10.1021/ie051401w}}</ref> जहां चोकिंग के संक्रमण के दौरान स्लग का गठन ईसीवीटी द्वारा स्पष्ट रूप से दर्ज किया गया है। एक अन्य प्रयोग 0.05 आईडी कॉलम में बुदबुदाती गैस-ठोस द्रवीकरण का अध्ययन करता है, जहां ईसीवीटी से प्राप्त ठोस होल्डअप, बबल आकार और आवृत्ति को एमआरआई माप के साथ मान्य किया जाता है।<ref name="गैस-द्रवित बिस्तर में ईसीवीटी और एमआर माप की तुलना">{{cite journal|last1=Holland|first1=D.J.|last2=Marashdeh|first2=Q.M.|last3=Muller|first3=C.R.|title=गैस-द्रवित बिस्तर में ईसीवीटी और एमआर माप की तुलना|journal=Ind. Eng. Chem. Res.|date=Jan 2009|volume=48|issue=1|pages=172–181|doi=10.1021/ie8002073}}</ref> ईसीवीटी संवेदक ज्योमेट्री का लचीलापन भी इसे गैस-ठोस प्रवाह रिएक्टरों के बेंड, टेपरिंग और अन्य गैर-समान वर्गों की काल्पनिक के लिए सक्षम बनाता है। उदाहरण के लिए, एक क्षैतिज गैस जेट एक बेलनाकार गैस-ठोस द्रवयुक्त बिस्तर में प्रवेश कर रहा है, एक संशोधित ईसीवीटी संवेदक के साथ चित्रित किया जा सकता है, और जेट की पैठ लंबाई और चौड़ाई के साथ-साथ द्रवित बिस्तर में बुलबुले के साथ जेट सहसंयोजी व्यवहार जैसी जानकारी प्राप्त की जा सकती है। ईसीवीटी से प्राप्त किया जाना चाहिए।<ref>{{Cite journal|last1=Wang|first1=F.|last2=Marashdeh|first2=Q.|last3=Fan|first3=L.-S.|date=2010|title=Horizontal gas and gas/solid jet penetration in a gas–solid fluidized bed|journal=Chemical Engineering Science|volume=65|issue=11|pages=3394–3408|doi=10.1016/j.ces.2010.02.036}}</ref>
[[File:ECVT in Gas-Solid Fluidized Bed Riser.png|thumb|सीएफबी प्रतिघातक (बाएं), मोड़ (मध्य) पर ईसीवीटी संवेदक कॉन्फ़िगरेशन का चित्रण, और मोड़ (दाएं) में ठोस होल्डअप वितरण की पुनर्निर्मित छवियां।<ref name=":0">{{Cite journal|last1=Wang|first1=F.|last2=Marashdeh|first2=Q.|last3=Wang|first3=A.|last4=Fan|first4=L.-S.|date=2012|title=Electrical Capacitance Volume Tomography Imaging of Three-Dimensional Flow Structures and Solids Concentration Distributions in a Riser and a Bend of a Gas–Solid Circulating Fluidized Bed|journal=Industrial & Engineering Chemistry Research|volume=51|issue=33|pages=10968–10976|doi=10.1021/ie300746q}}</ref>]]गैस-ठोस द्रवित परत एक विशिष्ट गैस-ठोस प्रवाह प्रणाली है और इसकी अपेक्षाकृत ऊष्मा और बड़े पैमाने पर स्थानांतरण ठोस परिवहन नियंत्रण के कारण रासायनिक उद्योगों में व्यापक रूप से नियोजित किया गया है। ईसीवीटी को प्रणाली गुण मापन और गतिशील व्यवहार दृश्यता के लिए गैस-ठोस द्रवीकृत परत प्रणाली पर सफलतापूर्वक प्रयुक्त किया गया है। एक उदाहरण 12-चैनल बेलनाकार ईसीवीटी संवेदक के साथ 0.1 मीटर आईडी गैस-ठोस परिसंचारी द्रवित परत में चोकिंग घटना का अध्ययन है।<ref>{{Cite journal|last1=Du|first1=B.|last2=Warsito|first2=W.|last3=Fan|first3=L.-S.|date=2006|title=Imaging the Choking Transition in Gas−Solid Risers Using Electrical Capacitance Tomography|journal=Industrial & Engineering Chemistry Research|volume=45|issue=15|pages=5384–5395|doi=10.1021/ie051401w}}</ref> जहां चोकिंग के संक्रमण के समय स्लग का गठन ईसीवीटी द्वारा स्पष्ट रूप से प्रस्तुत किया गया है। एक अन्य प्रयोग 0.05 आईडी स्तम्भ में बुबलिंग गैस-ठोस द्रवीकरण का अध्ययन करता है, जहां ईसीवीटी से प्राप्त ठोस होल्डअप, बबल आकार और आवृत्ति को एमआरआई माप के साथ मान्य किया जाता है।<ref name="गैस-द्रवित बिस्तर में ईसीवीटी और एमआर माप की तुलना">{{cite journal|last1=Holland|first1=D.J.|last2=Marashdeh|first2=Q.M.|last3=Muller|first3=C.R.|title=गैस-द्रवित बिस्तर में ईसीवीटी और एमआर माप की तुलना|journal=Ind. Eng. Chem. Res.|date=Jan 2009|volume=48|issue=1|pages=172–181|doi=10.1021/ie8002073}}</ref> ईसीवीटी संवेदक ज्यामिति की नम्यता इसे गैस-ठोस प्रवाह प्रतिघातकों के बेंड, टेपरिंग और अन्य गैर समान वर्गों की काल्पनिक छवि के लिए सक्षम बनाता है। उदाहरण के लिए एक क्षैतिज गैस जेट एक बेलनाकार गैस-ठोस द्रवयुक्त परत में प्रवेश कर रहा है। जिसको संशोधित ईसीवीटी संवेदक के साथ चित्रित किया जा सकता है और जेट की पैठ लंबाई और चौड़ाई के साथ-साथ द्रवित परत में बुलबुले के साथ जेट सहसंयोजी व्यवहार जैसी जानकारी प्राप्त की जा सकती है जिसको प्रायः ईसीवीटी से प्राप्त किया जाना चाहिए।<ref>{{Cite journal|last1=Wang|first1=F.|last2=Marashdeh|first2=Q.|last3=Fan|first3=L.-S.|date=2010|title=Horizontal gas and gas/solid jet penetration in a gas–solid fluidized bed|journal=Chemical Engineering Science|volume=65|issue=11|pages=3394–3408|doi=10.1016/j.ces.2010.02.036}}</ref> एक अन्य उदाहरण गैस-ठोस  परिसंचारी तरल परत (सीएफबी) की प्रवाह की दर ईसीवीटी के काल्पनिक है।<ref name=":0" /> प्रवाह और बेंड दोनों में एक कोर-एनुलस प्रवाह संरचना और बेंड के क्षैतिज खंड में एक ठोस संचय की मात्रात्मक ईसीवीटी छवियों से पहचान की जाती है।
एक अन्य उदाहरण एक गैस-सॉलिड सर्कुलेटिंग फ्लुइडाइज्ड बेड (CFB) के रिसर और मोड़ की ईसीवीटी काल्पनिक है।<ref name=":0" /> रिसर और बेंड दोनों में एक कोर-एनुलस प्रवाह स्ट्रक्चर और बेंड के क्षैतिज खंड में एक ठोस संचय की मात्रात्मक ईसीवीटी छवियों से पहचान की जाती है।
==== गैस-द्रव ====
 
[[File:ECVT Image Reconstruction of Bubble Plume.png|thumb|ईसीवीटी (शीर्ष) और वास्तविक स्तम्भ (नीचे) से बबल प्लम की छवियां।<ref name=":3">{{Cite journal|last1=Warsito|first1=W.|last2=Fan|first2=L.-S.|date=2005|title=Dynamics of spiral bubble plume motion in the entrance region of bubble columns and three-phase fluidized beds using 3D ECT|journal=Chemical Engineering Science|volume=60|issue=22|pages=6073–6084|doi=10.1016/j.ces.2005.01.033}}</ref>]]गैस-द्रव बुलबुला स्तंभ एक विशिष्ट गैस-द्रव प्रवाह प्रणाली है जो व्यापक रूप से पेट्रो रसायन और जैव रासायनिक प्रक्रियाओं में उपयोग की जाती है। कम्प्यूटेशनल द्रव गतिशील विधियों के साथ-साथ पारंपरिक विस्तृत माप तकनीकों के साथ बुबलिंग प्रवाह घटना पर बड़े पैमाने पर शोध किया गया है। ईसीवीटी के पास संपूर्ण गैस-द्रव प्रवाह क्षेत्र का वास्तविक समय मात्रात्मक दृश्य प्राप्त करने की अद्वितीय क्षमता है। एक उदाहरण बबल स्तम्भ में कुंडलीदार बबल प्लम की गतिशीलता का अध्ययन है।<ref>{{Cite journal|last1=Wang|first1=A.|last2=Marashdeh|first2=Q.|last3=Fan|first3=L.-S.|date=2014|title=ECVT imaging of 3D spiral bubble plume structures in gas-liquid bubble columns|journal=The Canadian Journal of Chemical Engineering|volume=92|issue=12|pages=2078–2087|doi=10.1002/cjce.22070}}</ref><ref name=":3" /> ईसीवीटी को बबल प्लूम्स, बड़े पैमाने पर द्रव भंवरों और गैस होल्डअप वितरण की कुंडल गति को प्राप्त करने में सक्षम दिखाया गया है।
==== गैस-तरल ====
[[File:ECVT Image Reconstruction of Bubble Plume.png|thumb|ईसीवीटी (शीर्ष) और वास्तविक कॉलम (नीचे) से बबल प्लम की छवियां।<ref name=":3">{{Cite journal|last1=Warsito|first1=W.|last2=Fan|first2=L.-S.|date=2005|title=Dynamics of spiral bubble plume motion in the entrance region of bubble columns and three-phase fluidized beds using 3D ECT|journal=Chemical Engineering Science|volume=60|issue=22|pages=6073–6084|doi=10.1016/j.ces.2005.01.033}}</ref>]]गैस-तरल बुलबुला स्तंभ एक विशिष्ट गैस-तरल प्रवाह प्रणाली है जो व्यापक रूप से पेट्रोकेमिकल और जैव रासायनिक प्रक्रियाओं में उपयोग की जाती है। कम्प्यूटेशनल द्रव गतिशील विधियों के साथ-साथ पारंपरिक विस्तृत माप तकनीकों के साथ बुदबुदाती प्रवाह घटना पर बड़े पैमाने पर शोध किया गया है। ईसीवीटी के पास संपूर्ण गैस-तरल प्रवाह क्षेत्र का वास्तविक समय मात्रात्मक दृश्य प्राप्त करने की अद्वितीय क्षमता है। एक उदाहरण बबल कॉलम में सर्पिल बबल प्लम की गतिशीलता का अध्ययन है।<ref>{{Cite journal|last1=Wang|first1=A.|last2=Marashdeh|first2=Q.|last3=Fan|first3=L.-S.|date=2014|title=ECVT imaging of 3D spiral bubble plume structures in gas-liquid bubble columns|journal=The Canadian Journal of Chemical Engineering|volume=92|issue=12|pages=2078–2087|doi=10.1002/cjce.22070}}</ref><ref name=":3" /> ईसीवीटी को बबल प्लूम्स, बड़े पैमाने पर तरल भंवरों और गैस होल्डअप वितरण की सर्पिल गति को पकड़ने में सक्षम दिखाया गया है।


गैस-तरल प्रणालियों में ईसीवीटी के आवेदन का एक अन्य उदाहरण एक चक्रवाती गैस-तरल विभाजक का अध्ययन है, [28] जहां एक गैस-तरल मिश्रण एक क्षैतिज स्तंभ में स्पर्शरेखा से प्रवेश करता है और एक भंवर प्रवाह क्षेत्र बनाता है जहां गैस और तरल को अलग किया जाता है अपकेन्द्रीय बल। ईसीवीटी पोत के अंदर तरल वितरण और ऑफ-सेंटर्ड गैस कोर ड्रिफ्टिंग घटना को सफलतापूर्वक कैप्चर करता है। मात्रात्मक परिणाम यंत्रवत मॉडल से मेल खाते हैं।
गैस-द्रव प्रणालियों में ईसीवीटी के अनुप्रयोग का एक अन्य उदाहरण एक चक्रवाती गैस-द्रव विभाजक का अध्ययन है जहां गैस-द्रव मिश्रण एक क्षैतिज स्तंभ में स्पर्शरेखा से प्रवेश करता है और एक चक्रवाती प्रवाह क्षेत्र बनाता है जहां गैस और द्रव को अपकेन्द्रीय बल द्वारा अलग किया जाता है। ईसीवीटी पोत के अंदर द्रव वितरण और अपकेंद्रण गैस कोर छिद्र वर्धन घटना को सफलतापूर्वक अधिकृत करता है। मात्रात्मक परिणाम यंत्रवत मॉडल के अनुरूप होते हैं।


==== गैस-तरल-ठोस ====
==== गैस-द्रव-ठोस ====
ट्रिकल बेड रिएक्टर (टीबीआर) एक विशिष्ट तीन-चरण गैस-तरल-ठोस प्रणाली है, और इसमें पेट्रोलियम, पेट्रोकेमिकल, जैव रासायनिक, विद्युत रासायनिक और जल उपचार उद्योगों में अनुप्रयोग हैं। एक टीबीआर में, पैक्ड ठोस सामग्री के माध्यम से गैस और तरल नीचे की ओर प्रवाहित होते हैं। गैस और तरल प्रवाह दरों के आधार पर, टीबीआर में अलग-अलग प्रवाह व्यवस्थाएं हो सकती हैं, जिनमें ट्रिकलिंग प्रवाह, स्पंदित प्रवाह और फैला हुआ-बुलबुला प्रवाह सम्मिलित है। ईसीवीटी का टीबीआर में अशांत स्पंदन प्रवाह की छवि के लिए सफलतापूर्वक उपयोग किया गया है<ref>{{Cite journal|last1=Wang|first1=A.|last2=Marashdeh|first2=Q.|last3=Motil|first3=B.|last4=Fan|first4=L.-S.|date=2014|title=ट्रिकल बेड में पल्सेटिंग फ्लो की इमेजिंग के लिए इलेक्ट्रिकल कैपेसिटेंस वॉल्यूम टोमोग्राफी|journal=Chemical Engineering Science|volume=119|pages=77–87|doi=10.1016/j.ces.2014.08.011}}</ref> और विस्तृत पल्स संरचना और पल्स वेग ईसीवीटी से प्राप्त किया जा सकता है।
क्षरण प्रतिघातक (टीबीआर) एक विशिष्ट तीन-चरण ठोस, द्रव, गैस प्रणाली है और इसमें पेट्रोलियम, पेट्रो रसायन, जैव रासायनिक, विद्युत रासायनिक और जल उपचार उद्योगों में अनुप्रयोग हैं। एक टीबीआर में पैक्ड ठोस धातु के माध्यम से गैस और द्रव नीचे की ओर प्रवाहित होता हैं। गैस और द्रव प्रवाह दरों के आधार पर टीबीआर में अलग-अलग प्रवाह व्यवस्थाएं हो सकती हैं, जिनमें क्षरण प्रवाह, स्पंदित प्रवाह और विस्तृत प्रवाह सम्मिलित है। ईसीवीटी का टीबीआर में अशांत स्पंदन प्रवाह की छवि के लिए सफलतापूर्वक उपयोग किया गया है।<ref>{{Cite journal|last1=Wang|first1=A.|last2=Marashdeh|first2=Q.|last3=Motil|first3=B.|last4=Fan|first4=L.-S.|date=2014|title=ट्रिकल बेड में पल्सेटिंग फ्लो की इमेजिंग के लिए इलेक्ट्रिकल कैपेसिटेंस वॉल्यूम टोमोग्राफी|journal=Chemical Engineering Science|volume=119|pages=77–87|doi=10.1016/j.ces.2014.08.011}}</ref> जिससे विस्तृत पल्स संरचना और पल्स वेग ईसीवीटी से प्राप्त किया जा सकता है।


=== दहन (उच्च तापमान और लौ) ===
=== दहन (उच्च तापमान और अग्नि) ===
[[File:Slugging Phenomena at Elevated Temperatures with ECVT.png|thumb|विभिन्न तापमानों, 25°C, 300°C, 400°C, और 650°C के लिए अलग-अलग Ug-Umf पर स्लग वेग।<ref name=":4">{{Cite journal|last1=Wang|first1=D.|last2=Xu|first2=M.|last3=Marashdeh|first3=Q.|last4=Straiton|first4=B.|last5=Tong|first5=A.|last6=Fan|first6=L.-S.|date=2018|title=उच्च तापमान के तहत जेलडार्ट ग्रुप डी कणों के साथ गैस-सॉलिड स्लगिंग फ्लुइडाइजेशन के लक्षण वर्णन के लिए इलेक्ट्रिकल कैपेसिटेंस वॉल्यूम टोमोग्राफी|journal=Ind. Eng. Chem. Res.|volume=57|issue=7|pages=2687–2697|doi=10.1021/acs.iecr.7b04733}}</ref>]]रासायनिक उद्योगों में अधिकांश गैस-ठोस प्रवाह प्रणालियाँ इष्टतम प्रतिक्रिया कैनेटीक्स के लिए ऊंचे तापमान पर काम करती हैं। ऐसी कठोर परिस्थितियों में, कई प्रयोगशाला मापन तकनीकें अब उपलब्ध नहीं हैं। हालांकि, ईसीवीटी में इसकी सरल और मजबूत डिजाइन और गैर-विस्तृत प्रकृति के कारण उच्च तापमान अनुप्रयोगों की संभावना है, जो इन्सुलेट सामग्री को गर्मी प्रतिरोध के लिए संवेदक में एम्बेड करने की स्वीकृति देता है। वर्तमान में उच्च तापमान ईसीवीटी प्रौद्योगिकी तेजी से विकास के अधीन है और उच्च तापमान से जुड़े इंजीनियरिंग मुद्दों को हल करने के लिए अनुसंधान प्रयास किए जा रहे हैं।
[[File:Slugging Phenomena at Elevated Temperatures with ECVT.png|thumb|विभिन्न तापमानों, 25°C, 300°C, 400°C, और 650°C के लिए अलग-अलग Ug-Umf पर स्लग वेग।<ref name=":4">{{Cite journal|last1=Wang|first1=D.|last2=Xu|first2=M.|last3=Marashdeh|first3=Q.|last4=Straiton|first4=B.|last5=Tong|first5=A.|last6=Fan|first6=L.-S.|date=2018|title=उच्च तापमान के तहत जेलडार्ट ग्रुप डी कणों के साथ गैस-सॉलिड स्लगिंग फ्लुइडाइजेशन के लक्षण वर्णन के लिए इलेक्ट्रिकल कैपेसिटेंस वॉल्यूम टोमोग्राफी|journal=Ind. Eng. Chem. Res.|volume=57|issue=7|pages=2687–2697|doi=10.1021/acs.iecr.7b04733}}</ref>]]रासायनिक उद्योगों में अधिकांश गैस-ठोस प्रवाह प्रणालियाँ इष्टतम प्रतिक्रिया गतिज के लिए उच्च तापमान पर कार्य करती हैं। ऐसी कठोर परिस्थितियों में कई प्रयोगशाला मापन तकनीकें अब उपलब्ध नहीं हैं। हालांकि ईसीवीटी में इसकी सरल, प्रबल डिजाइन और गैर-विस्तृत प्रकृति के कारण उच्च तापमान अनुप्रयोगों की संभावना है जो रोधक धातु को ऊष्म प्रतिरोध के लिए संवेदक में स्थापित करने की स्वीकृति देता है। वर्तमान में उच्च तापमान ईसीवीटी प्रौद्योगिकी तीव्रता से विकास के अधीन है और उच्च तापमान से संबद्ध इंजीनियरिंग समस्याओं को हल करने के लिए अनुसंधान प्रयास किए जा रहे हैं।


ईसीवीटी का उपयोग 650 डिग्री सेल्सियस तक के उच्च तापमान के वातावरण में किया गया है [30] उच्च तापमान के तहत द्रवित बिस्तरों की छवि और लक्षण वर्णन करने के लिए जैसे कि द्रवित बिस्तर रिएक्टरों, द्रव उत्प्रेरक क्रैकिंग और द्रवित बिस्तर दहन में उपयोग किया जाता है। इस तकनीक के उच्च तापमान द्रवयुक्त बिस्तरों के लिए आवेदन ने गहन विश्लेषण की स्वीकृति दी है कि कैसे तापमान बिस्तरों में प्रवाह व्यवहार को प्रभावित करता है। उदाहरण के लिए, गेल्डार्ट ग्रुप डी कणों के साथ बड़े कॉलम ऊंचाई से कॉलम व्यास अनुपात के साथ एक स्लगिंग द्रवित बिस्तर में, 650 डिग्री सेल्सियस तक तापमान बढ़ाना गैस की घनत्व और चिपचिपाहट को बदल सकता है लेकिन स्लग वेग और आवृत्ति जैसे स्लगिंग व्यवहार पर नगण्य प्रभाव पड़ता है।
ईसीवीटी का उपयोग 650 डिग्री सेल्सियस तक के उच्च तापमान के वातावरण में किया गया है। उच्च तापमान के अंतर्गत द्रवित परत की छवि और लक्षण का वर्णन करने के लिए जैसे कि द्रवित प्रतिघातक, द्रव उत्प्रेरक अपघटन और द्रवित दहन में उपयोग किया जाता है। इस तकनीक के उच्च तापमान द्रवयुक्त परतों के लिए अनुप्रयोग ने गहन विश्लेषण की स्वीकृति दी है कि कैसे तापमान परतों में प्रवाह व्यवहार को प्रभावित करता है। उदाहरण के लिए गेल्डार्ट समूह डी कणों के साथ बड़े स्तम्भ ऊंचाई से स्तम्भ व्यास अनुपात के साथ एक पूर्व सम्पीडन द्रवित परत में 650 डिग्री सेल्सियस तक तापमान बढ़ाना गैस की घनत्व और श्यानता को परिवर्तित कर सकता है लेकिन सम्पीडन वेग और आवृत्ति जैसे सम्पीडन द्रव पर नगण्य प्रभाव पड़ता है।


=== गैर-विनाशात्मक परीक्षण (एनडीटी) ===
=== गैर-विनाशात्मक परीक्षण (एनडीटी) ===

Revision as of 11:32, 21 June 2023

इलेक्ट्रिकल धारिता मात्रा टोमोग्राफी (ईसीवीटी) एक गैर-विस्तृत 3डी काल्पनिक तकनीक है जिसे मूल रूप से यूके और पोलैंड में विकसित किया गया था और मुख्य रूप से बहु-फ़ेज़ प्रवाह पर प्रयुक्त किया गया था। इसके बाद डब्ल्यू.वारसीटो, क्यू.मारशदेह और एल.एस फैन द्वारा इसे पुनः प्रस्तुत किया गया था।[1] यूके और पोलिश समूहों के प्रारम्भिक प्रकाशनों से प्रेरित एल.एस फैन ने पारंपरिक विद्युत धारिता टोमोग्राफी (ईसीटी) का विस्तार किया जिसको पारंपरिक ईसीटी में संवेदक प्लेट्स की सतह के आसपास वितरित किया जाता है। प्लेट संयोजनों के बीच मापी गई धारिता का उपयोग सामग्री वितरण की 2डी छवियों (टोमोग्राम) के पुनर्निर्माण के लिए किया जाता है। ईसीटी में प्लेटों के किनारों से निर्धारित क्षेत्र को अंतिम पुनर्निर्मित छवि के विरूपण के स्रोत के रूप में देखा जाता है और इस प्रकार गार्ड इलेक्ट्रोड द्वारा अपेक्षाकृत कम किया जाता है। ईसीवीटी इस निर्धारित क्षेत्र का लाभ उठाता है और इसे 3डी संवेदक डिज़ाइन के माध्यम से विस्तारित करता है जो सभी तीन आयामों में एक विद्युत क्षेत्र भिन्नता स्थापित करता है। छवि पुनर्निर्माण कलन विधि प्रकृति में ईसीटी के समान हैं और ईसीवीटी में पुनर्निर्माण की समस्या अधिक जटिल है। ईसीवीटी संवेदक की संवेदनशील क्षमता अधिक जटिल स्थिति में है और समग्र पुनर्निर्माण समस्या ईसीटी की तुलना में अधिक दुर्बल है। संवेदक डिजाइन के लिए ईसीवीटी दृष्टिकोण बाहरी ज्यामिति की प्रत्यक्ष 3डी काल्पनिक की छवि की स्वीकृति देता है। यह 3डी-ईसीटी से अलग है जो अलग-अलग ईसीटी संवेदक से छवियों को एकत्र करने पर निर्भर करता है। ईसीटी मापन के समय अंतराल के अनुक्रम से फ़्रेमों को एकत्र करके 3डी-ईसीटी भी पूरा किया जा सकता है। क्योंकि ईसीटी संवेदक प्लेटों को डोमेन अनुप्रस्थ काट के क्रम में लंबाई की आवश्यकता होती है। 3डी-ईसीटी अक्षीय आयाम में आवश्यक संकल्प प्रदान नहीं करता है। ईसीवीटी प्रत्यक्ष छवि पुनर्निर्माण पर स्थापित और चितिकरण पद्धति से दूर करके इस समस्या को हल करता है। यह एक संवेदक का उपयोग करके पूरा किया जाता है जो स्वाभाविक रूप से त्रि-आयामी होता है।

इतिहास

इलेक्ट्रिकल धारिता मात्रा टोमोग्राफी पहली बार 2003 में बानफ कनाडा में संसाधित टोमोग्राफी में तीसरी विश्व कांग्रेस की प्रस्तुति में डब्ल्यू.वारसिटो और एलएस.फैन द्वारा प्रतुस्त की गई थी।[2] यह शब्द 2005 में डब्ल्यू.वारसीटो, क्यू.मारशदेह और एल.एस फैन द्वारा एक आविष्कार में निर्मित किया गया था।[3] इस तकनीक को पहले से अलग करने के लिए मात्रा पर महत्व देने के साथ और 3डी-ईसीटी नामक एक रूप के चल रहे विकास जहां छद्म 3डी छवि बनाने के लिए 2डी टॉमोग्राम को एक दूसरे के ऊपर रखा जाता है। इस पारंपरिक 3डी-ईसीटी दृष्टिकोण ने 3डी काल्पनिक छवि के उपयोग को सीमित कर दिया क्योंकि ईसीटी इलेक्ट्रोड की महत्वपूर्ण लंबाई ने ऐसी 3डी छवियों के अक्षीय विश्लेषण पर एक बड़ा जुर्माना लगाया था। ईसीवीटी इस सीमा के समाधान के रूप में विकसित हुआ था। ईसीवीटी विद्युत क्षेत्र के X, Y और Z घटकों का दोहन करके प्रत्यक्ष 3डी काल्पनिक छवि प्रदान करता है जो संवेदक डिजाइन का एक फलन है। 2003 में मूल प्रस्तुतिकरण के बाद 2004 में क्यू.मारशदेह और एफ.टेक्सेरा द्वारा एक प्रकाशन किया गया था जहां उन्होंने इन नए संवेदक के लिए संवेदनशीलता आव्यूह बनाने के लिए एक विधि को प्रारम्भ किया।[4][5] प्रौद्योगिकी के इस नए विकसित रूप को 2005 में पेटेंट प्रस्तुत करने तक 3डी-ईसीटी के रूप में संदर्भित किया गया था। जहां इसे ईसीवीटी के रूप में स्थापित किया गया था। बाद में 2007 में एक पत्रिका के रूप मे प्रकाशित किया गया था। जिसमें प्रौद्योगिकी की वैज्ञानिक अनुभव का विवरण दिया गया था[1] और उसी वर्ष पत्रिका प्रकाशन में ईसीवीटी के विकास के कालानुक्रमिक (क्रोनोलॉजिकल) क्रम को भी प्रकाशित किया गया था।[6]

सिद्धांत

ईसीवीटी में धारिता और क्षेत्र समीकरण

अलग-अलग विद्युत क्षमता पर रखे गए दो धातु इलेक्ट्रोड और एक परिमित दूरी से अलग होने पर उनके बीच और आसपास के क्षेत्र में विद्युत क्षेत्र उत्पन्न होगा। क्षेत्र वितरण समस्या की ज्यामिति और संवैधानिक माध्यम गुणों जैसे विद्युतशीलता ԑ और चालकता द्वारा निर्धारित किया जाता है। प्लेटों के बीच के क्षेत्र में एक स्थिर या अर्ध-स्थैतिक शासन और दोषरहित आवरण के माध्यम की उपस्थिति जैसे कि एक पूर्ण अवरोधक (विद्युत) क्षेत्र मे निम्नलिखित समीकरण का अनुसरण करता है:

जहाँ विद्युत संभावित वितरण को दर्शाता है। अपरिवर्तनशीलता के साथ एक सजातीय माध्यम में , यह समीकरण लाप्लास समीकरण को कम करता है। जैसे परिमित चालकता वाले हानिपूर्ण माध्यम में, क्षेत्र एम्पीयर के परिपथीय नियम का अनुसरण करता है,

इस समीकरण का विचलन करके और इस तथ्य का उपयोग करके का अनुसरण करता है:

जब प्लेटें आवृत्ति के साथ समय-सजातीय वोल्टेज क्षमता से उत्तेजित होती हैं।

धारिता माध्यम में संग्रहीत विद्युत ऊर्जा की एक माप है, जिसे निम्नलिखित संबंध के माध्यम से निर्धारित किया जा सकता है:

जहाँ विद्युत क्षेत्र का वर्ग परिमाण है। धारिता परावैद्युत पारगम्यता के एक अरैखिक फलन के रूप में परिवर्तित होती है क्योंकि उपरोक्त समाकल में विद्युत क्षेत्र वितरण भी का एक फलन है।

सॉफ्ट-क्षेत्र टोमोग्राफी

सॉफ्ट-क्षेत्र टोमोग्राफी काल्पनिक रूप से समूह को संदर्भित करती है जैसे विद्युत प्रतिबाधा टोमोग्राफी (ईसीटी), विद्युत धारिता टोमोग्राफी (ईआईटी), विद्युत प्रतिरोधकता टोमोग्राफी (ईआरटी) आदि जिसमें विद्युत या चुंबकीय क्षेत्र रेखाएं उपस्थिति में परिवर्तन माध्यम से गुजरती हैं। यह एक्स-रे सीटी जैसे उच्च क्षेत्र टोमोग्राफी के विपरीत है, जहां परीक्षण विषय की उपस्थिति में विद्युत क्षेत्र रेखाएं नहीं परिवर्तित होती हैं। सॉफ्ट-क्षेत्र टोमोग्राफी की एक मूलभूत विशेषता इसकी अस्पष्टता है।[7] उच्च-क्षेत्र टोमोग्राफी की तुलना में सॉफ्ट-क्षेत्र टोमोग्राफी में अच्छे स्थानिक संकल्प को प्राप्त करने के लिए पुनर्निर्माण को और अधिक चुनौतीपूर्ण बनाने में योगदान देता है। कई तकनीकों जैसे कि तिखोनोव नियमितीकरण का उपयोग जटिल स्थिति को अपेक्षाकृत कम करने के लिए किया जा सकता है।[8] दाईं ओर का आंकड़ा ईसीवीटी और एमआरआई के बीच छवि विश्लेषण में तुलना दिखाता है।

ईसीवीटी मापन अधिग्रहण प्रणाली

ईसीवीटी प्रणाली के हार्डवेयर में संवेदन इलेक्ट्रोड प्लेट्स, डेटा अधिग्रहण परिपथ और कंप्यूटर समग्र प्रणाली को नियंत्रित करने और डेटा को संसाधित करने के लिए होते हैं। ईसीवीटी अपने संपर्क रहित संचालन के कारण एक गैर-आक्रामक और गैर-विस्तृत काल्पनिक पद्धति है। वास्तविक माप से पहले एक अंशांकन और सामान्यीकरण प्रक्रिया अस्पष्ट धारिता के प्रभाव को नष्ट करने के लिए आवश्यक है। इलेक्ट्रोड और ब्याज के क्षेत्र के बीच किसी भी अवरोधक दीवार को चित्रित किया जाना चाहिए। अंशांकन और सामान्यीकरण के बाद माप को अधिग्रहण के अनुक्रम में विभाजित किया जा सकता है जहां दो अलग-अलग इलेक्ट्रोड सम्मिलित होते हैं: एक इलेक्ट्रोड (टीएक्स) अर्ध-इलेक्ट्रोस्टैटिक शासन में एसी वोल्टेज स्रोत से उत्साहित होता है। सामान्यतः 10 मेगाहर्ट्ज से नीचे, जबकि दूसरा इलेक्ट्रोड (आरएक्स) परिणामी धारा को मापने के लिए उपयोग की जाने वाली सतह क्षमता पर रखा गया है और शेष सभी इलेक्ट्रोड को भी सतह क्षमता पर रखा जाता है।

यह प्रक्रिया सभी संभावित इलेक्ट्रोड जोड़े के लिए दोहराई जाती है। ध्यान दें कि TX और RX इलेक्ट्रोड की भूमिकाओं को उत्क्रमित करने से पारस्परिकता के कारण समान पारस्परिक धारिता होती है जिसके परिणामस्वरूप, प्लेटों की N संख्या वाली ईसीवीटी प्रणालियों के लिए स्वतंत्र मापन की संख्या N(N-1)/2 के बराबर होती है। यह प्रक्रिया सामान्यतः डेटा अधिग्रहण परिपथ के माध्यम से स्वचालित होती है। माप प्रणाली के प्रति सेकंड संचालन आवृत्ति, प्लेटों की संख्या और फ्रेम दर के आधार पर एक पूर्ण माप चक्र भिन्न हो सकता है। हालाँकि यह कुछ सेकंड या उससे कम के क्रम में है। ईसीवीटी प्रणाली के सबसे महत्वपूर्ण भागों में से एक संवेदक डिज़ाइन है। जैसा कि पिछली चर्चा से पता चलता है कि इलेक्ट्रोड की संख्या बढ़ने से रुचि के क्षेत्र के विषय में स्वतंत्र जानकारी की मात्रा भी बढ़ जाती है। हालांकि इसका परिणाम छोटे इलेक्ट्रोड आकार में होता है। जिसके परिणामस्वरूप अपेक्षाकृत कम ध्वनि संकेत अनुपात होता है।[9] दूसरी ओर इलेक्ट्रोड के आकार को बढ़ाने से प्लेटों पर गैर-समान आवेश वितरण नहीं होता है, जो समस्या की दुर्भावना को बढ़ा सकता है।[10] संवेदक आयाम भी संवेदन इलेक्ट्रोड के बीच अंतराल से सीमित है। फ्रिंज प्रभाव के कारण ये महत्वपूर्ण हैं। इन प्रभावों को अपेक्षाकृत कम करने के लिए इलेक्ट्रोड के बीच गार्ड प्लेटों का उपयोग दिखाया गया है। इच्छित अनुप्रयोग के आधार पर ईसीवीटी संवेदक अक्षीय दिशा के साथ एकल या अधिक परतों से बना हो सकता है। ईसीवीटी के साथ मात्रा टोमोग्राफी 2डी अवलोकन के विलय से नहीं प्राप्त की जाती है लेकिन 3डी असंततकरण त्रुटि संवेदनशीलता से प्राप्त की जा सकती है।

जांच के अंतर्गत डोमेन के आकार से इलेक्ट्रोड का डिज़ाइन भी तय होता है। कुछ डोमेन अपेक्षाकृत सरल ज्यामिति (बेलनाकार, आयताकार प्रिज्म, आदि) हो सकते हैं जहां सममित इलेक्ट्रोड प्लेसमेंट का उपयोग किया जा सकता है। हालाँकि, जटिल ज्यामिति (कोने के जोड़, टी-आकार के डोमेन, आदि) के डोमेन को ठीक से घेरने के लिए विशेष रूप से डिज़ाइन किए गए इलेक्ट्रोड की आवश्यकता होती है। ईसीवीटी कि नम्यता इसे क्षेत्र अनुप्रयोगों के लिए बहुत उपयोगी बनाती है जहां संवेदन प्लेटों को सममित रूप से नहीं रखा जा सकता है। चूंकि लाप्लास समीकरण में एक विशिष्ट लंबाई (जैसे हेल्महोल्ट्ज़ समीकरण में तरंग दैर्ध्य) का अभाव है, ईसीवीटी समस्या का मौलिक भौतिकी आकार मापनीय है, जब तक कि अर्ध-स्थैतिक प्रवृत्ति विशेषता संरक्षित होती हैं।

ईसीवीटी के लिए छवि पुनर्निर्माण के प्रकार

ईसीवीटी में छवि पुनर्निर्माण (ए) दो ढांकता हुआ क्षेत्रों को घेरने वाला एक ईसीवीटी संवेदक (), (बी) लैंडवेबर पुनरावृत्ति का उपयोग करके पुनर्गठित परमिटिटिविटी वितरण[11]

पुनर्निर्माण के तरीके ईसीवीटी काल्पनिक की उलटी समस्या को संबोधित करते हैं, अर्थात मात्राेट्रिक परमिटिटिविटी डिस्ट्रीब्यूशन को निर्धारित करने के लिए आपसी धारिता माप। परंपरागत रूप से, व्युत्क्रम समस्या को धारिता और भौतिक पारगम्यता समीकरण के बीच (नॉनलाइनियर) संबंध के रेखीयकरण के माध्यम से जन्म सन्निकटन का उपयोग करके नियंत्रित किया जाता है। सामान्यतः, यह सन्निकटन केवल छोटे पारगम्यता विरोधाभासों के लिए मान्य है। अन्य मामलों के लिए, विद्युत क्षेत्र वितरण की अरैखिक प्रकृति 2डी और 3डी छवि पुनर्निर्माण दोनों के लिए एक चुनौती बन जाती है, जिससे पुनर्निर्माण के तरीके बेहतर छवि गुणवत्ता के लिए एक सक्रिय अनुसंधान क्षेत्र बन जाते हैं। ईसीवीटी/ईसीटी के लिए पुनर्निर्माण विधियों को पुनरावृत्ति और गैर-पुनरावृत्ति (एकल चरण) विधियों के रूप में वर्गीकृत किया जा सकता है।[12] गैर-पुनरावृत्त विधियों के उदाहरण रैखिक बैक प्रोजेक्शन (LBP) हैं, और एकवचन मूल्य अपघटन और तिखोनोव नियमितीकरण पर आधारित प्रत्यक्ष विधि है। ये एल्गोरिदम कम्प्यूटेशनल रूप से सस्ते हैं; हालांकि, मात्रात्मक जानकारी के बिना उनका समझौता कम सटीक चित्र है। पुनरावृत्त विधियों को मोटे तौर पर प्रक्षेपण-आधारित और अनुकूलन-आधारित विधियों में वर्गीकृत किया जा सकता है। ईसीवीटी के लिए उपयोग किए जाने वाले कुछ रैखिक प्रक्षेपण पुनरावृत्त एल्गोरिदम में न्यूटन-रैफसन, लैंडवेबर पुनरावृत्ति और स्टीपेस्ट डिसेंट बीजगणितीय पुनर्निर्माण और एक साथ पुनर्निर्माण तकनीक और मॉडल-आधारित पुनरावृत्ति सम्मिलित हैं। एकल चरण विधियों के समान, ये एल्गोरिदम भी डोमेन के अंदर परमिटिटिविटी वितरण प्राप्त करने के अनुमानों के लिए रैखिक संवेदनशीलता मैट्रिक्स का उपयोग करते हैं। प्रोजेक्शन-आधारित पुनरावृत्त विधियां सामान्यतः गैर-पुनरावृत्त एल्गोरिदम की तुलना में बेहतर छवियां प्रदान करती हैं, फिर भी अधिक कम्प्यूटेशनल संसाधनों की आवश्यकता होती है। दूसरे प्रकार के पुनरावृत्त पुनर्निर्माण तरीके अनुकूलन-आधारित पुनर्निर्माण एल्गोरिदम हैं जैसे कि तंत्रिका नेटवर्क अनुकूलन।[13] कार्यान्वयन के लिए अतिरिक्त जटिलता के साथ-साथ इन विधियों को पहले बताए गए तरीकों की तुलना में अधिक कम्प्यूटेशनल संसाधनों की आवश्यकता है। अनुकूलन पुनर्निर्माण विधियाँ कई उद्देश्य कार्यों को नियोजित करती हैं और उन्हें कम करने के लिए पुनरावृत्त प्रक्रिया का उपयोग करती हैं। परिणामी छवियों में गैर-रैखिक प्रकृति से कम कलाकृतियाँ होती हैं और मात्रात्मक अनुप्रयोगों के लिए अधिक विश्वसनीय होती हैं।

विस्थापन-वर्तमान चरण टोमोग्राफी (डीसीपीटी)

विस्थापन-वर्तमान चरण टोमोग्राफी एक काल्पनिक पद्धति है जो ईसीवीटी के समान हार्डवेयर पर निर्भर करती है।[14] ईसीवीटी प्राप्त पारस्परिक प्रवेश मापन के वास्तविक भाग (चालन घटक) का उपयोग नहीं करता है। माप का यह घटक ब्याज के क्षेत्र में सामग्री के नुकसान (चालकता और/या ढांकता हुआ नुकसान) से संबंधित है। डीसीपीटी इस जटिल मूल्यवान डेटा के छोटे कोण चरण घटक के माध्यम से पूर्ण प्रवेश सूचना का उपयोग करता है। डीसीपीटी का उपयोग केवल तभी किया जा सकता है जब इलेक्ट्रोड एसी वोल्टेज से उत्साहित हों। यह केवल उन डोमेन पर प्रयुक्त होता है जिनमें भौतिक नुकसान सम्मिलित हैं, अन्यथा मापा चरण शून्य होगा (प्रवेश का वास्तविक भाग शून्य होगा)। डीसीपीटी को ईसीवीटी के लिए डिज़ाइन किए गए समान पुनर्निर्माण एल्गोरिदम के साथ उपयोग करने के लिए डिज़ाइन किया गया है। इसलिए, डीसीपीटी का उपयोग ईसीवीटी के साथ-साथ माध्यम के स्थानिक स्पर्शरेखा हानि वितरण के साथ-साथ ईसीटी से इसके स्थानिक सापेक्ष पारगम्यता वितरण की छवि के लिए किया जा सकता है।

मल्टी-फ्रीक्वेंसी ईसीवीटी ऑपरेशन

बहुफ़ेज़ प्रवाह हमेशा जटिल होते हैं। इस तरह के बहुफ़ेज़ प्रवाह में फेज़ होल्ड अप की निगरानी और मात्रा निर्धारित करने के लिए उन्नत मापन तकनीकों की आवश्यकता होती है। अधिग्रहण की उनकी अपेक्षाकृत तेज गति और गैर-दखल देने वाली विशेषताओं के कारण, उद्योगों में ईसीटी और ईसीवीटी का प्रवाह निगरानी के लिए व्यापक रूप से उपयोग किया जाता है। हालांकि, तीन या अधिक चरणों (जैसे, तेल, वायु और पानी का संयोजन) वाले बहुफ़ेज़ प्रवाह के लिए ईसीटी/ईसीवीटी की प्रवाह अपघटन और निगरानी क्षमता कुछ हद तक सीमित है। बहु-आवृत्ति उत्तेजनाओं और मापों का शोषण किया गया है और उन मामलों में ईसीटी [15] छवि पुनर्निर्माण में सफलतापूर्वक उपयोग किया गया है। मल्टी-फ़्रीक्वेंसी मापन मैक्सवेल-वैगनर-सिलर्स (एमडब्ल्यूएस) प्रभाव को एक्साइटेशन फ़्रीक्वेंसी के एक फ़ंक्शन के रूप में मापे गए डेटा (जैसे, प्रवेश, धारिता, आदि) की प्रतिक्रिया पर उपयोग करने की स्वीकृति देता है।[16] यह प्रभाव सबसे पहले 1982 [17] में मैक्सवेल द्वारा खोजा गया था और बाद में वैगनर और सिलियर्स द्वारा अध्ययन किया गया था।[16][18] एमडब्ल्यूएस प्रभाव सामग्री के बीच इंटरफेस पर सतह प्रवासन ध्रुवीकरण का परिणाम है जब उनमें से कम से कम एक संचालन कर रहा है।[19][20] सामान्यतः एक ढांकता हुआ पदार्थ माइक्रोवेव आवृत्तियों पर डेबी-प्रकार का विश्राम प्रभाव प्रस्तुत करता है। हालांकि, एमडब्ल्यूएस प्रभाव (या एमडब्ल्यूएस ध्रुवीकरण) की उपस्थिति के कारण कम से कम एक संचालन चरण वाला मिश्रण इस छूट को बहुत कम आवृत्तियों पर प्रदर्शित करेगा। एमडब्ल्यूएस प्रभाव कई कारकों पर निर्भर करता है जैसे कि प्रत्येक चरण का आयतन अंश, चरण अभिविन्यास, चालकता और अन्य मिश्रण पैरामीटर। तनु मिश्रण के लिए वैगनर सूत्र[21] और घने मिश्रण के लिए ब्रुगमैन सूत्र [20] प्रभावी परावैद्युत स्थिरांक के सबसे उल्लेखनीय योगों में से हैं। जटिल डाइइलेक्ट्रिक स्थिरांक के हनाई का सूत्रीकरण, प्रभावी डाइइलेक्ट्रिक स्थिरांक के ब्रुगमैन सूत्र का एक विस्तार, जटिल डाइइलेक्ट्रिक स्थिरांक के लिए एमडब्ल्यूएस प्रभाव का विश्लेषण करने में सहायक है। जटिल ढांकता हुआ के लिए हनाई का सूत्र इस प्रकार लिखता है

बाएं से, प्रवाह मॉडल, कंडक्टिंग फेज और नॉनकंडक्टिंग फेज की पुनर्निर्मित छवियां।[16]

कहाँ , , और छितरे हुए चरण, निरंतर चरण और मिश्रण की क्रमशः जटिल प्रभावी पारगम्यता हैं। छितरी हुई अवस्था का आयतन अंश है।

यह जानते हुए कि एक मिश्रण एमडब्ल्यूएस प्रभाव के कारण ढांकता हुआ विश्राम प्रदर्शित करेगा, कम से कम एक चरण के संचालन के समय बहुफ़ेज़ प्रवाह को विघटित करने के लिए इस अतिरिक्त माप आयाम का उपयोग किया जा सकता है। दाईं ओर का आंकड़ा प्रायोगिक डेटा से शोषित एमडब्ल्यूएस प्रभाव द्वारा निकाले गए प्रवाह मॉडल, संचालन चरण और गैर-संचालन चरणों की पुनर्निर्मित छवियों को दिखाता है।

ईसीवीटी वेलोसिमेट्री

सामान्यीकृत संवेदनशीलता वितरण, इलेक्ट्रोड की एक जोड़ी के बीच संवेदनशीलता ढाल, पुनर्निर्मित वेग प्रोफ़ाइल जब गोले को 3डी प्रोफ़ाइल में ले जाया जाता है, और विमान में 2डी प्रोफ़ाइल में।[11]

वेलोसिमेट्री द्रव पदार्थ के वेग को मापने के लिए उपयोग की जाने वाली तकनीकों को संदर्भित करती है। संवेदनशीलता प्रवणता का उपयोग एक ईसीवीटी संवेदक का उपयोग करके 3डी वेग प्रोफाइल के पुनर्निर्माण को सक्षम बनाता है[11], जो द्रव गतिशीलता की जानकारी आसानी से प्रदान कर सकता है। संवेदनशीलता ढाल के रूप में परिभाषित किया गया है

कहाँ ईसीवीटी संवेदक का संवेदनशीलता वितरण है जैसा कि दाईं ओर दिखाया गया है। में वर्णित संवेदनशीलता ग्रेडिएंट के अनुप्रयोग पर,[11]ऊपर की आकृति के अनुरूप एक 3D और 2D वेग प्रोफ़ाइल को दाईं ओर की आकृति में दिखाया गया है।

संवेदनशीलता प्रवणता का अनुप्रयोग अधिक पारंपरिक (क्रॉस-सहसंबंध आधारित) वेगमिति पर महत्वपूर्ण सुधार प्रदान करता है, बेहतर छवि गुणवत्ता प्रदर्शित करता है और कम कम्प्यूटेशनल समय की आवश्यकता होती है। संवेदनशीलता ढाल आधारित वेलोसिमेट्री का एक अन्य लाभ ईसीवीटी में प्रयुक्त पारंपरिक छवि पुनर्निर्माण एल्गोरिदम के साथ इसकी अनुकूलता है।

लाभ

मॉड्यूलर

ईसीवीटी संवेदक की बुनियादी आवश्यकताएं सरल हैं और इसलिए डिजाइन में बहुत मॉड्यूलर हो सकती हैं। ईसीवीटी संवेदक को केवल प्रवाहकीय इलेक्ट्रोड की आवश्यकता होती है जो एक दूसरे से विद्युत रूप से पृथक होते हैं और ईसीवीटी संवेदक द्वारा निरीक्षण किए जाने वाले माध्यम से भी कम नहीं होते हैं। इसके अतिरिक्त प्रत्येक इलेक्ट्रोड से और उसके लिए सिग्नल को उत्तेजित करने और उसका पता लगाने का एक तरीका होना चाहिए। संवेदक डिज़ाइन पर बाधाओं की कमी इसे विभिन्न प्रकार की सामग्रियों से बनाने की स्वीकृति देती है और लचीली दीवार, उच्च तापमान प्रदर्शन, उच्च दबाव प्रदर्शन, पतली दीवार वाली, कोहनी और फ्लैट संवेदक सहित कई रूपों को लेती है। एईसीवीटी प्रौद्योगिकी के अतिरिक्त, संवेदक इलेक्ट्रोड कॉन्फ़िगरेशन नए संवेदक बनाने की आवश्यकता के बिना मॉड्यूलर भी बन जाता है।

सुरक्षित

ईसीवीटी कम ऊर्जा, कम आवृत्ति और गैर-रेडियोधर्मी है, जो इसे किसी भी स्थिति में नियोजित करने के लिए सुरक्षित बनाता है जहां विषाक्त अपशिष्ट, उच्च वोल्टेज, या विद्युत चुम्बकीय विकिरण एक चिंता का विषय है। प्रौद्योगिकी की कम ऊर्जा प्रकृति भी इसे दूरस्थ स्थानों के लिए उपयुक्त बनाती है जहां बिजली की आपूर्ति कम होती है। कई अवसरों पर, एक साधारण सौर ऊर्जा संचालित बैटरी एक ईसीवीटी उपकरण को शक्ति प्रदान करने के लिए पर्याप्त साबित हो सकती है।

स्केलेबल

ईसीवीटी बहुत बड़े तरंग दैर्ध्य पर संचालित होता है, सामान्यतः इलेक्ट्रोड को उत्तेजित करने के लिए 10 मेगाहर्ट्ज से कम आवृत्तियों का उपयोग करता है। ये लंबी तरंग दैर्ध्य प्रौद्योगिकी को अर्ध-इलेक्ट्रोस्टैटिक शासन के अंतर्गत संचालित करने की स्वीकृति देती हैं। जब तक संवेदक का व्यास तरंग की लंबाई से बहुत छोटा होता है, तब तक ये धारणा मान्य होती है। उदाहरण के लिए, जब 2 मेगाहर्ट्ज एसी सिग्नल के साथ रोमांचक होता है, तो तरंग दैर्ध्य 149.9 मीटर होता है। संवेदक व्यास सामान्यतः इस सीमा से काफी नीचे डिज़ाइन किए जाते हैं। इसके अतिरिक्त, धारिता शक्ति , इलेक्ट्रोड क्षेत्र के अनुसार आनुपातिक रूप से मापता है, और प्लेट या संवेदक के व्यास के बीच की दूरी। इसलिए जैसे-जैसे संवेदक का व्यास बड़ा होता जाता है, वैसे-वैसे प्लेट क्षेत्र का आकार बढ़ता जाता है, तो किसी भी दिए गए संवेदक के डिजाइन को सिग्नल की ताकत पर न्यूनतम प्रभाव के साथ आसानी से ऊपर या नीचे बढ़ाया जा सकता है।

कम लागत और प्रोफाइल

अन्य संवेदन और काल्पनिक उपकरण जैसे गामा विकिरण, एक्स-रे, या एमआरआई मशीनों की तुलना में, ईसीवीटी निर्माण और संचालन के लिए अपेक्षाकृत सस्ता है। प्रौद्योगिकी की इस गुणवत्ता का एक हिस्सा इसके कम ऊर्जा उत्सर्जन के कारण है, जिसमें अपशिष्ट रखने या उच्च शक्ति आउटपुट को इन्सुलेट करने के लिए किसी अतिरिक्त तंत्र की आवश्यकता नहीं होती है। कम लागत में जोड़ना एक संवेदक बनाने के लिए विभिन्न प्रकार की सामग्रियों की उपलब्धता है। इलेक्ट्रॉनिक्स को संवेदक से दूर भी रखा जा सकता है जो मानक पर्यावरण इलेक्ट्रॉनिक्स को डेटा अधिग्रहण के लिए उपयोग करने की स्वीकृति देता है, भले ही संवेदक अत्यधिक तापमान या अन्य स्थितियों के अधीन हो, जो सामान्यतः इलेक्ट्रॉनिक इंस्ट्रूमेंटेशन को नियोजित करना मुश्किल बनाते हैं।

उच्च लौकिक संकल्प (तेज)

सामान्य शब्दों में, ईसीवीटी के साथ उपयोग की जाने वाली डाटा अधिग्रहण की विधि बहुत तेज है। संवेदक डिज़ाइन में प्लेट जोड़े की संख्या और डेटा अधिग्रहण प्रणाली के एनालॉग डिज़ाइन (अर्थात घड़ी की गति, समानांतर सर्किटरी, आदि) के आधार पर डेटा को प्रति सेकंड कई हज़ार बार नमूना लिया जा सकता है। बहुत तेज़ी से डेटा एकत्र करने की क्षमता प्रौद्योगिकी को उन उद्योगों के लिए बहुत आकर्षक बनाती है जिनकी प्रक्रियाएँ बहुत तेज़ी से होती हैं या उच्च गति पर परिवहन करती हैं। यह एमआरआई के लिए एक बड़ा विपरीत है जिसमें उच्च स्थानिक संकल्प है लेकिन अक्सर बहुत खराब अस्थायी समाधान होता है।

जैसा कि ऊपर उल्लेख किया गया है, स्थानिक संकल्प ईसीटी/ईसीवीटी में एक मौलिक चुनौती है। स्थानिक संकल्प ईसीटी/ईसीवीटी की सॉफ्ट-क्षेत्र प्रकृति और इस तथ्य से सीमित है कि ईसीटी/ईसीवीटी में पूछताछ करने वाला विद्युत क्षेत्र प्रकृति में अर्ध-स्थैतिक है। बाद की संपत्ति का तात्पर्य है कि प्लेटों के बीच संभावित वितरण लाप्लास समीकरण का एक समाधान है। नतीजतन, प्लेटों के बीच संभावित वितरण के लिए कोई रिश्तेदार मिनिमा या मैक्सिमा नहीं हो सकता है और इसलिए कोई फोकल स्पॉट नहीं बनाया जा सकता है।

स्थानिक संकल्प को बढ़ाने के लिए, दो बुनियादी रणनीतियों का अनुसरण किया जा सकता है। पहली रणनीति में माप डेटा को समृद्ध करना सम्मिलित है। यह (ए) सिंथेटिक इलेक्ट्रोड के साथ अनुकूली अधिग्रहण द्वारा किया जा सकता है,[22] (बी) स्पेसियो-टेम्पोरल सैंपलिंग अतिरिक्त माप का उपयोग करते हुए प्राप्त किया जाता है जब ऑब्जेक्ट संवेदक के अंदर विभिन्न स्थितियों में होते हैं,[23] (सी) शोषण करने के लिए बहु-आवृत्ति ऑपरेशन एमडब्ल्यूएस प्रभाव के कारण आवृत्ति के साथ पारगम्यता भिन्नता[16] और (d) अन्य संवेदन तौर-तरीकों के साथ ECT / ईसीवीटी का संयोजन, या तो एक ही हार्डवेयर (जैसे डीसीपीटी) या अतिरिक्त हार्डवेयर (जैसे माइक्रोवेव टोमोग्राफी) पर आधारित है। स्थानिक संकल्प को बढ़ाने की दूसरी रणनीति में बहु-स्तरीय छवि पुनर्निर्माण का विकास सम्मिलित है जिसमें प्राथमिक जानकारी और प्रशिक्षण डेटा सेट और स्थानिक अनुकूलता सम्मिलित है।

अनुप्रयोग

बहु-चरण प्रवाह

बहु-चरण प्रवाह विभिन्न भौतिक अवस्थाओं या रासायनिक संरचनाओं की धातुओ के एक साथ प्रवाह को संदर्भित करता है जो पेट्रोलियम, रासायनिक और जैव रासायनिक उद्योगों में अत्यधिक रूप में सम्मिलित है। अतीत में, ईसीवीटी का बड़े पैमाने पर प्रयोगशाला और साथ ही औद्योगिक सेटिंग्स में बहु-चरण प्रवाह प्रणालियों की एक विस्तृत श्रृंखला में परीक्षण किया गया है।[9] ईसीवीटी की अपेक्षाकृत कम लागत पर विभिन्न तापमान और दाब स्थितियों के अंतर्गत जटिल ज्यामिति के साथ प्रणाली का वास्तविक समय गैर-विस्तृत स्थानिक दृश्यता प्राप्त करने की अद्वितीय क्षमता इसे बड़े पैमाने पर प्रसंस्करण उद्योगों में मौलिक द्रव यांत्रिकी अनुसंधान और अनुप्रयोगों दोनों के लिए अनुकूल बनाती है। इन दो दृष्टिकोणों की खोज में हाल के शोध प्रयासों का सारांश नीचे दिया गया है।

गैस-ठोस

सीएफबी प्रतिघातक (बाएं), मोड़ (मध्य) पर ईसीवीटी संवेदक कॉन्फ़िगरेशन का चित्रण, और मोड़ (दाएं) में ठोस होल्डअप वितरण की पुनर्निर्मित छवियां।[24]

गैस-ठोस द्रवित परत एक विशिष्ट गैस-ठोस प्रवाह प्रणाली है और इसकी अपेक्षाकृत ऊष्मा और बड़े पैमाने पर स्थानांतरण ठोस परिवहन नियंत्रण के कारण रासायनिक उद्योगों में व्यापक रूप से नियोजित किया गया है। ईसीवीटी को प्रणाली गुण मापन और गतिशील व्यवहार दृश्यता के लिए गैस-ठोस द्रवीकृत परत प्रणाली पर सफलतापूर्वक प्रयुक्त किया गया है। एक उदाहरण 12-चैनल बेलनाकार ईसीवीटी संवेदक के साथ 0.1 मीटर आईडी गैस-ठोस परिसंचारी द्रवित परत में चोकिंग घटना का अध्ययन है।[25] जहां चोकिंग के संक्रमण के समय स्लग का गठन ईसीवीटी द्वारा स्पष्ट रूप से प्रस्तुत किया गया है। एक अन्य प्रयोग 0.05 आईडी स्तम्भ में बुबलिंग गैस-ठोस द्रवीकरण का अध्ययन करता है, जहां ईसीवीटी से प्राप्त ठोस होल्डअप, बबल आकार और आवृत्ति को एमआरआई माप के साथ मान्य किया जाता है।[26] ईसीवीटी संवेदक ज्यामिति की नम्यता इसे गैस-ठोस प्रवाह प्रतिघातकों के बेंड, टेपरिंग और अन्य गैर समान वर्गों की काल्पनिक छवि के लिए सक्षम बनाता है। उदाहरण के लिए एक क्षैतिज गैस जेट एक बेलनाकार गैस-ठोस द्रवयुक्त परत में प्रवेश कर रहा है। जिसको संशोधित ईसीवीटी संवेदक के साथ चित्रित किया जा सकता है और जेट की पैठ लंबाई और चौड़ाई के साथ-साथ द्रवित परत में बुलबुले के साथ जेट सहसंयोजी व्यवहार जैसी जानकारी प्राप्त की जा सकती है जिसको प्रायः ईसीवीटी से प्राप्त किया जाना चाहिए।[27] एक अन्य उदाहरण गैस-ठोस परिसंचारी तरल परत (सीएफबी) की प्रवाह की दर ईसीवीटी के काल्पनिक है।[24] प्रवाह और बेंड दोनों में एक कोर-एनुलस प्रवाह संरचना और बेंड के क्षैतिज खंड में एक ठोस संचय की मात्रात्मक ईसीवीटी छवियों से पहचान की जाती है।

गैस-द्रव

ईसीवीटी (शीर्ष) और वास्तविक स्तम्भ (नीचे) से बबल प्लम की छवियां।[28]

गैस-द्रव बुलबुला स्तंभ एक विशिष्ट गैस-द्रव प्रवाह प्रणाली है जो व्यापक रूप से पेट्रो रसायन और जैव रासायनिक प्रक्रियाओं में उपयोग की जाती है। कम्प्यूटेशनल द्रव गतिशील विधियों के साथ-साथ पारंपरिक विस्तृत माप तकनीकों के साथ बुबलिंग प्रवाह घटना पर बड़े पैमाने पर शोध किया गया है। ईसीवीटी के पास संपूर्ण गैस-द्रव प्रवाह क्षेत्र का वास्तविक समय मात्रात्मक दृश्य प्राप्त करने की अद्वितीय क्षमता है। एक उदाहरण बबल स्तम्भ में कुंडलीदार बबल प्लम की गतिशीलता का अध्ययन है।[29][28] ईसीवीटी को बबल प्लूम्स, बड़े पैमाने पर द्रव भंवरों और गैस होल्डअप वितरण की कुंडल गति को प्राप्त करने में सक्षम दिखाया गया है।

गैस-द्रव प्रणालियों में ईसीवीटी के अनुप्रयोग का एक अन्य उदाहरण एक चक्रवाती गैस-द्रव विभाजक का अध्ययन है जहां गैस-द्रव मिश्रण एक क्षैतिज स्तंभ में स्पर्शरेखा से प्रवेश करता है और एक चक्रवाती प्रवाह क्षेत्र बनाता है जहां गैस और द्रव को अपकेन्द्रीय बल द्वारा अलग किया जाता है। ईसीवीटी पोत के अंदर द्रव वितरण और अपकेंद्रण गैस कोर छिद्र वर्धन घटना को सफलतापूर्वक अधिकृत करता है। मात्रात्मक परिणाम यंत्रवत मॉडल के अनुरूप होते हैं।

गैस-द्रव-ठोस

क्षरण प्रतिघातक (टीबीआर) एक विशिष्ट तीन-चरण ठोस, द्रव, गैस प्रणाली है और इसमें पेट्रोलियम, पेट्रो रसायन, जैव रासायनिक, विद्युत रासायनिक और जल उपचार उद्योगों में अनुप्रयोग हैं। एक टीबीआर में पैक्ड ठोस धातु के माध्यम से गैस और द्रव नीचे की ओर प्रवाहित होता हैं। गैस और द्रव प्रवाह दरों के आधार पर टीबीआर में अलग-अलग प्रवाह व्यवस्थाएं हो सकती हैं, जिनमें क्षरण प्रवाह, स्पंदित प्रवाह और विस्तृत प्रवाह सम्मिलित है। ईसीवीटी का टीबीआर में अशांत स्पंदन प्रवाह की छवि के लिए सफलतापूर्वक उपयोग किया गया है।[30] जिससे विस्तृत पल्स संरचना और पल्स वेग ईसीवीटी से प्राप्त किया जा सकता है।

दहन (उच्च तापमान और अग्नि)

विभिन्न तापमानों, 25°C, 300°C, 400°C, और 650°C के लिए अलग-अलग Ug-Umf पर स्लग वेग।[31]

रासायनिक उद्योगों में अधिकांश गैस-ठोस प्रवाह प्रणालियाँ इष्टतम प्रतिक्रिया गतिज के लिए उच्च तापमान पर कार्य करती हैं। ऐसी कठोर परिस्थितियों में कई प्रयोगशाला मापन तकनीकें अब उपलब्ध नहीं हैं। हालांकि ईसीवीटी में इसकी सरल, प्रबल डिजाइन और गैर-विस्तृत प्रकृति के कारण उच्च तापमान अनुप्रयोगों की संभावना है जो रोधक धातु को ऊष्म प्रतिरोध के लिए संवेदक में स्थापित करने की स्वीकृति देता है। वर्तमान में उच्च तापमान ईसीवीटी प्रौद्योगिकी तीव्रता से विकास के अधीन है और उच्च तापमान से संबद्ध इंजीनियरिंग समस्याओं को हल करने के लिए अनुसंधान प्रयास किए जा रहे हैं।

ईसीवीटी का उपयोग 650 डिग्री सेल्सियस तक के उच्च तापमान के वातावरण में किया गया है। उच्च तापमान के अंतर्गत द्रवित परत की छवि और लक्षण का वर्णन करने के लिए जैसे कि द्रवित प्रतिघातक, द्रव उत्प्रेरक अपघटन और द्रवित दहन में उपयोग किया जाता है। इस तकनीक के उच्च तापमान द्रवयुक्त परतों के लिए अनुप्रयोग ने गहन विश्लेषण की स्वीकृति दी है कि कैसे तापमान परतों में प्रवाह व्यवहार को प्रभावित करता है। उदाहरण के लिए गेल्डार्ट समूह डी कणों के साथ बड़े स्तम्भ ऊंचाई से स्तम्भ व्यास अनुपात के साथ एक पूर्व सम्पीडन द्रवित परत में 650 डिग्री सेल्सियस तक तापमान बढ़ाना गैस की घनत्व और श्यानता को परिवर्तित कर सकता है लेकिन सम्पीडन वेग और आवृत्ति जैसे सम्पीडन द्रव पर नगण्य प्रभाव पड़ता है।

गैर-विनाशात्मक परीक्षण (एनडीटी)

अवसंरचना निरीक्षण उद्योग में उन उपकरणों का उपयोग करना वांछनीय है जो अंतः स्थापित घटकों का गैर-आक्रामक रूप से निरीक्षण करते हैं। संक्षारित इस्पात, जल प्रवाह और हवा की ध्वनि जैसे कारण प्रायः कंक्रीट या अन्य ठोस सदस्यों के भीतर अंतः स्थापित होते हैं। जहां संरचना की अखंडता से समझौता करने से बचने के लिए गैर-विनाशात्मक परीक्षण (एनडीटी) विधियों का उपयोग किया जाना चाहिए। ईसीवीटी का उपयोग इस क्षेत्र में तनाव के बाद वाले पुलों पर बाह्य भाग के गैर-विनाशात्मक परीक्षण के लिए किया गया है।[32] ये संरचनाएं स्टील के केबल और सुरक्षात्मक सतह या ग्रीस से भरी हुई होती हैं।

इस अनुप्रयोग मे गतिशील, दूर से नियंत्रित ईसीवीटी उपकरण को बाहरी तनाव के चारों ओर रखा जाता है जो तनाव के आंतरिक भाग का अवलोकन करता है। ईसीवीटी उपकरण वास्तविक समय में आंतरिक भाग के भीतर सतह या ग्रीस की गुणवत्ता के विषय में जानकारी को साझा सकता है। यह आंतरिक भाग के भीतर किसी भी वायु रिक्तिका या नमी के आकार और स्थान को भी निर्धारित कर सकता है। पुल निरीक्षकों के लिए इन कारणों का पता लगाना एक महत्वपूर्ण कार्य है क्योंकि तनाव के भीतर वायु और नमी की रिक्तिका से स्टील के केबल का क्षरण हो सकता है और तनाव की विफलता हो सकती है जिससे पुल को संरचनात्मक क्षति का जोखिम हो सकता है।

यह भी देखें

  • विद्युत धारिता टोमोग्राफी
  • विद्युत प्रतिबाधा टोमोग्राफी
  • विद्युत प्रतिरोधकता टोमोग्राफी
  • प्रक्रिया टोमोग्राफी

संदर्भ

  1. 1.0 1.1 Warsito, W.; Marashdeh, Q.; Fan, L.-S. (2007). "इलेक्ट्रिकल कैपेसिटेंस वॉल्यूम टोमोग्राफी". IEEE Sensors Journal. 7 (4): 525–535. Bibcode:2007ISenJ...7..525W. doi:10.1109/jsen.2007.891952. S2CID 37974474.
  2. Warsito, W.; Fan, L.-S. (2003). "Development of 3-dimensional electrical capacitance tomography based on neural network multi-criterion optimization". Proc. 3rd World Congr. Industrial Tomography: 391–396.
  3. W. Warsito, Q. Marashdeh, and L.S. Fan “3D and Real Time Electrical Capacitance Volume Tomography Sensor Design and Image Reconstruction”, Patent No.: US 8,614,707 B2, Priority date March 22, 2005; PCT No.: PCT/US2OO6/O1O352, PCT Pub. No.: WO2006/102388, Prior Publication Data: US 201O/OO973.74 A1 Apr. 22, 2010
  4. Marashdeh, Q.; Teixeira, F. (March 2004). "Sensitivity Matrix Calculation for Fast 3-D Electrical Capacitance Tomography (ECT) of Flow Systems". IEEE Transactions on Magnetics. 40.
  5. Marashdeh, Q.; Teixeira, F. (July 2004). "Correction to: "Sensitivity Matrix Calculation for Fast 3-D Electrical Capacitance Tomography (ECT) of Flow Systems"". IEEE Transactions on Magnetics. 40 (4): 1972. Bibcode:2004ITM....40.1972M. doi:10.1109/TMAG.2004.831453.
  6. Warsito, W.; Marashdeh, Q.; Fan, L.-S. (2007). "Some comments on 'Spatial imaging with 3D capacitance measurements'". Meas. Sci. Technol. 18 (11): 3665–3667. doi:10.1088/0957-0233/18/11/n01.
  7. Hansen, P.C. (2010). Discrete Inverse Problems: Insight and Algorithms. doi:10.1137/1.9780898718836. ISBN 978-0-89871-696-2. {{cite book}}: |journal= ignored (help)
  8. Yang, W.Q.; Peng, L.H. (Jan 2003). "विद्युत समाई टोमोग्राफी के लिए छवि पुनर्निर्माण एल्गोरिदम". Meas. Sci. Technol. 14 (1): R1–R13. doi:10.1088/0957-0233/14/1/201.
  9. 9.0 9.1 Wang, F.; Marashdeh, Q.M.; Fan, L.-S.; Warsito, W. (2010). "Electrical Capacitance Volume Tomography: Design and Applications". Sensors (Basel, Switzerland). 10 (3): 1890–1917. doi:10.3390/s100301890. PMC 3264458. PMID 22294905.
  10. Marashdeh, Q.M.; Teixeira, F.L.; Fan, L.-S. (2014). "अनुकूली विद्युत क्षमता आयतन टोमोग्राफी". IEEE Sensors Journal. 14 (4): 1253,1259. Bibcode:2014ISenJ..14.1253M. doi:10.1109/JSEN.2013.2294533. S2CID 15609458.
  11. 11.0 11.1 11.2 11.3 Chowdhury, S.; Marashdeh, Q.M.; Teixeira, F.L. (2016). "कैपेसिटिव सेंसर सेंसिटिविटी ग्रैडिएंट का उपयोग करके मल्टीफ़ेज़ फ्लो का वेलोसिटी प्रोफाइलिंग". IEEE Sensors Journal. 16 (23): 8365–8373.
  12. Cite error: Invalid <ref> tag; no text was provided for refs named Image reconstruction algorithms for electrical capacitance tomography
  13. Marashdeh, Q.; Warsito, W.; Fan, L.-S.; Teixeira, F.L. (2006). "एक संयुक्त तंत्रिका नेटवर्क दृष्टिकोण का उपयोग करके ईसीटी के लिए गैर-रैखिक छवि पुनर्निर्माण तकनीक". Meas. Sci. Technol. 17 (8): 2097–2103. Bibcode:2006MeScT..17.2097M. doi:10.1088/0957-0233/17/8/007.
  14. Gunes, C.; Marashdeh, Q.; Teixeira, F.L. (2017). "विद्युत समाई टोमोग्राफी और विस्थापन-वर्तमान चरण टोमोग्राफी के बीच एक तुलना". IEEE Sensors Journal. 17 (24): 8037–8046. Bibcode:2017ISenJ..17.8037G. doi:10.1109/JSEN.2017.2707284.
  15. Rasel, R.K.; Zuccarelli, C.E.; Marashdeh, Q.M.; Fan, L.-S.; Teixeira, F.L. (2017). "विद्युत समाई टोमोग्राफी सेंसर के आधार पर मल्टीफ़ेज़ प्रवाह अपघटन की ओर". IEEE Sensors Journal. 17 (24): 8027–8036. Bibcode:2017ISenJ..17.8027R. doi:10.1109/JSEN.2017.2687828.
  16. 16.0 16.1 16.2 16.3 Cite error: Invalid <ref> tag; no text was provided for refs named Towards multiphase flow decomposition based on electrical capacitance tomography sensors
  17. Maxwell, J.C. (1892). 'बिजली और चुंबकत्व पर एक ग्रंथ. Clarendon, Oxford: Oxford, Clarendon.
  18. Becher, P. (1983). "पायस और संबंधित प्रणालियों के ढांकता हुआ गुण". Encyclopedia of Emulsion Technology. 1.
  19. Wagner, K.W. (1914). "डाइलेक्ट्रिक्स में बाद का प्रभाव". Arch. Elektrotech. 2: 371–387. doi:10.1007/bf01657322. S2CID 107379416.
  20. Sillars, R.W. (1937). "विभिन्न आकृतियों के अर्धचालक कणों वाले एक ढांकता हुआ के गुण". Journal of the Institution of Electrical Engineers. 80 (484): 378–394. doi:10.1049/jiee-1.1937.0058.
  21. Bruggeman, D.A. (1935). "विषमांगी पदार्थों के विभिन्न भौतिक नियतांकों की गणना". Annalen der Physik. 24 (7): 636–664. doi:10.1002/andp.19354160705.
  22. Cite error: Invalid <ref> tag; no text was provided for refs named Adaptive Electrical Capacitance Volume Tomography
  23. Wanta, D.; Smolik, W.T.; Kryszyn, J.; Midura, M.; Wróblewski, P. (2022). "Image reconstruction using Z-axis spatio-temporal sampling in 3D electrical capacitance tomography". Measurement Science and Technology: 1–13. doi:10.1088/1361-6501/ac8220.
  24. 24.0 24.1 Wang, F.; Marashdeh, Q.; Wang, A.; Fan, L.-S. (2012). "Electrical Capacitance Volume Tomography Imaging of Three-Dimensional Flow Structures and Solids Concentration Distributions in a Riser and a Bend of a Gas–Solid Circulating Fluidized Bed". Industrial & Engineering Chemistry Research. 51 (33): 10968–10976. doi:10.1021/ie300746q.
  25. Du, B.; Warsito, W.; Fan, L.-S. (2006). "Imaging the Choking Transition in Gas−Solid Risers Using Electrical Capacitance Tomography". Industrial & Engineering Chemistry Research. 45 (15): 5384–5395. doi:10.1021/ie051401w.
  26. Holland, D.J.; Marashdeh, Q.M.; Muller, C.R. (Jan 2009). "गैस-द्रवित बिस्तर में ईसीवीटी और एमआर माप की तुलना". Ind. Eng. Chem. Res. 48 (1): 172–181. doi:10.1021/ie8002073.
  27. Wang, F.; Marashdeh, Q.; Fan, L.-S. (2010). "Horizontal gas and gas/solid jet penetration in a gas–solid fluidized bed". Chemical Engineering Science. 65 (11): 3394–3408. doi:10.1016/j.ces.2010.02.036.
  28. 28.0 28.1 Warsito, W.; Fan, L.-S. (2005). "Dynamics of spiral bubble plume motion in the entrance region of bubble columns and three-phase fluidized beds using 3D ECT". Chemical Engineering Science. 60 (22): 6073–6084. doi:10.1016/j.ces.2005.01.033.
  29. Wang, A.; Marashdeh, Q.; Fan, L.-S. (2014). "ECVT imaging of 3D spiral bubble plume structures in gas-liquid bubble columns". The Canadian Journal of Chemical Engineering. 92 (12): 2078–2087. doi:10.1002/cjce.22070.
  30. Wang, A.; Marashdeh, Q.; Motil, B.; Fan, L.-S. (2014). "ट्रिकल बेड में पल्सेटिंग फ्लो की इमेजिंग के लिए इलेक्ट्रिकल कैपेसिटेंस वॉल्यूम टोमोग्राफी". Chemical Engineering Science. 119: 77–87. doi:10.1016/j.ces.2014.08.011.
  31. Wang, D.; Xu, M.; Marashdeh, Q.; Straiton, B.; Tong, A.; Fan, L.-S. (2018). "उच्च तापमान के तहत जेलडार्ट ग्रुप डी कणों के साथ गैस-सॉलिड स्लगिंग फ्लुइडाइजेशन के लक्षण वर्णन के लिए इलेक्ट्रिकल कैपेसिटेंस वॉल्यूम टोमोग्राफी". Ind. Eng. Chem. Res. 57 (7): 2687–2697. doi:10.1021/acs.iecr.7b04733.
  32. "पुल का निरीक्षण". R&D 100 Conference. 2015.