बीजगणितीय विश्लेषण: Difference between revisions

From Vigyanwiki
No edit summary
 
Line 59: Line 59:


{{Authority control}}
{{Authority control}}
[[Category: बीजगणितीय विश्लेषण | बीजगणितीय विश्लेषण ]] [[Category: जटिल विश्लेषण]] [[Category: फूरियर विश्लेषण]] [[Category: सामान्यीकृत कार्य]] [[Category: आंशिक अंतर समीकरण]] [[Category: शेफ सिद्धांत]]
     




{{mathanalysis-stub}}
{{mathanalysis-stub}}


 
[[Category:All stub articles]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 24/05/2023]]
[[Category:Created On 24/05/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Mathematical analysis stubs]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:आंशिक अंतर समीकरण]]
[[Category:जटिल विश्लेषण]]
[[Category:फूरियर विश्लेषण]]
[[Category:बीजगणितीय विश्लेषण| बीजगणितीय विश्लेषण ]]
[[Category:शेफ सिद्धांत]]
[[Category:सामान्यीकृत कार्य]]

Latest revision as of 17:44, 26 June 2023

बीजगणितीय विश्लेषण, गणित का एक क्षेत्र है जो शीफ सिद्धांत और जटिल विश्लेषण का उपयोग करके रैखिक आंशिक अवकल समीकरणों की प्रणालियों से संबंधित है। संक्षेप में, यह विश्लेषणात्मक मात्राओं पर बीजगणितीय संक्रियाओं का अनुप्रयोग है। एक शोध कार्यक्रम के रूप में, यह 1959 में जापानी गणितज्ञ मिकियो सातो द्वारा प्रारम्भ किया गया था।[1] इसे विश्लेषण के बीजगणितीय ज्यामिति के रूप में देखा जा सकता है। इसका अर्थ इस तथ्य से लगता है कि विभाजक संकारक रिक्त स्थान फलन में सही-परिवर्तनीय है।

यह मानी गई समस्या के बीजीय विवरण के कारण प्रमाणों के सरलीकरण में सहायता करता है।

माइक्रोफ़ंक्शन

M को आयाम n के वास्तविक-विश्लेषणात्मक कई गुना हैं, और X को इसकी जटिलता दें। M पर माइक्रोलोकल फलन का शीफ इस प्रकार दिया गया है कि: [2]

जहाँ

  • सूक्ष्म-स्थानीयकरण प्रकार्यक को दर्शाता है,
  • सापेक्ष अभिविन्यास शीफ है।

सैटो के अतिप्रकार्य को परिभाषित करने के लिए एक माइक्रोफंक्शन का उपयोग किया जा सकता है। परिभाषा के अनुसार, M पर सातो के अतिप्रकार्य का शीफ, M के माइक्रोफंक्शन के शीफ का प्रतिबंध है, इस तथ्य के समानांतर कि M पर वास्तविक-विश्लेषणात्मक कार्यों का शीफ, X से M पर समरूपी फलन के शीफ का प्रतिबंध है।

यह भी देखें

उद्धरण

  1. Kashiwara & Kawai 2011, pp. 11–17.
  2. Kashiwara & Schapira 1990, Definition 11.5.1.

स्रोत

  • Kashiwara, Masaki; Kawai, Takahiro (2011). "प्रोफेसर मिकियो सातो और माइक्रोलोकल एनालिसिस". Publications of the Research Institute for Mathematical Sciences. 47 (1): 11–17. doi:10.2977/PRIMS/29 – via EMS-PH.
  • Kashiwara, Masaki; Schapira, Pierre (1990). मैनिफोल्ड्स पर ढेर. Berlin: Springer-Verlag. ISBN 3-540-51861-4.

अग्रिम पठन