मोड लॉकिंग: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(10 intermediate revisions by 3 users not shown)
Line 3: Line 3:
{{other uses|अर्नोल्ड भाषा|धार्मिकता मोड-लॉकिंग}}
{{other uses|अर्नोल्ड भाषा|धार्मिकता मोड-लॉकिंग}}


'''मोड लॉकिंग''' एक ऐसी तकनीक है जिसके द्वारा लेजर को अत्यंत अल्पकालिक प्रकाश की स्पंदों का उत्पादन करने के लिए बनाया जा सकता है। इस तरह संचालित एक लेजर को कभी-कभी एक पिकोसेकंड (10<sup>−12</sup> s) या '''फेमास्कोन्ड''' '''लेजर'''(10<sup>−15</sup> s) लेजर के रूप में संदर्भित किया जाता है, उदाहरण के लिए, आधुनिक [[अपवर्तक सर्जरी]] में। इस तकनीक का आधार लेजर अनुनाद गुहा के अनुनाद गुहा के [[अनुदैर्ध्य मोड]] के बीच एक निश्चित चरण संबंध को प्रोत्साहित करना है। इन तरीकों के बीच रचनात्मक हस्तक्षेप से दालों की एक ट्रेन के रूप में लेजर लाइट का उत्पादन हो सकता है। फिर लेजर को फेज-लॉक या मोड-लॉक कहा जाता है।
'''मोड लॉकिंग''' एक ऐसी तकनीक है जिसके द्वारा लेजर को अत्यंत अल्पकालिक प्रकाश की स्पंदों का उत्पादन करने के लिए बनाया जा सकता है। इस तरह संचालित लेजर को कभी-कभी एक पिकोसेकंड (10<sup>−12</sup> s) या '''फेमास्कोन्ड''' '''लेजर'''(10<sup>−15</sup> s) लेजर के रूप में संदर्भित किया जाता है, उदाहरण के लिए, आधुनिक [[अपवर्तक सर्जरी]] में। इस तकनीक का आधार लेजर अनुनाद गुहा के अनुनाद गुहा के [[अनुदैर्ध्य मोड]] के बीच एक निश्चित चरण संबंध को प्रोत्साहित करना है। इन तरीकों के बीच रचनात्मक हस्तक्षेप से स्पन्दों की श्रृंखला के रूप में लेजर लाइट का उत्पादन हो सकता है। फिर लेजर को फेज-लॉक या मोड-लॉक कहा जाता है।


== लेजर कैविटी मोड ==
== लेजर कैविटी मोड ==
[[Image:modelock-1.png|thumb|right|350px|लेजर मोड संरचना]]
[[Image:modelock-1.png|thumb|right|350px|लेजर मोड संरचना]]
[[File:Modelocking.gif|thumb|right|350px|एक मोड-लॉक, पूरी तरह से प्रतिबिंबित गुहा पहले 30 मोड का समर्थन करता है। ऊपरी भूखंड गुहा (रेखाओं) के अंदर पहले 8 मोड और गुहा (बिंदुओं) के अंदर विभिन्न पदों पर कुल विद्युत क्षेत्र दिखाता है। निचला भूखंड गुहा के अंदर कुल विद्युत क्षेत्र को दर्शाता है।]]हालांकि लेजर प्रकाश शायद प्रकाश का सबसे शुद्ध रूप है, यह एकल, शुद्ध [[आवृत्ति]] या [[तरंग दैर्ध्य]] का नहीं है। सभी लेजर कुछ प्राकृतिक [[बैंडविड्थ (सिग्नल प्रोसेसिंग)|बैंडविड्थ]] या आवृत्तियों की श्रृंखला पर प्रकाश का उत्पादन करते हैं। एक लेजर के संचालन की बैंडविड्थ मुख्य रूप से लाभ के माध्यम से निर्धारित की जाती है जिससे लेजर का निर्माण किया जाता है, और उन आवृत्तियों की सीमा जिस पर एक लेजर काम कर सकता है, गेन बैंडविड्थ के रूप में जाना जाता है। उदाहरण के लिए, एक विशिष्ट हीलियम-नीऑन लेजर में लगभग 1.5 जीएचजेड ( 633 एनएम की केंद्रीय तरंग दैर्ध्य पर लगभग 0.002 एनएम की तरंगदैर्घ्य सीमा) का एक लाभ बैंडविड्थ होता है, जबकि एक टाइटेनियम-डोपेड सैफायर (टीआई:सैपायर) सॉलिड-स्टेट लेजर में लगभग 128 टीजेड (एक 300 एनएम तरंगदैर्घ्य सीमा 800 एनएम पर केंद्रित) की बैंडविड्थ होती है।
[[File:Modelocking.gif|thumb|right|350px|एक मोड-लॉक, पूरी तरह से प्रतिबिंबित गुहा पहले 30 मोड का समर्थन करता है। ऊपरी भूखंड गुहा (रेखाओं) के अंदर पहले 8 मोड और गुहा (बिंदुओं) के अंदर विभिन्न पदों पर कुल विद्युत क्षेत्र दिखाता है। निचला भूखंड गुहा के अंदर कुल विद्युत क्षेत्र को दर्शाता है।]]हालांकि लेजर प्रकाश शायद प्रकाश का सबसे शुद्ध रूप है, यह एकल, शुद्ध [[आवृत्ति]] या [[तरंग दैर्ध्य]] का नहीं है। सभी लेजर कुछ प्राकृतिक [[बैंडविड्थ (सिग्नल प्रोसेसिंग)|बैंडविड्थ]] या आवृत्तियों की श्रृंखला पर प्रकाश का उत्पादन करते हैं। लेजर के संचालन की बैंडविड्थ मुख्य रूप से लाभ के माध्यम से निर्धारित की जाती है जिससे लेजर का निर्माण किया जाता है, और उन आवृत्तियों की सीमा जिस पर लेजर काम कर सकता है, गेन बैंडविड्थ के रूप में जाना जाता है। उदाहरण के लिए, विशिष्ट हीलियम-नीऑन लेजर में लगभग 1.5 जीएचजेड ( 633 एनएम की केंद्रीय तरंग दैर्ध्य पर लगभग 0.002 एनएम की तरंगदैर्घ्य सीमा) का एक लाभ बैंडविड्थ होता है, जबकि टाइटेनियम-डोपेड सैफायर (टीआई:सैपायर) सॉलिड-स्टेट लेजर में लगभग 128 टीजेड (300 एनएम तरंगदैर्घ्य सीमा 800 एनएम पर केंद्रित) की बैंडविड्थ होती है।


लेजर के उत्सर्जन आवृत्तियों को निर्धारित करने वाला दूसरा कारक लेजर की [[ऑप्टिकल गुहा]] (या गुंजयमान गुहा) है। सबसे सरल मामले में, इसमें दो समतल (फ्लैट) दर्पण होते हैं जो एक दूसरे के सामने होते हैं, जो लेजर के लाभ माध्यम के आसपास होते हैं (इस व्यवस्था को फैब्री-पेरोट इंटरफेरोमीटर के रूप में जाना जाता है। फैब्री-पेरोट गुहा)। चूँकि प्रकाश एक तरंग है, जब गुहा के दर्पणों के बीच उछलता है, तो प्रकाश रचनात्मक और विनाशकारी रूप से स्वयं के साथ हस्तक्षेप (तरंग प्रसार) करता है, जिससे दर्पणों के बीच स्थायी तरंगों, या [[सामान्य मोड]] का निर्माण होता है। ये स्थायी तरंगें आवृत्तियों का एक असतत सेट बनाती हैं, जिसे गुहा के अनुदैर्ध्य मोड के रूप में जाना जाता है। ये मोड प्रकाश की एकमात्र आवृत्तियाँ हैं जो स्व-पुनर्जीवित होती हैं और गुंजयमान गुहा द्वारा दोलन करने की अनुमति देती हैं; प्रकाश की अन्य सभी आवृत्तियों को विनाशकारी हस्तक्षेप से दबा दिया जाता है। एक साधारण समतल-दर्पण गुहा के लिए, अनुमत मोड वे हैं जिनके लिए दर्पण की पृथक्करण दूरी L प्रकाश λ के आधे तरंग दैर्ध्य का एक सटीक गुणक है, जैसे कि {{nowrap|''L'' {{=}} ''qλ''/2}}, जहाँ q एक पूर्णांक है जिसे बहुलक क्रम कहते हैं।
लेजर की उत्सर्जन आवृत्तियों को निर्धारित करने वाला दूसरा कारक लेजर की [[ऑप्टिकल गुहा]] (या अनुनाद गुहा) है। सबसे सरल स्तिथि में, इसमें दो समतल (फ्लैट) दर्पण होते हैं जो एक दूसरे का सामना करते हैं, लेजर के लाभ माध्यम के आसपास होते हैं (यह व्यवस्था फेब्री-पेरोट गुहा के रूप में जानी जाती है)। चूँकि प्रकाश एक तरंग है, जब गुहा के दर्पणों के बीच उछलता है, तो प्रकाश रचनात्मक और विनाशकारी रूप से स्वयं में हस्तक्षेप करता है, जिससे दर्पणों के बीच स्थायी तरंगों या मोड का निर्माण होता है। ये स्थायी तरंगें आवृत्तियों का असतत समूह बनाती हैं, जिन्हें गुहा के अनुदैर्ध्य मोड के रूप में जाना जाता है। ये मोड प्रकाश की एकमात्र आवृत्तियाँ हैं जो स्व-पुनर्जीवित होती हैं और अनुनाद गुहा द्वारा दोलन करने की अनुमति देती हैं; प्रकाश की अन्य सभी आवृत्तियाँ विनाशकारी हस्तक्षेप द्वारा दबा दी जाती हैं। साधारण समतल-दर्पण गुहा के लिए, अनुमत मोड वे हैं जिनके लिए दर्पण की पृथक्करण दूरी L, प्रकाश λ के आधे तरंग दैर्ध्य का एक सटीक गुणक है, जैसे कि {{nowrap|''L'' {{=}} ''qλ''/2}} जहाँ q एक पूर्णांक है जिसे बहुलक क्रम कहते हैं।


व्यवहार में, L आमतौर पर λ से बहुत अधिक होता है, इसलिए q के प्रासंगिक मान बड़े होते हैं (लगभग 10<sup>5</sup> से 10<sup>6</sup>). किसी भी दो आसन्न मोड q और q + 1 के बीच आवृत्ति अलगाव अधिक रुचिकर है; यह दिया गया है (लंबाई एल के एक खाली रैखिक गुंजयमान यंत्र के लिए) Δν द्वारा:
अभ्यास में, L सामान्यतः λ से बहुत अधिक होता है, इसलिए q के प्रासंगिक मान बड़े होते हैं (लगभग 10<sup>5</sup> से 10<sup>6</sup>)। अधिक रुचि किसी भी दो आसन्न मोड q और q + 1 के बीच आवृत्ति पृथक्करण है; यह Δν द्वारा दिया गया है (लंबाई एल के एक खाली रैखिक अनुनादक के लिए):
: <math>\Delta\nu = \frac{c}{2L},</math>
: <math>\Delta\nu = \frac{c}{2L},</math>
जहाँ c [[प्रकाश की गति]] है (≈ 3×10<sup>8</sup> म/से)।
जहाँ c [[प्रकाश की गति]] है (≈ 3×108 मीटर/सेकण्ड)।


उपरोक्त समीकरण का उपयोग करते हुए, 30 सेमी के दर्पण पृथक्करण वाले एक छोटे लेज़र में 0.5 GHz के अनुदैर्ध्य मोड के बीच आवृत्ति पृथक्करण होता है। इस प्रकार ऊपर संदर्भित दो लेज़रों के लिए, 30 सेमी कैविटी के साथ, HeNe लेज़र की 1.5 GHz बैंडविड्थ 3 अनुदैर्ध्य मोड तक का समर्थन करेगी, जबकि Ti:sapphire लेज़र की 128 THz बैंडविड्थ लगभग 250,000 मोड का समर्थन कर सकती है। जब एक से अधिक अनुदैर्ध्य मोड उत्तेजित होते हैं, तो लेजर को मल्टी-मोड ऑपरेशन में कहा जाता है। जब केवल एक अनुदैर्ध्य मोड उत्तेजित होता है, तो लेजर को सिंगल-मोड ऑपरेशन में कहा जाता है।
उपरोक्त समीकरण का उपयोग करते हुए, 30 सेमी के दर्पण पृथक्करण वाले एक छोटे से लेज़र में 0.5 गीगाहर्ट्ज़ के अनुदैर्ध्य मोड के बीच आवृत्ति पृथक्करण होता है। इस प्रकार ऊपर संदर्भित दो लेज़रों के लिए, 30 सेमी कैविटी के साथ, HeNe (हीलियम-नियॉन) लेजर की 1.5 गीगाहर्ट्ज़  बैंडविड्थ 3 अनुदैर्ध्य मोड तक का समर्थन करेगी, जबकि टाइटेनियम (Ti) का 128 टैरा हर्ट्ज़ बैंडविड्थ: नीलम लेज़र लगभग 250,000 मोड का समर्थन कर सकता है। जब एक से अधिक अनुदैर्ध्य मोड उत्साहित होते हैं, तो लेजर को "बहु-मोड" संचालन में कहा जाता है। जब केवल अनुदैर्ध्य मोड संदीप्त होता है, तो लेजर को "एकल-मोड" संचालन में कहा जाता है।


प्रत्येक व्यक्तिगत अनुदैर्ध्य मोड में कुछ बैंडविड्थ या आवृत्तियों की संकीर्ण सीमा होती है, जिस पर यह संचालित होता है, लेकिन आमतौर पर यह बैंडविड्थ, गुहा के क्यू कारक द्वारा निर्धारित होता है (देखें फैब्री-पेरोट इंटरफेरोमीटर), इंटरमोड आवृत्ति पृथक्करण से बहुत छोटा है।
प्रत्येक व्यक्तिगत अनुदैर्ध्य मोड में कुछ बैंडविड्थ या आवृत्तियों की संकीर्ण सीमा होती है, जिस पर यह संचालित होता है, लेकिन सामान्यतः यह बैंडविड्थ, गुहा के क्यू कारक द्वारा निर्धारित होता है (फैब्री-पेरोट इंटरफेरोमीटर देखें), अंतर-मोड आवृत्ति पृथक्करण से बहुत अल्प है।


== मोड-लॉकिंग सिद्धांत ==
== मोड-लॉकिंग सिद्धांत ==


एक साधारण लेजर में, इनमें से प्रत्येक मोड स्वतंत्र रूप से दोलन करता है, एक दूसरे के बीच कोई निश्चित संबंध नहीं होता है, संक्षेप में स्वतंत्र लेजर के एक सेट की तरह, सभी थोड़ी अलग आवृत्तियों पर प्रकाश उत्सर्जित करते हैं। प्रत्येक मोड में प्रकाश तरंगों की अलग-अलग चरण (तरंगें) तय नहीं होती हैं और लेजर की सामग्री में थर्मल परिवर्तन जैसी चीजों के कारण यादृच्छिक रूप से भिन्न हो सकती हैं। केवल कुछ दोलन मोड वाले लेज़रों में, मोड के बीच हस्तक्षेप से लेज़र आउटपुट में बीट (ध्वनिकी) प्रभाव हो सकता है, जिससे तीव्रता में उतार-चढ़ाव हो सकता है; हजारों मोड वाले लेज़रों में, ये हस्तक्षेप प्रभाव लगभग स्थिर आउटपुट तीव्रता के औसत होते हैं।
सरल लेजर में, इनमें से प्रत्येक मोड स्वतंत्र रूप से एक दूसरे के बीच कोई निश्चित संबंध नहीं रखते हैं, संक्षेप में स्वतंत्र लेजर के एक समूह की तरह, सभी कुछ अलग आवृत्तियों पर प्रकाश उत्सर्जित करते हैं। प्रत्येक मोड में प्रकाश तरंगों का व्यक्तिगत चरण निर्धारित नहीं है और लेजर की सामग्री में थर्मल परिवर्तन जैसी चीजों के कारण यादृच्छिक रूप से भिन्न हो सकता है। केवल कुछ दोलन मोड के साथ लेजर में, मोड्स के बीच हस्तक्षेप लेजर आउटपुट में बीटिंग प्रभाव उत्पन्न कर सकता है, जिससे तीव्रता में उतार-चढ़ाव आता है, कई हजारों मोड के साथ लेजर में, ये हस्तक्षेप प्रभाव एक लगभग स्थिर आउटपुट तीव्रता का औसत करते हैं।


यदि स्वतंत्र रूप से दोलन करने के बजाय, प्रत्येक मोड इसके और अन्य मोड के बीच एक निश्चित चरण के साथ संचालित होता है, तो लेजर आउटपुट काफी भिन्न व्यवहार करता है। एक यादृच्छिक या निरंतर आउटपुट तीव्रता के बजाय, लेजर के मोड समय-समय पर एक दूसरे के साथ रचनात्मक रूप से हस्तक्षेप करेंगे, जिससे तीव्र विस्फोट या प्रकाश की नाड़ी उत्पन्न होगी। इस तरह के लेजर को मोड-लॉक या फेज-लॉक कहा जाता है। ये दालें समय के साथ अलग हो जाती हैं {{nowrap|''τ'' {{=}} 2''L''/''c''}}, जहां τ वह समय है जब प्रकाश लेज़र कैविटी का ठीक एक चक्कर लगाता है। यह समय लेजर के मोड स्पेसिंग के बराबर आवृत्ति से मेल खाता है, {{nowrap|Δ''ν'' {{=}} 1/''τ''}}.
यदि स्वतंत्र रूप से दोलन करने के बजाय, प्रत्येक मोड इसके और अन्य साधनों के बीच एक निश्चित चरण के साथ संचालित होता है, तो लेजर आउटपुट काफी अलग व्यवहार करता है। यादृच्छिक या निरंतर आउटपुट तीव्रता के बजाय, लेजर के मोड समय-समय पर एक दूसरे के साथ रचनात्मक रूप से हस्तक्षेप करेंगे, जो प्रकाश की तीव्र बर्स्ट या स्पंद का उत्पादन करेगा। ऐसे लेजर को मोड-लॉक या फेज-लॉक कहा जाता है। ये स्पन्द {{nowrap|''τ'' {{=}} 2''L''/''c''}} द्वारा समय में अलग होती हैं, जहां τ लेजर गुहा की बिल्कुल एक परिक्रमायुक्त यात्रा बनाने के लिए प्रकाश के लिए समय लिया जाता है। यह समय आवृत्ति से मेल खाता है जो वास्तव में लेजर की मोड स्पेसिंग {{nowrap|Δ''ν'' {{=}} 1/''τ''}} के बराबर होता है।


प्रकाश के प्रत्येक स्पंद की अवधि चरण में दोलन करने वाले मोड की संख्या से निर्धारित होती है (वास्तविक लेजर में, यह जरूरी नहीं है कि लेजर के सभी मोड चरण-लॉक हैं)। यदि आवृत्ति पृथक्करण Δν के साथ लॉक किए गए N मोड हैं, तो समग्र मोड-लॉक बैंडविड्थ NΔν है, और यह बैंडविड्थ जितना व्यापक होगा, लेजर से पल्स अवधि उतनी ही कम होगी। व्यवहार में, वास्तविक पल्स अवधि प्रत्येक पल्स के आकार से निर्धारित होती है, जो बदले में प्रत्येक अनुदैर्ध्य मोड के सटीक आयाम और चरण संबंध द्वारा निर्धारित होती है। उदाहरण के लिए, [[ गाऊसी समारोह ]] टेम्पोरल शेप वाले लेजर उत्पादक दालों के लिए, न्यूनतम संभव पल्स अवधि Δt द्वारा दी जाती है
प्रकाश के प्रत्येक स्पंद की अवधि चरण में दोलन करने वाले मोड की संख्या से निर्धारित होती है (वास्तविक लेजर में, यह आवश्यक नहीं है कि लेजर के सभी मोड चरण-लॉक हों)। यदि आवृत्ति पृथक्करण Δν के साथ लॉक किए गए N मोड हैं, तो समग्र मोड-लॉक बैंडविड्थ NΔν है, और यह बैंडविड्थ जितना व्यापक होगा, लेज़र से स्पंद अवधि उतनी ही कम होगी। अभ्यास में, वास्तविक स्पंद अवधि प्रत्येक स्पंद के आकार द्वारा निर्धारित की जाती है, जो बदले में प्रत्येक अनुदैर्ध्य मोड के सटीक आयाम और चरण संबंध द्वारा निर्धारित होती है। उदाहरण के लिए, गॉसियन टेम्पोरल आकार के साथ स्पन्दों का उत्पादन करने वाले लेजर के लिए, न्यूनतम संभव स्पंद अवधि Δt द्वारा दी गई है


: <math>\Delta t = \frac{0.441}{N \, \Delta\nu}.</math>
: <math>\Delta t = \frac{0.441}{N \, \Delta\nu}.</math>
मूल्य 0.441 को बैंडविड्थ-सीमित पल्स के रूप में जाना जाता है। पल्स के समय-बैंडविड्थ उत्पाद और पल्स आकार के आधार पर भिन्न होता है। [[अल्ट्राशॉर्ट पल्स]] लेज़रों के लिए, एक [[अतिशयोक्तिपूर्ण समारोह]]|हाइपरबोलिक-सेकेंट-स्क्वेर्ड (सेक<sup>2</sup>) स्पंद के आकार को अक्सर मान लिया जाता है, जिससे 0.315 का समय-बैंडविड्थ उत्पाद मिलता है।
मूल्य 0.441 को स्पंद के "टाइम-बैंडविड्थ उत्पाद" के रूप में जाना जाता है और स्पंद आकार के आधार पर भिन्न होता है। [[अल्ट्राशॉर्ट पल्स|अल्ट्राशॉर्ट स्पंद]] लेज़रों के लिए, हाइपरबोलिक-सेकेंट-स्क्वायर (सेक<sup>2</sup>) स्पन्द आकार प्रायः ग्रहण किया जाता है, जिससे 0.315 का टाइम-बैंडविड्थ उत्पाद मिलता है।


इस समीकरण का उपयोग करते हुए, न्यूनतम पल्स अवधि की गणना मापी गई लेजर स्पेक्ट्रल चौड़ाई के अनुरूप की जा सकती है। 1.5 GHz बैंडविड्थ वाले HeNe लेज़र के लिए, इस स्पेक्ट्रल चौड़ाई के अनुरूप सबसे छोटा गॉसियन पल्स लगभग 300 पिकोसेकंड होगा; 128 THz बैंडविड्थ Ti:sapphire लेज़र के लिए, यह स्पेक्ट्रल चौड़ाई केवल 3.4 femtoseconds अवधि के स्पंद के अनुरूप होगी। ये मान लेज़र की बैंडविड्थ के अनुरूप कम से कम संभव गॉसियन दालों का प्रतिनिधित्व करते हैं; एक वास्तविक मोड-लॉक लेजर में, वास्तविक पल्स अवधि कई अन्य कारकों पर निर्भर करती है, जैसे कि वास्तविक पल्स आकार और कैविटी का समग्र फैलाव (ऑप्टिक्स)।
इस समीकरण का उपयोग करते हुए, मापी गई लेज़र वर्णक्रमीय चौड़ाई के साथ न्यूनतम स्पंद अवधि की गणना लगातार की जा सकती है। 1.5 गीगाहर्ट्ज बैंडविड्थ वाले HeNe लेज़र के लिए, इस वर्णक्रमीय चौड़ाई के अनुरूप सबसे अल्प गाऊसी स्पंद लगभग 300 पिकोसेकंड होगा; 128 टेरा हर्ट्ज़ बैंडविथ टाइटेनियम: नीलम लेज़र के लिए, यह वर्णक्रमीय चौड़ाई केवल 3.4 फेमटोसेकंड अवधि के पल्स के अनुरूप होगी। ये मान लेज़र की बैंडविड्थ के अनुरूप कम से कम संभव गाऊसी स्पंदन का प्रतिनिधित्व करते हैं; एक वास्तविक मोड-लॉक लेजर में, वास्तविक स्पन्द अवधि कई अन्य कारकों पर निर्भर करती है, जैसे कि समग्र स्पन्द आकार और गहा के समग्र फैलाव।


बाद के मॉड्यूलेशन, सिद्धांत रूप में, इस तरह के लेजर की पल्स चौड़ाई को और कम कर सकते हैं; हालाँकि, मापी गई वर्णक्रमीय चौड़ाई तब समान रूप से बढ़ाई जाएगी।
बाद में मॉडुलन, सिद्धांत रूप में, इस तरह के लेजर की पल्स चौड़ाई को कम कर सकता है, हालांकि, मापी गई वर्णक्रमीय चौड़ाई को तदनुसार बढ़ाया जाएगा।


=== चरण और मोड लॉकिंग का सिद्धांत। ===
=== चरण और मोड-लॉकिंग का सिद्धांत ===
फ्रीक्वेंसी लॉक करने के कई तरीके हैं लेकिन मूल सिद्धांत वही है जो लेजर सिस्टम के फीडबैक लूप पर आधारित है। फीडबैक लूप का प्रारंभिक बिंदु वह मात्रा है जिसे हमें स्थिर करने की आवश्यकता होती है, अर्थात आवृत्ति या चरण। यह जांचने के लिए कि आवृत्ति समय के साथ बदलती है या नहीं, एक संदर्भ की आवश्यकता होगी। लेजर आवृत्ति को मापने के लिए इसे ऑप्टिकल गुहा की ज्यामितीय संपत्ति से जोड़ना है। Fabry-Pérot व्यतिकरणमापी|Fabry- Perot गुहिका का सबसे अधिक उपयोग इस उद्देश्य के लिए किया जाता है। इसमें दो समानांतर दर्पण होते हैं जो कुछ दूरी से अलग होते हैं। यह विधि इस तथ्य पर आधारित है कि प्रकाश प्रतिध्वनित हो सकता है और केवल तभी प्रसारित किया जा सकता है जब एकल दौर यात्रा की ऑप्टिकल पथ लंबाई प्रकाश की तरंग दैर्ध्य का एक अभिन्न गुणक हो। इस स्थिति से लेजर आवृत्ति का विचलन आवृत्ति संचरण को कम करेगा। ट्रांसमिशन और फ़्रीक्वेंसी विचलन के बीच का संबंध एक [[लोरेंट्ज़ियन फ़ंक्शन]] द्वारा दिया गया है जिसमें पूरी चौड़ाई आधी अधिकतम लाइन चौड़ाई<br> है
आवृत्ति को लॉक करने के कई तरीके हैं लेकिन मूल सिद्धांत वही है जो लेजर सिस्टम के फीडबैक लूप पर आधारित है। फीडबैक लूप का प्रारंभिक बिंदु वह मात्रा है जिसे हमें स्थिर करने की आवश्यकता है। आवृत्ति या चरण। यह जांचने के लिए कि क्या आवृत्ति समय के साथ बदलती है या नहीं, एक संदर्भ की आवश्यकता होगी। लेजर आवृत्ति को मापने के लिए इसे ऑप्टिकल गुहा की ज्यामितीय संपत्ति के साथ जोड़ना है। फेब्री-पेरोट गुहा का प्रयोग इस प्रयोजन के लिए किया जाता है। इसमें दो समानांतर दर्पण होते हैं जो कुछ दूरी से अलग होते हैं। यह विधि इस तथ्य पर आधारित है कि प्रकाश प्रतिध्वनित हो सकता है और केवल तभी संचारित किया जा सकता है जब एकल राउंड ट्रिप की ऑप्टिकल पथ लंबाई प्रकाश की तरंग दैर्ध्य का एक अभिन्न गुण है। इस स्थिति से लेजर आवृत्ति का विचलन आवृत्ति संचरण को कम करेगा। संचरण और आवृत्ति विचलन के बीच संबंध पूर्ण चौड़ाई के साथ [[लोरेंट्ज़ियन फ़ंक्शन]] द्वारा दिया जाता है।
 
                                                ∆ν<sub>C</sub>=∆ν<sub>FSR</sub>/ℱ
∆ν<sub>C</sub>=∆ν<sub>FSR</sub>/ℱ


जहां ∆ν<sub>FSR</sub>=C/2L आसन्न अनुनादों के बीच आवृत्ति अंतर है और ℱ फेब्री-पेरोट इंटरफेरोमीटर है, ℱ = πR<sup>½</sup>/(1-आर). R दर्पणों की परावर्तकता है। जैसा कि समीकरण से स्पष्ट है, एक छोटी गुहा रेखा चौड़ाई प्राप्त करने के लिए, दर्पणों में उच्च परावर्तकता होनी चाहिए। इसलिए लेजर की लाइन चौड़ाई को न्यूनतम सीमा तक कम करने के लिए, एक उच्च चालाकी गुहा की आवश्यकता होती है।
जहां ∆ν<sub>FSR</sub>=C/2L आसन्न प्रतिध्वनि के बीच आवृत्ति अंतर है और ℱ सूक्ष्मता है, ℱ = πR<sup>½</sup>/(1-R) R दर्पणों की परावर्तनता है। जैसा कि समीकरण से स्पष्ट है, एक छोटी कैविटी लाइन चौड़ाई प्राप्त करने के लिए, दर्पणों में उच्च परावर्तन होना चाहिए। इसलिए लेजर की लाइन चौड़ाई को न्यूनतम सीमा तक कम करने के लिए, एक उच्च सूक्ष्म गुहा की आवश्यकता होती है।


== मोड-लॉकिंग तरीके ==
== मोड-लॉकिंग तरीके ==


लेजर में मोड लॉकिंग के उत्पादन के तरीकों को या तो सक्रिय या निष्क्रिय के रूप में वर्गीकृत किया जा सकता है। सक्रिय तरीकों में आमतौर पर इंट्राकैविटी लाइट के [[ मॉडुलन ]] को प्रेरित करने के लिए बाहरी सिग्नल का उपयोग करना शामिल होता है। निष्क्रिय तरीके बाहरी संकेत का उपयोग नहीं करते हैं, लेकिन कुछ तत्व को लेजर गुहा में रखने पर भरोसा करते हैं जो प्रकाश के स्व-मॉड्यूलेशन का कारण बनता है।
लेजर में मोड-लॉकिंग के उत्पादन के तरीके को या तो "सक्रिय" या "निष्क्रिय" के रूप में वर्गीकृत किया जा सकता है। सक्रिय विधियों में सामान्यतः अंतःगुहा प्रकाश के मॉड्यूलेशन को प्रेरित करने के लिए बाहरी सिग्नल का उपयोग करना सम्मिलित होता है। निष्क्रिय तरीके बाहरी संकेत का उपयोग नहीं करते हैं, लेकिन कुछ तत्व को लेजर गुहा में रखने पर भरोसा करते हैं जो प्रकाश के स्व-मॉड्यूलेशन का कारण बनता है।


=== सक्रिय मोड लॉकिंग ===
=== सक्रिय मोड लॉकिंग ===


सबसे आम सक्रिय मोड-लॉकिंग तकनीक एक स्थायी तरंग [[इलेक्ट्रो-ऑप्टिक न्यूनाधिक]] को लेजर गुहा में रखती है। जब एक विद्युत संकेत के साथ संचालित किया जाता है, तो यह गुहा में प्रकाश के साइनसॉइडल आयाम मॉडुलन का उत्पादन करता है। फ़्रीक्वेंसी डोमेन में इसे ध्यान में रखते हुए, यदि किसी मोड में ऑप्टिकल फ़्रीक्वेंसी ν है और फ़्रीक्वेंसी f पर आयाम-संशोधित है, तो परिणामी सिग्नल में ऑप्टिकल फ़्रीक्वेंसी पर [[साइडबैंड]] होते हैं {{nowrap|''ν'' − ''f''}} और {{nowrap|''ν'' + ''f''}}. यदि न्यूनाधिक को कैविटी मोड स्पेसिंग Δν के समान आवृत्ति पर संचालित किया जाता है, तो ये साइडबैंड मूल मोड से सटे दो कैविटी मोड के अनुरूप होते हैं। चूंकि साइडबैंड चरण में संचालित होते हैं, केंद्रीय मोड और आसन्न मोड एक साथ चरण-लॉक हो जाएंगे। साइडबैंड पर न्यूनाधिक के आगे के संचालन से चरण लॉकिंग का उत्पादन होता है {{nowrap|''ν'' − 2''f''}} और {{nowrap|''ν'' + 2''f''}} मोड, और इसी तरह जब तक कि गेन बैंडविड्थ के सभी मोड लॉक नहीं हो जाते। जैसा कि ऊपर कहा गया है, विशिष्ट लेज़र मल्टी-मोड हैं और रूट मोड द्वारा सीड नहीं किए गए हैं। तो किस चरण का उपयोग करना है, इसके लिए कई तरीकों से काम करने की आवश्यकता है। इस लॉकिंग के साथ एक निष्क्रिय गुहा में, मूल स्वतंत्र चरणों द्वारा दी गई एन्ट्रॉपी को डंप करने का कोई तरीका नहीं है। इस लॉकिंग को एक युग्मन के रूप में बेहतर वर्णित किया गया है, जिससे एक जटिल व्यवहार होता है और स्वच्छ दालें नहीं होती हैं। आयाम मॉडुलन की विघटनकारी प्रकृति के कारण युग्मन केवल विघटनकारी है। अन्यथा, चरण मॉडुलन काम नहीं करेगा।
सबसे साधारण सक्रिय मोड-लॉकिंग तकनीक एक स्थायी तरंग [[इलेक्ट्रो-ऑप्टिक न्यूनाधिक]] को लेजर गुहा में रखती है। जब विद्युत संकेत के साथ संचालित किया जाता है, तो यह गुहा में प्रकाश के साइनसॉइडल आयाम मॉडुलन का उत्पादन करता है। आवृत्ति डोमेन में इसे ध्यान में रखते हुए, यदि किसी मोड में ऑप्टिकल आवृत्ति ν है और आवृत्ति f पर आयाम-संशोधित है, तो परिणामी सिग्नल में ऑप्टिकल आवृत्ति पर [[साइडबैंड]] होते हैं {{nowrap|''ν'' − ''f''}} और {{nowrap|''ν'' + ''f''}}. यदि न्यूनाधिक को कैविटी मोड स्पेसिंग Δν के समान आवृत्ति पर संचालित किया जाता है, तो ये साइडबैंड मूल मोड से सटे दो कैविटी मोड के अनुरूप होते हैं। चूंकि साइडबैंड चरण में संचालित होते हैं, केंद्रीय मोड और आसन्न मोड एक साथ चरण-लॉक हो जाएंगे। साइडबैंड पर न्यूनाधिक के आगे के संचालन से चरण लॉकिंग का उत्पादन होता है {{nowrap|''ν'' − 2''f''}} और {{nowrap|''ν'' + 2''f''}} मोड, और इसी तरह जब तक कि गेन बैंडविड्थ के सभी मोड लॉक नहीं हो जाते। जैसा कि ऊपर कहा गया है, विशिष्ट लेज़र मल्टी-मोड हैं और रूट मोड द्वारा सीड नहीं किए गए हैं। तो किस चरण का उपयोग करना है, इसके लिए कई तरीकों से काम करने की आवश्यकता है। इस लॉकिंग के साथ एक निष्क्रिय गुहा में, मूल स्वतंत्र चरणों द्वारा दी गई एन्ट्रॉपी को डंप करने का कोई तरीका नहीं है। इस लॉकिंग को एक युग्मन के रूप में बेहतर वर्णित किया गया है, जिससे जटिल व्यवहार होता है और स्वच्छ स्पन्द नहीं होती हैं। युग्मन केवल आयाम मॉडुलन की विघटनकारी प्रकृति के कारण विघटनकारी है। अन्यथा, चरण मॉडुलन काम नहीं करेगा।


इस प्रक्रिया को टाइम डोमेन में भी माना जा सकता है। आयाम न्यूनाधिक गुहा के दर्पणों के बीच उछलते हुए प्रकाश के लिए एक कमजोर शटर के रूप में कार्य करता है, जब यह बंद होता है और जब यह खुला होता है तो प्रकाश को क्षीण कर देता है। यदि मॉडुलन दर f को कैविटी राउंड-ट्रिप टाइम τ के साथ सिंक्रोनाइज़ किया जाता है, तो प्रकाश की एक पल्स कैविटी में आगे और पीछे उछलेगी। मॉड्यूलेशन की वास्तविक ताकत का बड़ा होना जरूरी नहीं है; एक न्यूनाधिक जो बंद होने पर 1% प्रकाश को क्षीण करता है, एक लेज़र को मोड-लॉक कर देगा, क्योंकि प्रकाश के उसी हिस्से को बार-बार क्षीण किया जाता है क्योंकि यह गुहा को पार करता है।
इस प्रक्रिया को टाइम डोमेन में भी माना जा सकता है। आयाम न्यूनाधिक गुहा के दर्पणों के बीच उछलते हुए प्रकाश के लिए एक कमजोर शटर के रूप में कार्य करता है, जब यह बंद होता है और जब यह खुला होता है तो प्रकाश को क्षीण कर देता है। यदि मॉडुलन दर f को गुहा दौर-यात्रा का समय τ के साथ सिंक्रोनाइज़ किया जाता है, तो प्रकाश की एक स्पंद कैविटी में आगे और पीछे उछलेगी। मॉड्यूलेशन की वास्तविक ताकत का बड़ा होना जरूरी नहीं है; न्यूनाधिक जो बंद होने पर 1% प्रकाश को क्षीण करता है, लेज़र को मोड-लॉक कर देगा, क्योंकि प्रकाश के उसी हिस्से को बार-बार क्षीण किया जाता है क्योंकि यह गुहा को पार करता है।


इस आयाम मॉडुलन (एएम) से संबंधित, सक्रिय मोड लॉकिंग [[ आवृति का उतार - चढ़ाव ]] (एफएम) मोड लॉकिंग है, जो [[ध्वनिक-ऑप्टिक प्रभाव]] के आधार पर एक न्यूनाधिक डिवाइस का उपयोग करता है। यह उपकरण, जब एक लेज़र कैविटी में रखा जाता है और एक विद्युत संकेत के साथ संचालित होता है, तो इसके माध्यम से गुजरने वाले प्रकाश में एक छोटा, साइनसोइडली अलग-अलग फ़्रीक्वेंसी शिफ्ट को प्रेरित करता है। यदि मॉड्यूलेशन की आवृत्ति गुहा के गोल-यात्रा समय से मेल खाती है, तो गुहा में कुछ प्रकाश आवृत्ति में बार-बार उतार-चढ़ाव और कुछ बार-बार नीचे की ओर देखता है। कई पुनरावृत्तियों के बाद, अपशिफ्ट और डाउनशिफ्टेड प्रकाश लेज़र के लाभ बैंडविड्थ से बह जाता है। अप्रभावित एकमात्र प्रकाश वह है जो प्रेरित आवृत्ति शिफ्ट शून्य होने पर न्यूनाधिक से होकर गुजरता है, जो प्रकाश की एक संकीर्ण नाड़ी बनाता है।
इस आयाम मॉडुलन (एएम) से संबंधित, सक्रिय मोड लॉकिंग फ्रीक्वेंसी-मॉड्यूलेशन (एफएम) मोड-लॉकिंग है, जो ध्वनिक-ऑप्टिक प्रभाव के आधार पर एक न्यूनाधिक उपकरण का उपयोग करता है। यह उपकरण, जब लेज़र कैविटी में रखा जाता है और विद्युत संकेत के साथ संचालित होता है, तो इसके माध्यम से गुजरने वाले प्रकाश में अल्प, साइनसोइडली भिन्न आवृत्ति बदलाव लाता है। यदि मॉड्यूलेशन की आवृत्ति गुहा के राउंड-ट्रिप समय से मेल खाती है, तो गुहा में कुछ प्रकाश आवृत्ति में बार-बार ऊपर की ओर और कुछ बार-बार नीचे की ओर देखता है। कई पुनरावृत्तियों के बाद, अपशिफ्ट और डाउनशिफ्टेड प्रकाश लेसर के लाभ बैंडविड्थ से बाहर हो जाता है। अप्रभावित एकमात्र प्रकाश वह है जो प्रेरित आवृत्ति बदलाव के शून्य होने पर न्यूनाधिक से होकर गुजरता है, जो प्रकाश की संकीर्ण स्पन्द बनाता है।


सक्रिय मोड लॉकिंग का तीसरा तरीका सिंक्रोनस मोड लॉकिंग या सिंक्रोनस पंपिंग है। इसमें लेजर के लिए पंप स्रोत (ऊर्जा स्रोत) स्वयं संशोधित होता है, प्रभावी रूप से लेजर को दालों के उत्पादन के लिए चालू और बंद कर देता है। आमतौर पर, पंप स्रोत ही एक अन्य मोड-लॉक लेजर है। इस तकनीक के लिए पंप लेज़र और संचालित लेज़र की कैविटी लंबाई के सटीक मिलान की आवश्यकता होती है।
सक्रिय मोड लॉकिंग का तीसरा तरीका सिंक्रोनस मोड लॉकिंग या सिंक्रोनस पंपिंग है। इसमें, लेजर के लिए पंप स्रोत (ऊर्जा स्रोत) स्वयं संशोधित होता है, प्रभावी रूप से लेजर को चालू और बंद करके स्पन्दों का उत्पादन करता है। विशिष्ट रूप से, पंप स्रोत एक अन्य मोड-लॉक्ड लेजर है। इस तकनीक के लिए पंप लेजर और चालित लेजर की गुहा की लंबाई का सटीक मिलान करना आवश्यक है।


=== निष्क्रिय मोड लॉकिंग ===
=== निष्क्रिय मोड लॉकिंग ===


निष्क्रिय मोड-लॉकिंग तकनीकें वे हैं जिन्हें दालों का उत्पादन करने के लिए लेजर के बाहरी सिग्नल (जैसे मॉड्यूलेटर के ड्राइविंग सिग्नल) की आवश्यकता नहीं होती है। बल्कि, वे गुहा में प्रकाश का उपयोग कुछ इंट्राकैविटी तत्व में परिवर्तन का कारण बनते हैं, जो तब इंट्राकैविटी प्रकाश में परिवर्तन का उत्पादन करेगा। इसे प्राप्त करने के लिए आमतौर पर इस्तेमाल किया जाने वाला उपकरण एक [[संतृप्त अवशोषक]] है।
निष्क्रिय मोड-लॉकिंग तकनीकें वे हैं जिन्हें स्पन्दों का उत्पादन करने के लिए लेजर (जैसे मॉड्यूलेटर के ड्राइविंग सिग्नल) के लिए बाहरी सिग्नल की आवश्यकता नहीं होती है। बल्कि, वे गुहा में प्रकाश का उपयोग कुछ इंट्राकैविटी तत्व में परिवर्तन का कारण बनते हैं, जो तब इंट्राकैविटी प्रकाश में परिवर्तन का उत्पादन करेगा। इसे प्राप्त करने के लिए एक सामान्य रूप से उपयोग किया जाने वाला उपकरण [[संतृप्त अवशोषक]] है।


एक संतृप्त अवशोषक एक ऑप्टिकल डिवाइस है जो एक तीव्रता-निर्भर संचरण प्रदर्शित करता है, जिसका अर्थ है कि डिवाइस इसके माध्यम से गुजरने वाले प्रकाश की तीव्रता के आधार पर अलग-अलग व्यवहार करता है। निष्क्रिय मोड लॉकिंग के लिए, आदर्श रूप से एक संतृप्त अवशोषक चुनिंदा रूप से कम तीव्रता वाले प्रकाश को अवशोषित करता है, लेकिन पर्याप्त उच्च तीव्रता के प्रकाश को प्रसारित करता है। जब एक लेज़र कैविटी में रखा जाता है, तो एक संतृप्त अवशोषक कम-तीव्रता वाली स्थिर-तरंग प्रकाश (पल्स विंग्स) को क्षीण कर देता है। हालांकि, अन-मोड-लॉक लेजर द्वारा अनुभव किए गए कुछ यादृच्छिक तीव्रता के उतार-चढ़ाव के कारण, किसी भी यादृच्छिक, तीव्र स्पाइक को संतृप्त अवशोषक द्वारा अधिमानतः प्रेषित किया जाता है। जैसा कि गुहा में प्रकाश दोलन करता है, यह प्रक्रिया दोहराती है, जिससे उच्च तीव्रता वाले स्पाइक्स के चयनात्मक प्रवर्धन और कम तीव्रता वाले प्रकाश का अवशोषण होता है। कई दौर की यात्राओं के बाद, यह पल्स की एक ट्रेन और लेजर के मोड लॉकिंग की ओर जाता है।
संतृप्त अवशोषक ऑप्टिकल उपकरण है जो एक तीव्रता-निर्भर संचरण प्रदर्शित करता है, जिसका अर्थ है कि उपकरण इसके माध्यम से प्रकाश की तीव्रता के आधार पर अलग-अलग व्यवहार करता है। निष्क्रिय मोड लॉकिंग के लिए, आदर्श रूप से एक संतृप्त अवशोषक चुनिंदा कम तीव्रता वाले प्रकाश को अवशोषित करता है, लेकिन पर्याप्त उच्च तीव्रता के प्रकाश को प्रसारित करता है। जब लेज़र कैविटी में रखा जाता है, तो संतृप्त अवशोषक कम-तीव्रता वाली स्थिर-तरंग प्रकाश (पल्स विंग्स) को क्षीण कर देता है। हालांकि, अन-मोड-लॉक लेजर द्वारा अनुभव किए जाने वाले कुछ यादृच्छिक तीव्रता के उतार-चढ़ाव के कारण, किसी भी यादृच्छिक, तीव्र स्पाइक को संतृप्त अवशोषक द्वारा अधिमानतः प्रेषित किया जाता है। चूंकि गुहा में प्रकाश दोलन करता है, यह प्रक्रिया दोहराती है, जिससे उच्च-तीव्रता वाले स्पाइक्स के चयनात्मक प्रवर्धन और कम-तीव्रता वाले प्रकाश का अवशोषण होता है। कई चक्कर लगाने के बाद, यह पल्स की ट्रेन और लेजर के मोड लॉकिंग की ओर जाता है।


फ़्रीक्वेंसी डोमेन में इसे ध्यान में रखते हुए, यदि किसी मोड में ऑप्टिकल फ़्रीक्वेंसी ν है और फ़्रीक्वेंसी nf पर आयाम-संशोधित है, तो परिणामी सिग्नल में ऑप्टिकल फ़्रीक्वेंसी पर साइडबैंड होते हैं {{nowrap|''ν'' − ''nf''}} और {{nowrap|''ν'' + ''nf''}} और सक्रिय मोड लॉकिंग की तुलना में छोटी दालों और अधिक स्थिरता के लिए अधिक मजबूत मोड लॉकिंग को सक्षम करता है, लेकिन इसमें स्टार्टअप समस्याएं हैं।
फ़्रीक्वेंसी डोमेन में इसे ध्यान में रखते हुए, यदि किसी मोड में ऑप्टिकल फ़्रीक्वेंसी ν है और फ़्रीक्वेंसी nf पर आयाम-संशोधित है, तो परिणामी सिग्नल में ऑप्टिकल फ़्रीक्वेंसी {{nowrap|''ν'' − ''nf''}} और {{nowrap|''ν'' + ''nf''}} पर साइडबैंड होते हैं और छोटी स्पन्दों और अधिक के लिए बहुत मजबूत मोड लॉकिंग को सक्षम करते हैं। सक्रिय मोड लॉकिंग की तुलना में स्थिरता, लेकिन इसमें स्टार्टअप समस्याएं हैं।


संतृप्त अवशोषक आमतौर पर तरल कार्बनिक रसायन रंजक होते हैं, लेकिन इन्हें डोप्ड [[क्रिस्टल]] और [[ अर्धचालक ]] से भी बनाया जा सकता है। सेमीकंडक्टर अवशोषक बहुत तेजी से प्रतिक्रिया समय (~ 100 fs) प्रदर्शित करते हैं, जो उन कारकों में से एक है जो दालों की अंतिम अवधि को एक निष्क्रिय मोड-लॉक लेजर में निर्धारित करता है। एक कोलाइडिंग-पल्स मोड-लॉक लेजर में अवशोषक अग्रणी किनारे को स्थिर करता है, जबकि लेज़िंग माध्यम पल्स के अनुगामी किनारे को स्थिर करता है।
संतृप्त अवशोषक सामान्यतः तरल कार्बनिक रंग होते हैं, लेकिन इन्हें डोप किए गए [[क्रिस्टल]] और अर्धचालकों से भी बनाया जा सकता है। सेमीकंडक्टर अवशोषक बहुत तेजी से प्रतिक्रिया समय (~ 100 fs) प्रदर्शित करते हैं, जो उन कारकों में से एक है जो स्पन्दों की अंतिम अवधि को एक निष्क्रिय मोड-लॉक लेजर में निर्धारित करता है। कोलाइडिंग-पल्स मोड-लॉक लेजर में अवशोषक अग्रणी किनारे को स्थिर करता है, जबकि लेज़िंग माध्यम नाड़ी के अनुगामी किनारे को खड़ा करता है।


निष्क्रिय मोड-लॉकिंग योजनाएं भी हैं जो उन सामग्रियों पर निर्भर नहीं करती हैं जो सीधे तीव्रता-निर्भर अवशोषण प्रदर्शित करती हैं। इन विधियों में, इंट्राकैविटी घटकों में [[ गैर रेखीय प्रकाशिकी ]] प्रभाव का उपयोग गुहा में उच्च तीव्रता वाले प्रकाश को चुनिंदा रूप से बढ़ाने और कम तीव्रता वाले प्रकाश के क्षीणन की एक विधि प्रदान करने के लिए किया जाता है। सबसे सफल योजनाओं में से एक को [[केर-लेंस मोड लॉकिंग]] (केएलएम) कहा जाता है, जिसे कभी-कभी सेल्फ-मोड-लॉकिंग भी कहा जाता है। यह एक गैर-रैखिक ऑप्टिकल प्रक्रिया, ऑप्टिकल [[केर प्रभाव]] का उपयोग करता है, जिसके परिणामस्वरूप उच्च-तीव्रता वाले प्रकाश को कम-तीव्रता वाले प्रकाश से अलग तरीके से फोकस किया जाता है। लेजर कैविटी में एपर्चर की सावधानीपूर्वक व्यवस्था करके, इस प्रभाव का उपयोग अल्ट्रा-फास्ट रिस्पॉन्स-टाइम सैचुरेबल अवशोषक के बराबर उत्पादन करने के लिए किया जा सकता है।
ऐसी निष्क्रिय मोड-लॉकिंग योजनाएँ भी हैं जो उन सामग्रियों पर निर्भर नहीं करती हैं जो सीधे तीव्रता-निर्भर अवशोषण प्रदर्शित करती हैं। इन विधियों में, इंट्राकैविटी घटकों में [[ गैर रेखीय प्रकाशिकी |गैर रेखीय प्रकाशिकी]] प्रभाव का उपयोग गुहा में उच्च तीव्रता वाले प्रकाश को चुनिंदा रूप से बढ़ाने और कम तीव्रता वाले प्रकाश के क्षीणन की एक विधि प्रदान करने के लिए किया जाता है। सबसे सफल योजनाओं में से [[केर-लेंस मोड लॉकिंग]] (केएलएम) कहलाती है, जिसे कभी-कभी "सेल्फ-मोड-लॉकिंग" भी कहा जाता है। यह एक गैर-रैखिक ऑप्टिकल प्रक्रिया, ऑप्टिकल [[केर प्रभाव]] का उपयोग करता है, जिसके परिणामस्वरूप उच्च-तीव्रता वाले प्रकाश को कम-तीव्रता वाले प्रकाश से भिन्न रूप से फोकस किया जाता है। लेजर कैविटी में एपर्चर की सावधानीपूर्वक व्यवस्था करके, इस प्रभाव का उपयोग अल्ट्रा-फास्ट रिस्पांस-टाइम संतृप्त अवशोषक के बराबर उत्पादन के लिए किया जा सकता है।


=== हाइब्रिड मॉडलिंग ===
=== हाइब्रिड मॉडलिंग ===


कुछ अर्धचालक लेज़रों में उपरोक्त दो तकनीकों के संयोजन का उपयोग किया जा सकता है। एक संतृप्त अवशोषक के साथ एक लेजर का उपयोग करना और उसी आवृत्ति पर विद्युत इंजेक्शन को संशोधित करना जिस पर लेजर बंद है, लेजर को विद्युत इंजेक्शन द्वारा स्थिर किया जा सकता है। इससे लेज़र के चरण शोर को स्थिर करने का लाभ होता है और यह लेज़र से दालों के समय के झटके को कम कर सकता है।
कुछ अर्धचालक लेज़रों में उपरोक्त दो तकनीकों के संयोजन का उपयोग किया जा सकता है। संतृप्त अवशोषक के साथ एक लेज़र का उपयोग करना और उसी आवृत्ति पर विद्युत इंजेक्शन को संशोधित करना जिस पर लेज़र लॉक होता है, लेज़र को विद्युत इंजेक्शन द्वारा स्थिर किया जा सकता है। इससे लेजर के चरण शोर को स्थिर करने का लाभ होता है और लेजर से स्पन्दों के समय के घबराहट को कम कर सकता है।


=== अवशिष्ट गुहा क्षेत्रों द्वारा मोड लॉकिंग ===
=== अवशिष्ट गुहा क्षेत्रों द्वारा मोड लॉकिंग ===


बाद के लेजर दालों के बीच सुसंगत चरण-सूचना हस्तांतरण को [[नैनोवायर लेजर]] से भी देखा गया है। यहां, गुहा में सुसंगत [[रबी दोलन]]ों के अवशिष्ट फोटॉन क्षेत्र में चरण की जानकारी संग्रहीत की गई है। इस तरह के निष्कर्ष चिप-स्केल फोटोनिक सर्किट और अनुप्रयोगों जैसे ऑन-चिप रैमसे कंघी स्पेक्ट्रोस्कोपी पर एकीकृत प्रकाश स्रोतों के चरण लॉकिंग का रास्ता खोलते हैं।<ref name="nwpl">Mayer, B., et al. [https://www.nature.com/articles/ncomms15521 "Long-term mutual phase locking of picosecond pulse pairs generated by a semiconductor nanowire laser"]. Nature Communications 8 (2017): 15521.</ref>
बाद के लेजर स्पन्दों के बीच सुसंगत चरण-सूचना हस्तांतरण भी [[नैनोवायर लेजर]] से देखा गया है। यहां, चरण की जानकारी गुहा में सुसंगत रबी दोलनों के अवशिष्ट फोटॉन क्षेत्र में संग्रहीत की गई है। इस तरह के निष्कर्ष चिप-स्केल फोटोनिक सर्किट और अनुप्रयोगों जैसे ऑन-चिप रैमसे कॉम्ब स्पेक्ट्रोस्कोपी में एकीकृत प्रकाश स्रोतों के चरण लॉकिंग का रास्ता खोलते हैं।<ref name="nwpl">Mayer, B., et al. [https://www.nature.com/articles/ncomms15521 "Long-term mutual phase locking of picosecond pulse pairs generated by a semiconductor nanowire laser"]. Nature Communications 8 (2017): 15521.</ref>
 


=== फूरियर-डोमेन मोड लॉकिंग ===
=== फूरियर-डोमेन मोड लॉकिंग ===
{{main|Fourier domain mode locking}}
{{main|फूरियर डोमेन मोड लॉकिंग}}


फूरियर-डोमेन मोड लॉकिंग (FDML) एक लेज़र मोड-लॉकिंग तकनीक है जो एक सतत-तरंग, वेवलेंथ-स्वेप्ट लाइट आउटपुट बनाती है।<ref name="FDML">R. Huber, M. Wojtkowski, J. G. Fujimoto, [http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-8-3225 "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography"], Opt. Express 14, 3225–3237 (2006).</ref> FDML लेसरों के लिए एक मुख्य अनुप्रयोग [[ऑप्टिकल कोहरेन्स टोमोग्राफी]] है।
फूरियर-डोमैन मोड लॉकिंग (एफडीएमएल) एक लेजर मोड-लॉकिंग तकनीक है जो लगातार तरंगदैर्घ्य, तरंगदैर्घ्य-स्वेप्ट प्रकाश आउटपुट का निर्माण करती है।<ref name="FDML">R. Huber, M. Wojtkowski, J. G. Fujimoto, [http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-8-3225 "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography"], Opt. Express 14, 3225–3237 (2006).</ref> एफडीएमएल लेजर के लिए एक मुख्य अनुप्रयोग ऑप्टिकल सुसंगत टोमोग्राफी है।


== प्रैक्टिकल मोड-लॉक लेजर ==
== प्रैक्टिकल मोड-लॉक लेजर ==


व्यवहार में, कई डिज़ाइन विचार एक मोड-लॉक लेजर के प्रदर्शन को प्रभावित करते हैं। सबसे महत्वपूर्ण लेजर के ऑप्टिकल अनुनादक के समग्र फैलाव (ऑप्टिक्स) हैं, जिन्हें [[प्रिज्म कंप्रेसर]] या गुहा में रखे कुछ फैलाने वाले दर्पणों और ऑप्टिकल [[नॉनलाइनियर सिस्टम]] के साथ नियंत्रित किया जा सकता है। अत्यधिक शुद्ध समूह वेग फैलाव # लेजर गुहा के समूह विलंब फैलाव (GDD) के लिए, गुहा मोड के चरण (तरंगों) को एक बड़े बैंडविड्थ पर लॉक नहीं किया जा सकता है, और बहुत कम दालों को प्राप्त करना मुश्किल होगा। केर प्रभाव के साथ नकारात्मक (विषम) नेट जीडीडी के उपयुक्त संयोजन के लिए, [[सॉलिटन]] जैसी बातचीत मोड लॉकिंग को स्थिर कर सकती है और छोटी दालों को उत्पन्न करने में मदद कर सकती है। सबसे कम संभव पल्स अवधि आमतौर पर या तो शून्य फैलाव (गैर-रैखिकता के बिना) या कुछ थोड़ा नकारात्मक (विषम) फैलाव (सॉलिटॉन तंत्र का शोषण) के लिए पूरा किया जाता है।
व्यवहार में, कई डिज़ाइन संबंधी विचार मोड-लॉक्ड लेज़र के प्रदर्शन को प्रभावित करते हैं। सबसे महत्वपूर्ण लेजर के ऑप्टिकल अनुनादक का समग्र फैलाव है, जिसे [[प्रिज्म कंप्रेसर]] या गुहा में रखे कुछ फैलाने वाले दर्पणों और ऑप्टिकल गैर-रैखिकताओं से नियंत्रित किया जा सकता है। लेजर गुहा के अत्यधिक शुद्ध समूह विलंब फैलाव (जीडीडी) के लिए, गुहा मोड के चरण को बड़े बैंडविड्थ पर लॉक नहीं किया जा सकता है, और बहुत कम स्पन्दों को प्राप्त करना मुश्किल होगा। केर अरेखीयता के साथ ऋणात्मक (विसंगतिपूर्ण) नेट जीडीडी के उपयुक्त संयोजन के लिए, [[सॉलिटन]]-जैसी बातचीत मोड-लॉकिंग को स्थिर कर सकती है और छोटी स्पन्दों को उत्पन्न करने में मदद करती है। सबसे कम संभव पल्स अवधि सामान्यतः या तो शून्य-फैलाव (गैर-रैखिकता के बिना) या कुछ थोड़े ऋणात्मक (विषम) फैलाव (सॉलिटॉन तंत्र का शोषण) के लिए पूरा किया जाता है।


सबसे छोटे प्रत्यक्ष रूप से उत्पादित ऑप्टिकल पल्स आमतौर पर [[केर-लेंस मॉडलिंग]] | केर-लेंस मोड-लॉक्ड टी-सफायर लेजर द्वारा निर्मित होते हैं और लगभग 5 फेमटोसेकंड लंबे होते हैं। वैकल्पिक रूप से, एक समान अवधि के प्रवर्धित दालों को एक खोखले-कोर फाइबर में या फिलामेंटेशन के दौरान [[स्व-चरण मॉडुलन]] द्वारा लंबी (जैसे 30 fs) दालों के संपीड़न के माध्यम से बनाया जाता है। हालांकि, न्यूनतम पल्स अवधि वाहक आवृत्ति की अवधि तक सीमित होती है (जो Ti:sapphire सिस्टम के लिए लगभग 2.7 fs है), इसलिए छोटे स्पंदों को कम तरंग दैर्ध्य में जाने की आवश्यकता होती है। कुछ उन्नत तकनीकों (प्रवर्धित फेमटोसेकंड लेजर पल्स के साथ उच्च-हार्मोनिक पीढ़ी को शामिल करना) का उपयोग [[अत्यधिक पराबैंगनी]] वर्णक्रमीय क्षेत्र (यानी <30 एनएम) में 100 [[attosecond]] जितनी कम अवधि के साथ ऑप्टिकल सुविधाओं का उत्पादन करने के लिए किया जा सकता है। अन्य उपलब्धियां, विशेष रूप से [[लेजर अनुप्रयोग]]ों के लिए महत्वपूर्ण, मोड-लॉक लेजर के विकास से संबंधित हैं जिन्हें [[लेजर डायोड]] के साथ पंप किया जा सकता है, उप-पिकोसेकंद दालों में बहुत अधिक औसत आउटपुट शक्तियां (वाट के दसियों) उत्पन्न कर सकती हैं, या अत्यधिक उच्च के साथ पल्स ट्रेन उत्पन्न कर सकती हैं। कई गीगाहर्ट्ज की पुनरावृत्ति दर।
सबसे छोटे प्रत्यक्ष रूप से उत्पादित ऑप्टिकल स्पन्दों को सामान्यतः केर-लेंस मोड-लॉक्ड टी-सफायर लेजर द्वारा उत्पादित किया जाता है और लगभग 5 फेमटोसेकंड लंबे होते हैं। वैकल्पिक रूप से, समान अवधि के प्रवर्धित स्पन्दों को खोखले-कोर फाइबर में या फिलामेंटेशन के दौरान स्व-चरण मॉडुलन द्वारा लंबे समय तक (जैसे 30 एफएस) स्पन्दों के संपीड़न के माध्यम से बनाया जाता है। हालांकि, न्यूनतम स्पंद अवधि वाहक आवृत्ति की अवधि तक सीमित होती है (जो कि Ti: नीलम प्रणालियों के लिए लगभग 2.7 fs है), इसलिए छोटी स्पन्दों को कम तरंग दैर्ध्य में जाने की आवश्यकता होती है। कुछ उन्नत तकनीकों (प्रवर्धित फेमटोसेकंड लेजर स्पन्दों के साथ उच्च-हार्मोनिक पीढ़ी को सम्मिलित करना) का उपयोग [[अत्यधिक पराबैंगनी]] वर्णक्रमीय क्षेत्र (यानी <30 एनएम) में 100 एटोसेकंड के रूप में कम अवधि के साथ ऑप्टिकल सुविधाओं का उत्पादन करने के लिए किया जा सकता है। अन्य उपलब्धियां, विशेष रूप से लेजर अनुप्रयोगों के लिए महत्वपूर्ण, मोड-लॉक लेजर के विकास से संबंधित हैं जिन्हें [[लेजर डायोड]] के साथ पंप किया जा सकता है, उप-पिकोसेकंद स्पन्दों में बहुत अधिक औसत आउटपुट शक्तियां (वाट के दस) उत्पन्न कर सकते हैं, या कई गीगाहर्ट्ज़ की अत्यंत उच्च पुनरावृत्ति दर वाली पल्स ट्रेन उत्पन्न करता है।


लगभग 100 fs से कम पल्स अवधि [[optoelectronic]] तकनीकों (यानी [[ photodiode ]]) का उपयोग करके सीधे मापे जाने के लिए बहुत कम है, और इसलिए अप्रत्यक्ष तरीके, जैसे कि [[ऑटो सहसंबंध]], [[आवृत्ति-समाधान ऑप्टिकल गेटिंग]], डायरेक्ट इलेक्ट्रिक-फ़ील्ड पुनर्निर्माण या मल्टीफ़ोटो इंट्रापल्स इंटरफेरोमेट्री के लिए स्पेक्ट्रल चरण इंटरफेरोमेट्री चरण स्कैन का उपयोग किया जाता है।
लगभग 100 एफएस से कम पल्स अवधि ऑप्टोइलेक्ट्रोनिक तकनीकों (यानी फोटोडिओड्स) का उपयोग करके सीधे मापे जाने के लिए बहुत कम है, और इसलिए अप्रत्यक्ष तरीके, जैसे स्वत: सहसंबंध, [[आवृत्ति-समाधान ऑप्टिकल गेटिंग]], प्रत्यक्ष विद्युत-क्षेत्र पुनर्निर्माण या मल्टीफ़ोटो इंट्रापल्स हस्तक्षेप चरण स्कैन के लिए स्पेक्ट्रल चरण इंटरफेरोमेट्री का उपयोग किया जाता है।


== अनुप्रयोग ==
== अनुप्रयोग ==


* परमाणु संलयन (जड़त्वीय कारावास संलयन)।
* परमाणु संलयन (जड़त्वीय बंधन संलयन)।
* नॉनलाइनियर ऑप्टिक्स, जैसे कि [[दूसरी-हार्मोनिक पीढ़ी]], [[पैरामीट्रिक डाउन-रूपांतरण]], [[ऑप्टिकल पैरामीट्रिक ऑसिलेटर]]्स, और [[टेराहर्ट्ज़ विकिरण]] की पीढ़ी।
* नॉनलाइनियर ऑप्टिक्स, जैसे कि [[दूसरी-हार्मोनिक पीढ़ी]], [[पैरामीट्रिक डाउन-रूपांतरण]], [[ऑप्टिकल पैरामीट्रिक ऑसिलेटर]], और [[टेराहर्ट्ज़ विकिरण]] की पीढ़ी।
* ऑप्टिकल डेटा स्टोरेज में लेजर का उपयोग होता है, और [[3डी ऑप्टिकल डेटा स्टोरेज]] की उभरती हुई तकनीक आम तौर पर नॉनलाइनियर फोटोकैमिस्ट्री पर निर्भर करती है। इस कारण से, कई उदाहरण मोड-लॉक्ड लेजर का उपयोग करते हैं, क्योंकि वे अल्ट्राशॉर्ट दालों की बहुत उच्च पुनरावृत्ति दर प्रदान कर सकते हैं।
* ऑप्टिकल डेटा स्टोरेज में लेजर का उपयोग होता है, और [[3डी ऑप्टिकल डेटा स्टोरेज]] की उभरती हुई तकनीक सामान्यतः अरैखिक प्रकाश रसायन पर निर्भर करती है। इस कारण से, कई उदाहरण मोड-लॉक्ड लेजर का उपयोग करते हैं, क्योंकि वे अल्ट्राशॉर्ट स्पन्दों की बहुत उच्च पुनरावृत्ति दर प्रदान कर सकते हैं।
* फेमटोसेकंड लेजर नैनोमशीनिंग - कई प्रकार की सामग्रियों में शॉर्ट दालों का उपयोग नैनोमैचिन के लिए किया जा सकता है।
* फेमटोसेकंड लेजर नैनोमशीनिंग - कई प्रकार की सामग्रियों में शॉर्ट स्पन्दों का उपयोग नैनोमैचिन के लिए किया जा सकता है।
* पिको- और फेमटोसेकंड माइक्रोमशीनिंग का एक उदाहरण [[इंकजेट प्रिंटर]] की सिलिकॉन जेट सतह की ड्रिलिंग है।
* पिको- और फेमटोसेकंड माइक्रोमशीनिंग का एक उदाहरण [[इंकजेट प्रिंटर]] की सिलिकॉन जेट सतह की ड्रिलिंग है।
* दो [[दो-फोटॉन माइक्रोस्कोपी]]
* दो [[दो-फोटॉन माइक्रोस्कोपी]]
* कॉर्नियल सर्जरी (अपवर्तक सर्जरी देखें)। फेम्टोसेकंड लेजर का उपयोग [[कॉर्निया]] में बुलबुले बनाने के लिए किया जा सकता है। [[ microkeratome ]] की जगह, कॉर्निया में कट बनाने के लिए बुलबुले की एक पंक्ति का उपयोग किया जा सकता है, उदा। LASIK सर्जरी में फ्लैप के निर्माण के लिए (इसे कभी-कभी इंट्रा[[ लेसिक ]] या ऑल-लेजर सर्जरी कहा जाता है)। कई परतों में बुलबुले भी बनाए जा सकते हैं ताकि इन परतों के बीच कॉर्नियल ऊतक का एक टुकड़ा हटाया जा सके (एक प्रक्रिया जिसे छोटा चीरा लेंटिकुल निष्कर्षण के रूप में जाना जाता है)।
* कॉर्नियल सर्जरी (अपवर्तक सर्जरी देखें)। फेम्टोसेकंड लेजर का उपयोग [[कॉर्निया]] में बुलबुले बनाने के लिए किया जा सकता है। [[ microkeratome | माइक्रोकेराटोम]] की जगह, कॉर्निया में कट बनाने के लिए बुलबुले की पंक्ति का उपयोग किया जा सकता है, उदा। लेसिक सर्जरी में आवरक के निर्माण के लिए (इसे कभी-कभी इंट्रा[[ लेसिक ]] या ऑल-लेजर सर्जरी कहा जाता है)। कई परतों में बुलबुले भी बनाए जा सकते हैं ताकि इन परतों के बीच कॉर्नियल ऊतक का एक टुकड़ा हटाया जा सके (एक प्रक्रिया जिसे अल्प चीरा लेंटिकुल निष्कर्षण के रूप में जाना जाता है)।
* एक लेज़र तकनीक विकसित की गई है जो धातुओं की सतह को गहरा काला कर देती है। एक फेमटोसेकंड लेजर पल्स धातु की सतह को विकृत करता है, जिससे [[ नैनोसंरचना ]] बनता है। बेहद बढ़ा हुआ सतह क्षेत्र वस्तुतः उस पर पड़ने वाले सभी प्रकाश को अवशोषित कर सकता है, इस प्रकार इसे गहरा काला बना देता है। यह एक प्रकार का काला सोना (आभूषण) # काला सोना है<ref>{{cite web
* लेसर तकनीक विकसित की गई है जो धातुओं की सतह को गहरे काले रंग में रंग देती है। फेमटोसेकंड लेजर पल्स धातु की सतह को विकृत करता है, जिससे [[ नैनोसंरचना |नैनोसंरचना]] बनती है। बेहद बढ़ा हुआ सतह क्षेत्र उस पर पड़ने वाले लगभग सभी प्रकाश को अवशोषित कर सकता है, इस प्रकार इसे गहरा काला बना देता है। यह एक प्रकार का काला सोना होता है।<ref>{{cite web
|title=Ultra-Intense Laser Blast Creates True 'Black Metal'
|title=Ultra-Intense Laser Blast Creates True 'Black Metal'
|url=http://www.rochester.edu/news/show.php?id=2701
|url=http://www.rochester.edu/news/show.php?id=2701
|access-date=2007-11-21
|access-date=2007-11-21
}}</ref>
}}</ref>  
* इलेक्ट्रॉनिक एडीसी में नमूनाकरण त्रुटि को कम करने के लिए इलेक्ट्रॉनिक घड़ियों पर लेजर की उच्च सटीकता का उपयोग करके फोटोनिक नमूनाकरण।
*फोटोनिक नमूनाकरण, इलेक्ट्रॉनिक एडीसी में नमूनाकरण त्रुटि को कम करने के लिए इलेक्ट्रॉनिक घड़ियों पर लेजर की उच्च सटीकता का उपयोग करना है।


== लेजर कैविटी का लॉकिंग मैकेनिज्म ==
== लेजर कैविटी का लॉकिंग मैकेनिज्म ==
   
   
मोनोक्रोमैटिक प्रकाश लेजर की संपत्ति है जो लेजर के मौलिक कार्य सिद्धांत पर निर्भर करती है जिसमें आवृत्ति चयनात्मक तत्व होते हैं।
मोनोक्रोमैटिक प्रकाश लेजर की संपत्ति लेजर के मौलिक कार्य सिद्धांत पर निर्भर करती है जिसमें आवृत्ति चयनात्मक तत्व होते हैं। उदाहरण के लिए [[लेज़र डायोड]] में, बाहरी दर्पण अनुनाद और [[डिफ़्रैक्शन ग्रेटिंग|ग्रेटिंग]] वे तत्व हैं। इन तत्वों की मदद से, आवृत्ति चयन प्रकाश के बहुत संकीर्ण वर्णक्रमीय उत्सर्जन की ओर ले जाता है। हालांकि, जब बारीकी से देखा जाता है, तो विभिन्न समय के पैमाने पर आवृत्ति में उतार-चढ़ाव होते हैं। उनकी उत्पत्ति के अलग-अलग कारण हो सकते हैं, उदाहरण के लिए। इनपुट वोल्टेज में उतार-चढ़ाव, ध्वनिक कंपन या आसपास के दबाव और तापमान में परिवर्तन। इसलिए, इन आवृत्ति उतार-चढ़ाव को कम करने के लिए, लेजर के चरण या आवृत्ति को एक बाहरी सीमा तक स्थिर करना आवश्यक है। किसी भी बाहरी स्रोत या बाहरी संदर्भ का उपयोग करके लेजर संपत्ति को स्थिर करना सामान्यतः 'लॉकर लॉकिंग' या बस 'लॉकिंग' कहा जाता है।
उदाहरण के लिए [[लेज़र डायोड]] में अनुनादक तथा [[डिफ़्रैक्शन ग्रेटिंग]] वे तत्व हैं। इन तत्वों की मदद से, आवृत्ति चयन से प्रकाश का एक बहुत ही संकीर्ण वर्णक्रमीय उत्सर्जन होता है। हालाँकि, जब बारीकी से देखा जाता है, तो आवृत्ति में उतार-चढ़ाव होते हैं जो अलग-अलग समय के पैमाने पर होते हैं। उनकी उत्पत्ति के विभिन्न कारण हो सकते हैं, उदा. इनपुट वोल्टेज में उतार-चढ़ाव, ध्वनिक कंपन या आसपास के दबाव और तापमान में परिवर्तन। इसलिए, इन आवृत्ति उतार-चढ़ाव को कम करने के लिए, लेजर के चरण या आवृत्ति को बाहरी सीमा तक स्थिर करना आवश्यक है। किसी बाहरी स्रोत या बाहरी संदर्भ का उपयोग करके लेजर संपत्ति को स्थिर करना आमतौर पर 'लेजर लॉकिंग' या 'लॉकिंग' कहा जाता है।


=== त्रुटि संकेत पीढ़ी ===
=== त्रुटि संकेत पीढ़ी ===
त्रुटि संकेतों को उत्पन्न करने का कारण एक इलेक्ट्रॉनिक संकेत बनाना है जो एक विशेष सेट आवृत्ति या चरण से लेजर के विचलन के समानुपाती होता है जिसे 'लॉक पॉइंट' कहा जाता है। यदि लेज़र आवृत्ति अधिक है तो संकेत धनात्मक है, यदि आवृत्ति बहुत कम है तो संकेत ऋणात्मक है। जिस बिंदु पर सिग्नल शून्य होता है उसे लॉक पॉइंट कहा जाता है। एक त्रुटि संकेत के आधार पर लेजर लॉकिंग जो आवृत्ति का एक कार्य है, आवृत्ति लॉकिंग कहलाता है और यदि त्रुटि संकेत लेजर के चरण विचलन का एक कार्य है, तो इस लॉकिंग को लेजर के चरण लॉकिंग के रूप में संदर्भित किया जाता है। यदि सिग्नल एक ऑप्टिकल सेटअप का उपयोग करके बनाया गया है जिसमें आवृत्ति जैसे संदर्भ शामिल हैं
त्रुटि संकेतों को उत्पन्न करने का कारण इलेक्ट्रॉनिक सिग्नल बनाना है जो एक विशेष समूह आवृत्ति या चरण से लेजर के विचलन के समानुपाती होता है जिसे 'लॉक पॉइंट' कहा जाता है। यदि लेज़र आवृत्ति अधिक है तो संकेत धनात्मक है, यदि आवृत्ति बहुत कम है तो संकेत ऋणात्मक है। जिस बिंदु पर सिग्नल शून्य होता है उसे लॉक पॉइंट कहा जाता है। त्रुटि संकेत के आधार पर लेजर लॉकिंग जो आवृत्ति का एक कार्य है, आवृत्ति लॉकिंग कहा जाता है और यदि त्रुटि संकेत लेजर के चरण विचलन का एक कार्य है, तो इस लॉकिंग को लेजर के चरण लॉकिंग के रूप में जाना जाता है। यदि सिग्नल एक ऑप्टिकल समूहअप का उपयोग करके बनाया गया है जिसमें आवृत्ति संदर्भ जैसे संदर्भ सम्मिलित हैं। संदर्भ का उपयोग करते हुए, ऑप्टिकल सिग्नल सीधे ओवर फ्रीक्वेंसी में परिवर्तित हो जाता है जिसे सीधे पता लगाया जा सकता है। दूसरा तरीका फोटोडायोड या कैमरे का उपयोग करके सिग्नल रिकॉर्ड करना है और इस सिग्नल को इलेक्ट्रॉनिक रूप से परिवर्तित करना है।
संदर्भ। संदर्भ का उपयोग करते हुए, ऑप्टिकल सिग्नल सीधे अधिक आवृत्तियों में परिवर्तित हो जाता है जिसे सीधे पता लगाया जा सकता है। दूसरा तरीका एक फोटोडायोड या कैमरे का उपयोग करके सिग्नल को रिकॉर्ड करना और इस सिग्नल को इलेक्ट्रॉनिक रूप से बदलना है।


== यह भी देखें ==
== यह भी देखें ==
Line 152: Line 149:
{{Solid-state laser}}
{{Solid-state laser}}
{{Lasers}}
{{Lasers}}
[[Category: लेजर विज्ञान]] [[Category: लेजर दवा]]


[[Category: Machine Translated Page]]
[[Category:All Wikipedia articles written in American English]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Collapse templates]]
[[Category:Created On 09/06/2023]]
[[Category:Created On 09/06/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Use American English from March 2019]]
[[Category:Wikipedia metatemplates]]
[[Category:लेजर दवा]]
[[Category:लेजर विज्ञान]]

Latest revision as of 10:10, 27 June 2023

मोड लॉकिंग एक ऐसी तकनीक है जिसके द्वारा लेजर को अत्यंत अल्पकालिक प्रकाश की स्पंदों का उत्पादन करने के लिए बनाया जा सकता है। इस तरह संचालित लेजर को कभी-कभी एक पिकोसेकंड (10−12 s) या फेमास्कोन्ड लेजर(10−15 s) लेजर के रूप में संदर्भित किया जाता है, उदाहरण के लिए, आधुनिक अपवर्तक सर्जरी में। इस तकनीक का आधार लेजर अनुनाद गुहा के अनुनाद गुहा के अनुदैर्ध्य मोड के बीच एक निश्चित चरण संबंध को प्रोत्साहित करना है। इन तरीकों के बीच रचनात्मक हस्तक्षेप से स्पन्दों की श्रृंखला के रूप में लेजर लाइट का उत्पादन हो सकता है। फिर लेजर को फेज-लॉक या मोड-लॉक कहा जाता है।

लेजर कैविटी मोड

लेजर मोड संरचना
एक मोड-लॉक, पूरी तरह से प्रतिबिंबित गुहा पहले 30 मोड का समर्थन करता है। ऊपरी भूखंड गुहा (रेखाओं) के अंदर पहले 8 मोड और गुहा (बिंदुओं) के अंदर विभिन्न पदों पर कुल विद्युत क्षेत्र दिखाता है। निचला भूखंड गुहा के अंदर कुल विद्युत क्षेत्र को दर्शाता है।

हालांकि लेजर प्रकाश शायद प्रकाश का सबसे शुद्ध रूप है, यह एकल, शुद्ध आवृत्ति या तरंग दैर्ध्य का नहीं है। सभी लेजर कुछ प्राकृतिक बैंडविड्थ या आवृत्तियों की श्रृंखला पर प्रकाश का उत्पादन करते हैं। लेजर के संचालन की बैंडविड्थ मुख्य रूप से लाभ के माध्यम से निर्धारित की जाती है जिससे लेजर का निर्माण किया जाता है, और उन आवृत्तियों की सीमा जिस पर लेजर काम कर सकता है, गेन बैंडविड्थ के रूप में जाना जाता है। उदाहरण के लिए, विशिष्ट हीलियम-नीऑन लेजर में लगभग 1.5 जीएचजेड ( 633 एनएम की केंद्रीय तरंग दैर्ध्य पर लगभग 0.002 एनएम की तरंगदैर्घ्य सीमा) का एक लाभ बैंडविड्थ होता है, जबकि टाइटेनियम-डोपेड सैफायर (टीआई:सैपायर) सॉलिड-स्टेट लेजर में लगभग 128 टीजेड (300 एनएम तरंगदैर्घ्य सीमा 800 एनएम पर केंद्रित) की बैंडविड्थ होती है।

लेजर की उत्सर्जन आवृत्तियों को निर्धारित करने वाला दूसरा कारक लेजर की ऑप्टिकल गुहा (या अनुनाद गुहा) है। सबसे सरल स्तिथि में, इसमें दो समतल (फ्लैट) दर्पण होते हैं जो एक दूसरे का सामना करते हैं, लेजर के लाभ माध्यम के आसपास होते हैं (यह व्यवस्था फेब्री-पेरोट गुहा के रूप में जानी जाती है)। चूँकि प्रकाश एक तरंग है, जब गुहा के दर्पणों के बीच उछलता है, तो प्रकाश रचनात्मक और विनाशकारी रूप से स्वयं में हस्तक्षेप करता है, जिससे दर्पणों के बीच स्थायी तरंगों या मोड का निर्माण होता है। ये स्थायी तरंगें आवृत्तियों का असतत समूह बनाती हैं, जिन्हें गुहा के अनुदैर्ध्य मोड के रूप में जाना जाता है। ये मोड प्रकाश की एकमात्र आवृत्तियाँ हैं जो स्व-पुनर्जीवित होती हैं और अनुनाद गुहा द्वारा दोलन करने की अनुमति देती हैं; प्रकाश की अन्य सभी आवृत्तियाँ विनाशकारी हस्तक्षेप द्वारा दबा दी जाती हैं। साधारण समतल-दर्पण गुहा के लिए, अनुमत मोड वे हैं जिनके लिए दर्पण की पृथक्करण दूरी L, प्रकाश λ के आधे तरंग दैर्ध्य का एक सटीक गुणक है, जैसे कि L = /2 जहाँ q एक पूर्णांक है जिसे बहुलक क्रम कहते हैं।

अभ्यास में, L सामान्यतः λ से बहुत अधिक होता है, इसलिए q के प्रासंगिक मान बड़े होते हैं (लगभग 105 से 106)। अधिक रुचि किसी भी दो आसन्न मोड q और q + 1 के बीच आवृत्ति पृथक्करण है; यह Δν द्वारा दिया गया है (लंबाई एल के एक खाली रैखिक अनुनादक के लिए):

जहाँ c प्रकाश की गति है (≈ 3×108 मीटर/सेकण्ड)।

उपरोक्त समीकरण का उपयोग करते हुए, 30 सेमी के दर्पण पृथक्करण वाले एक छोटे से लेज़र में 0.5 गीगाहर्ट्ज़ के अनुदैर्ध्य मोड के बीच आवृत्ति पृथक्करण होता है। इस प्रकार ऊपर संदर्भित दो लेज़रों के लिए, 30 सेमी कैविटी के साथ, HeNe (हीलियम-नियॉन) लेजर की 1.5 गीगाहर्ट्ज़  बैंडविड्थ 3 अनुदैर्ध्य मोड तक का समर्थन करेगी, जबकि टाइटेनियम (Ti) का 128 टैरा हर्ट्ज़ बैंडविड्थ: नीलम लेज़र लगभग 250,000 मोड का समर्थन कर सकता है। जब एक से अधिक अनुदैर्ध्य मोड उत्साहित होते हैं, तो लेजर को "बहु-मोड" संचालन में कहा जाता है। जब केवल अनुदैर्ध्य मोड संदीप्त होता है, तो लेजर को "एकल-मोड" संचालन में कहा जाता है।

प्रत्येक व्यक्तिगत अनुदैर्ध्य मोड में कुछ बैंडविड्थ या आवृत्तियों की संकीर्ण सीमा होती है, जिस पर यह संचालित होता है, लेकिन सामान्यतः यह बैंडविड्थ, गुहा के क्यू कारक द्वारा निर्धारित होता है (फैब्री-पेरोट इंटरफेरोमीटर देखें), अंतर-मोड आवृत्ति पृथक्करण से बहुत अल्प है।

मोड-लॉकिंग सिद्धांत

सरल लेजर में, इनमें से प्रत्येक मोड स्वतंत्र रूप से एक दूसरे के बीच कोई निश्चित संबंध नहीं रखते हैं, संक्षेप में स्वतंत्र लेजर के एक समूह की तरह, सभी कुछ अलग आवृत्तियों पर प्रकाश उत्सर्जित करते हैं। प्रत्येक मोड में प्रकाश तरंगों का व्यक्तिगत चरण निर्धारित नहीं है और लेजर की सामग्री में थर्मल परिवर्तन जैसी चीजों के कारण यादृच्छिक रूप से भिन्न हो सकता है। केवल कुछ दोलन मोड के साथ लेजर में, मोड्स के बीच हस्तक्षेप लेजर आउटपुट में बीटिंग प्रभाव उत्पन्न कर सकता है, जिससे तीव्रता में उतार-चढ़ाव आता है, कई हजारों मोड के साथ लेजर में, ये हस्तक्षेप प्रभाव एक लगभग स्थिर आउटपुट तीव्रता का औसत करते हैं।

यदि स्वतंत्र रूप से दोलन करने के बजाय, प्रत्येक मोड इसके और अन्य साधनों के बीच एक निश्चित चरण के साथ संचालित होता है, तो लेजर आउटपुट काफी अलग व्यवहार करता है। यादृच्छिक या निरंतर आउटपुट तीव्रता के बजाय, लेजर के मोड समय-समय पर एक दूसरे के साथ रचनात्मक रूप से हस्तक्षेप करेंगे, जो प्रकाश की तीव्र बर्स्ट या स्पंद का उत्पादन करेगा। ऐसे लेजर को मोड-लॉक या फेज-लॉक कहा जाता है। ये स्पन्द τ = 2L/c द्वारा समय में अलग होती हैं, जहां τ लेजर गुहा की बिल्कुल एक परिक्रमायुक्त यात्रा बनाने के लिए प्रकाश के लिए समय लिया जाता है। यह समय आवृत्ति से मेल खाता है जो वास्तव में लेजर की मोड स्पेसिंग Δν = 1/τ के बराबर होता है।

प्रकाश के प्रत्येक स्पंद की अवधि चरण में दोलन करने वाले मोड की संख्या से निर्धारित होती है (वास्तविक लेजर में, यह आवश्यक नहीं है कि लेजर के सभी मोड चरण-लॉक हों)। यदि आवृत्ति पृथक्करण Δν के साथ लॉक किए गए N मोड हैं, तो समग्र मोड-लॉक बैंडविड्थ NΔν है, और यह बैंडविड्थ जितना व्यापक होगा, लेज़र से स्पंद अवधि उतनी ही कम होगी। अभ्यास में, वास्तविक स्पंद अवधि प्रत्येक स्पंद के आकार द्वारा निर्धारित की जाती है, जो बदले में प्रत्येक अनुदैर्ध्य मोड के सटीक आयाम और चरण संबंध द्वारा निर्धारित होती है। उदाहरण के लिए, गॉसियन टेम्पोरल आकार के साथ स्पन्दों का उत्पादन करने वाले लेजर के लिए, न्यूनतम संभव स्पंद अवधि Δt द्वारा दी गई है

मूल्य 0.441 को स्पंद के "टाइम-बैंडविड्थ उत्पाद" के रूप में जाना जाता है और स्पंद आकार के आधार पर भिन्न होता है। अल्ट्राशॉर्ट स्पंद लेज़रों के लिए, हाइपरबोलिक-सेकेंट-स्क्वायर (सेक2) स्पन्द आकार प्रायः ग्रहण किया जाता है, जिससे 0.315 का टाइम-बैंडविड्थ उत्पाद मिलता है।

इस समीकरण का उपयोग करते हुए, मापी गई लेज़र वर्णक्रमीय चौड़ाई के साथ न्यूनतम स्पंद अवधि की गणना लगातार की जा सकती है। 1.5 गीगाहर्ट्ज बैंडविड्थ वाले HeNe लेज़र के लिए, इस वर्णक्रमीय चौड़ाई के अनुरूप सबसे अल्प गाऊसी स्पंद लगभग 300 पिकोसेकंड होगा; 128 टेरा हर्ट्ज़ बैंडविथ टाइटेनियम: नीलम लेज़र के लिए, यह वर्णक्रमीय चौड़ाई केवल 3.4 फेमटोसेकंड अवधि के पल्स के अनुरूप होगी। ये मान लेज़र की बैंडविड्थ के अनुरूप कम से कम संभव गाऊसी स्पंदन का प्रतिनिधित्व करते हैं; एक वास्तविक मोड-लॉक लेजर में, वास्तविक स्पन्द अवधि कई अन्य कारकों पर निर्भर करती है, जैसे कि समग्र स्पन्द आकार और गहा के समग्र फैलाव।

बाद में मॉडुलन, सिद्धांत रूप में, इस तरह के लेजर की पल्स चौड़ाई को कम कर सकता है, हालांकि, मापी गई वर्णक्रमीय चौड़ाई को तदनुसार बढ़ाया जाएगा।

चरण और मोड-लॉकिंग का सिद्धांत

आवृत्ति को लॉक करने के कई तरीके हैं लेकिन मूल सिद्धांत वही है जो लेजर सिस्टम के फीडबैक लूप पर आधारित है। फीडबैक लूप का प्रारंभिक बिंदु वह मात्रा है जिसे हमें स्थिर करने की आवश्यकता है। आवृत्ति या चरण। यह जांचने के लिए कि क्या आवृत्ति समय के साथ बदलती है या नहीं, एक संदर्भ की आवश्यकता होगी। लेजर आवृत्ति को मापने के लिए इसे ऑप्टिकल गुहा की ज्यामितीय संपत्ति के साथ जोड़ना है। फेब्री-पेरोट गुहा का प्रयोग इस प्रयोजन के लिए किया जाता है। इसमें दो समानांतर दर्पण होते हैं जो कुछ दूरी से अलग होते हैं। यह विधि इस तथ्य पर आधारित है कि प्रकाश प्रतिध्वनित हो सकता है और केवल तभी संचारित किया जा सकता है जब एकल राउंड ट्रिप की ऑप्टिकल पथ लंबाई प्रकाश की तरंग दैर्ध्य का एक अभिन्न गुण है। इस स्थिति से लेजर आवृत्ति का विचलन आवृत्ति संचरण को कम करेगा। संचरण और आवृत्ति विचलन के बीच संबंध पूर्ण चौड़ाई के साथ लोरेंट्ज़ियन फ़ंक्शन द्वारा दिया जाता है।

∆νC=∆νFSR/ℱ

जहां ∆νFSR=C/2L आसन्न प्रतिध्वनि के बीच आवृत्ति अंतर है और ℱ सूक्ष्मता है, ℱ = πR½/(1-R) R दर्पणों की परावर्तनता है। जैसा कि समीकरण से स्पष्ट है, एक छोटी कैविटी लाइन चौड़ाई प्राप्त करने के लिए, दर्पणों में उच्च परावर्तन होना चाहिए। इसलिए लेजर की लाइन चौड़ाई को न्यूनतम सीमा तक कम करने के लिए, एक उच्च सूक्ष्म गुहा की आवश्यकता होती है।

मोड-लॉकिंग तरीके

लेजर में मोड-लॉकिंग के उत्पादन के तरीके को या तो "सक्रिय" या "निष्क्रिय" के रूप में वर्गीकृत किया जा सकता है। सक्रिय विधियों में सामान्यतः अंतःगुहा प्रकाश के मॉड्यूलेशन को प्रेरित करने के लिए बाहरी सिग्नल का उपयोग करना सम्मिलित होता है। निष्क्रिय तरीके बाहरी संकेत का उपयोग नहीं करते हैं, लेकिन कुछ तत्व को लेजर गुहा में रखने पर भरोसा करते हैं जो प्रकाश के स्व-मॉड्यूलेशन का कारण बनता है।

सक्रिय मोड लॉकिंग

सबसे साधारण सक्रिय मोड-लॉकिंग तकनीक एक स्थायी तरंग इलेक्ट्रो-ऑप्टिक न्यूनाधिक को लेजर गुहा में रखती है। जब विद्युत संकेत के साथ संचालित किया जाता है, तो यह गुहा में प्रकाश के साइनसॉइडल आयाम मॉडुलन का उत्पादन करता है। आवृत्ति डोमेन में इसे ध्यान में रखते हुए, यदि किसी मोड में ऑप्टिकल आवृत्ति ν है और आवृत्ति f पर आयाम-संशोधित है, तो परिणामी सिग्नल में ऑप्टिकल आवृत्ति पर साइडबैंड होते हैं νf और ν + f. यदि न्यूनाधिक को कैविटी मोड स्पेसिंग Δν के समान आवृत्ति पर संचालित किया जाता है, तो ये साइडबैंड मूल मोड से सटे दो कैविटी मोड के अनुरूप होते हैं। चूंकि साइडबैंड चरण में संचालित होते हैं, केंद्रीय मोड और आसन्न मोड एक साथ चरण-लॉक हो जाएंगे। साइडबैंड पर न्यूनाधिक के आगे के संचालन से चरण लॉकिंग का उत्पादन होता है ν − 2f और ν + 2f मोड, और इसी तरह जब तक कि गेन बैंडविड्थ के सभी मोड लॉक नहीं हो जाते। जैसा कि ऊपर कहा गया है, विशिष्ट लेज़र मल्टी-मोड हैं और रूट मोड द्वारा सीड नहीं किए गए हैं। तो किस चरण का उपयोग करना है, इसके लिए कई तरीकों से काम करने की आवश्यकता है। इस लॉकिंग के साथ एक निष्क्रिय गुहा में, मूल स्वतंत्र चरणों द्वारा दी गई एन्ट्रॉपी को डंप करने का कोई तरीका नहीं है। इस लॉकिंग को एक युग्मन के रूप में बेहतर वर्णित किया गया है, जिससे जटिल व्यवहार होता है और स्वच्छ स्पन्द नहीं होती हैं। युग्मन केवल आयाम मॉडुलन की विघटनकारी प्रकृति के कारण विघटनकारी है। अन्यथा, चरण मॉडुलन काम नहीं करेगा।

इस प्रक्रिया को टाइम डोमेन में भी माना जा सकता है। आयाम न्यूनाधिक गुहा के दर्पणों के बीच उछलते हुए प्रकाश के लिए एक कमजोर शटर के रूप में कार्य करता है, जब यह बंद होता है और जब यह खुला होता है तो प्रकाश को क्षीण कर देता है। यदि मॉडुलन दर f को गुहा दौर-यात्रा का समय τ के साथ सिंक्रोनाइज़ किया जाता है, तो प्रकाश की एक स्पंद कैविटी में आगे और पीछे उछलेगी। मॉड्यूलेशन की वास्तविक ताकत का बड़ा होना जरूरी नहीं है; न्यूनाधिक जो बंद होने पर 1% प्रकाश को क्षीण करता है, लेज़र को मोड-लॉक कर देगा, क्योंकि प्रकाश के उसी हिस्से को बार-बार क्षीण किया जाता है क्योंकि यह गुहा को पार करता है।

इस आयाम मॉडुलन (एएम) से संबंधित, सक्रिय मोड लॉकिंग फ्रीक्वेंसी-मॉड्यूलेशन (एफएम) मोड-लॉकिंग है, जो ध्वनिक-ऑप्टिक प्रभाव के आधार पर एक न्यूनाधिक उपकरण का उपयोग करता है। यह उपकरण, जब लेज़र कैविटी में रखा जाता है और विद्युत संकेत के साथ संचालित होता है, तो इसके माध्यम से गुजरने वाले प्रकाश में अल्प, साइनसोइडली भिन्न आवृत्ति बदलाव लाता है। यदि मॉड्यूलेशन की आवृत्ति गुहा के राउंड-ट्रिप समय से मेल खाती है, तो गुहा में कुछ प्रकाश आवृत्ति में बार-बार ऊपर की ओर और कुछ बार-बार नीचे की ओर देखता है। कई पुनरावृत्तियों के बाद, अपशिफ्ट और डाउनशिफ्टेड प्रकाश लेसर के लाभ बैंडविड्थ से बाहर हो जाता है। अप्रभावित एकमात्र प्रकाश वह है जो प्रेरित आवृत्ति बदलाव के शून्य होने पर न्यूनाधिक से होकर गुजरता है, जो प्रकाश की संकीर्ण स्पन्द बनाता है।

सक्रिय मोड लॉकिंग का तीसरा तरीका सिंक्रोनस मोड लॉकिंग या सिंक्रोनस पंपिंग है। इसमें, लेजर के लिए पंप स्रोत (ऊर्जा स्रोत) स्वयं संशोधित होता है, प्रभावी रूप से लेजर को चालू और बंद करके स्पन्दों का उत्पादन करता है। विशिष्ट रूप से, पंप स्रोत एक अन्य मोड-लॉक्ड लेजर है। इस तकनीक के लिए पंप लेजर और चालित लेजर की गुहा की लंबाई का सटीक मिलान करना आवश्यक है।

निष्क्रिय मोड लॉकिंग

निष्क्रिय मोड-लॉकिंग तकनीकें वे हैं जिन्हें स्पन्दों का उत्पादन करने के लिए लेजर (जैसे मॉड्यूलेटर के ड्राइविंग सिग्नल) के लिए बाहरी सिग्नल की आवश्यकता नहीं होती है। बल्कि, वे गुहा में प्रकाश का उपयोग कुछ इंट्राकैविटी तत्व में परिवर्तन का कारण बनते हैं, जो तब इंट्राकैविटी प्रकाश में परिवर्तन का उत्पादन करेगा। इसे प्राप्त करने के लिए एक सामान्य रूप से उपयोग किया जाने वाला उपकरण संतृप्त अवशोषक है।

संतृप्त अवशोषक ऑप्टिकल उपकरण है जो एक तीव्रता-निर्भर संचरण प्रदर्शित करता है, जिसका अर्थ है कि उपकरण इसके माध्यम से प्रकाश की तीव्रता के आधार पर अलग-अलग व्यवहार करता है। निष्क्रिय मोड लॉकिंग के लिए, आदर्श रूप से एक संतृप्त अवशोषक चुनिंदा कम तीव्रता वाले प्रकाश को अवशोषित करता है, लेकिन पर्याप्त उच्च तीव्रता के प्रकाश को प्रसारित करता है। जब लेज़र कैविटी में रखा जाता है, तो संतृप्त अवशोषक कम-तीव्रता वाली स्थिर-तरंग प्रकाश (पल्स विंग्स) को क्षीण कर देता है। हालांकि, अन-मोड-लॉक लेजर द्वारा अनुभव किए जाने वाले कुछ यादृच्छिक तीव्रता के उतार-चढ़ाव के कारण, किसी भी यादृच्छिक, तीव्र स्पाइक को संतृप्त अवशोषक द्वारा अधिमानतः प्रेषित किया जाता है। चूंकि गुहा में प्रकाश दोलन करता है, यह प्रक्रिया दोहराती है, जिससे उच्च-तीव्रता वाले स्पाइक्स के चयनात्मक प्रवर्धन और कम-तीव्रता वाले प्रकाश का अवशोषण होता है। कई चक्कर लगाने के बाद, यह पल्स की ट्रेन और लेजर के मोड लॉकिंग की ओर जाता है।

फ़्रीक्वेंसी डोमेन में इसे ध्यान में रखते हुए, यदि किसी मोड में ऑप्टिकल फ़्रीक्वेंसी ν है और फ़्रीक्वेंसी nf पर आयाम-संशोधित है, तो परिणामी सिग्नल में ऑप्टिकल फ़्रीक्वेंसी νnf और ν + nf पर साइडबैंड होते हैं और छोटी स्पन्दों और अधिक के लिए बहुत मजबूत मोड लॉकिंग को सक्षम करते हैं। सक्रिय मोड लॉकिंग की तुलना में स्थिरता, लेकिन इसमें स्टार्टअप समस्याएं हैं।

संतृप्त अवशोषक सामान्यतः तरल कार्बनिक रंग होते हैं, लेकिन इन्हें डोप किए गए क्रिस्टल और अर्धचालकों से भी बनाया जा सकता है। सेमीकंडक्टर अवशोषक बहुत तेजी से प्रतिक्रिया समय (~ 100 fs) प्रदर्शित करते हैं, जो उन कारकों में से एक है जो स्पन्दों की अंतिम अवधि को एक निष्क्रिय मोड-लॉक लेजर में निर्धारित करता है। कोलाइडिंग-पल्स मोड-लॉक लेजर में अवशोषक अग्रणी किनारे को स्थिर करता है, जबकि लेज़िंग माध्यम नाड़ी के अनुगामी किनारे को खड़ा करता है।

ऐसी निष्क्रिय मोड-लॉकिंग योजनाएँ भी हैं जो उन सामग्रियों पर निर्भर नहीं करती हैं जो सीधे तीव्रता-निर्भर अवशोषण प्रदर्शित करती हैं। इन विधियों में, इंट्राकैविटी घटकों में गैर रेखीय प्रकाशिकी प्रभाव का उपयोग गुहा में उच्च तीव्रता वाले प्रकाश को चुनिंदा रूप से बढ़ाने और कम तीव्रता वाले प्रकाश के क्षीणन की एक विधि प्रदान करने के लिए किया जाता है। सबसे सफल योजनाओं में से केर-लेंस मोड लॉकिंग (केएलएम) कहलाती है, जिसे कभी-कभी "सेल्फ-मोड-लॉकिंग" भी कहा जाता है। यह एक गैर-रैखिक ऑप्टिकल प्रक्रिया, ऑप्टिकल केर प्रभाव का उपयोग करता है, जिसके परिणामस्वरूप उच्च-तीव्रता वाले प्रकाश को कम-तीव्रता वाले प्रकाश से भिन्न रूप से फोकस किया जाता है। लेजर कैविटी में एपर्चर की सावधानीपूर्वक व्यवस्था करके, इस प्रभाव का उपयोग अल्ट्रा-फास्ट रिस्पांस-टाइम संतृप्त अवशोषक के बराबर उत्पादन के लिए किया जा सकता है।

हाइब्रिड मॉडलिंग

कुछ अर्धचालक लेज़रों में उपरोक्त दो तकनीकों के संयोजन का उपयोग किया जा सकता है। संतृप्त अवशोषक के साथ एक लेज़र का उपयोग करना और उसी आवृत्ति पर विद्युत इंजेक्शन को संशोधित करना जिस पर लेज़र लॉक होता है, लेज़र को विद्युत इंजेक्शन द्वारा स्थिर किया जा सकता है। इससे लेजर के चरण शोर को स्थिर करने का लाभ होता है और लेजर से स्पन्दों के समय के घबराहट को कम कर सकता है।

अवशिष्ट गुहा क्षेत्रों द्वारा मोड लॉकिंग

बाद के लेजर स्पन्दों के बीच सुसंगत चरण-सूचना हस्तांतरण भी नैनोवायर लेजर से देखा गया है। यहां, चरण की जानकारी गुहा में सुसंगत रबी दोलनों के अवशिष्ट फोटॉन क्षेत्र में संग्रहीत की गई है। इस तरह के निष्कर्ष चिप-स्केल फोटोनिक सर्किट और अनुप्रयोगों जैसे ऑन-चिप रैमसे कॉम्ब स्पेक्ट्रोस्कोपी में एकीकृत प्रकाश स्रोतों के चरण लॉकिंग का रास्ता खोलते हैं।[1]

फूरियर-डोमेन मोड लॉकिंग

फूरियर-डोमैन मोड लॉकिंग (एफडीएमएल) एक लेजर मोड-लॉकिंग तकनीक है जो लगातार तरंगदैर्घ्य, तरंगदैर्घ्य-स्वेप्ट प्रकाश आउटपुट का निर्माण करती है।[2] एफडीएमएल लेजर के लिए एक मुख्य अनुप्रयोग ऑप्टिकल सुसंगत टोमोग्राफी है।

प्रैक्टिकल मोड-लॉक लेजर

व्यवहार में, कई डिज़ाइन संबंधी विचार मोड-लॉक्ड लेज़र के प्रदर्शन को प्रभावित करते हैं। सबसे महत्वपूर्ण लेजर के ऑप्टिकल अनुनादक का समग्र फैलाव है, जिसे प्रिज्म कंप्रेसर या गुहा में रखे कुछ फैलाने वाले दर्पणों और ऑप्टिकल गैर-रैखिकताओं से नियंत्रित किया जा सकता है। लेजर गुहा के अत्यधिक शुद्ध समूह विलंब फैलाव (जीडीडी) के लिए, गुहा मोड के चरण को बड़े बैंडविड्थ पर लॉक नहीं किया जा सकता है, और बहुत कम स्पन्दों को प्राप्त करना मुश्किल होगा। केर अरेखीयता के साथ ऋणात्मक (विसंगतिपूर्ण) नेट जीडीडी के उपयुक्त संयोजन के लिए, सॉलिटन-जैसी बातचीत मोड-लॉकिंग को स्थिर कर सकती है और छोटी स्पन्दों को उत्पन्न करने में मदद करती है। सबसे कम संभव पल्स अवधि सामान्यतः या तो शून्य-फैलाव (गैर-रैखिकता के बिना) या कुछ थोड़े ऋणात्मक (विषम) फैलाव (सॉलिटॉन तंत्र का शोषण) के लिए पूरा किया जाता है।

सबसे छोटे प्रत्यक्ष रूप से उत्पादित ऑप्टिकल स्पन्दों को सामान्यतः केर-लेंस मोड-लॉक्ड टी-सफायर लेजर द्वारा उत्पादित किया जाता है और लगभग 5 फेमटोसेकंड लंबे होते हैं। वैकल्पिक रूप से, समान अवधि के प्रवर्धित स्पन्दों को खोखले-कोर फाइबर में या फिलामेंटेशन के दौरान स्व-चरण मॉडुलन द्वारा लंबे समय तक (जैसे 30 एफएस) स्पन्दों के संपीड़न के माध्यम से बनाया जाता है। हालांकि, न्यूनतम स्पंद अवधि वाहक आवृत्ति की अवधि तक सीमित होती है (जो कि Ti: नीलम प्रणालियों के लिए लगभग 2.7 fs है), इसलिए छोटी स्पन्दों को कम तरंग दैर्ध्य में जाने की आवश्यकता होती है। कुछ उन्नत तकनीकों (प्रवर्धित फेमटोसेकंड लेजर स्पन्दों के साथ उच्च-हार्मोनिक पीढ़ी को सम्मिलित करना) का उपयोग अत्यधिक पराबैंगनी वर्णक्रमीय क्षेत्र (यानी <30 एनएम) में 100 एटोसेकंड के रूप में कम अवधि के साथ ऑप्टिकल सुविधाओं का उत्पादन करने के लिए किया जा सकता है। अन्य उपलब्धियां, विशेष रूप से लेजर अनुप्रयोगों के लिए महत्वपूर्ण, मोड-लॉक लेजर के विकास से संबंधित हैं जिन्हें लेजर डायोड के साथ पंप किया जा सकता है, उप-पिकोसेकंद स्पन्दों में बहुत अधिक औसत आउटपुट शक्तियां (वाट के दस) उत्पन्न कर सकते हैं, या कई गीगाहर्ट्ज़ की अत्यंत उच्च पुनरावृत्ति दर वाली पल्स ट्रेन उत्पन्न करता है।

लगभग 100 एफएस से कम पल्स अवधि ऑप्टोइलेक्ट्रोनिक तकनीकों (यानी फोटोडिओड्स) का उपयोग करके सीधे मापे जाने के लिए बहुत कम है, और इसलिए अप्रत्यक्ष तरीके, जैसे स्वत: सहसंबंध, आवृत्ति-समाधान ऑप्टिकल गेटिंग, प्रत्यक्ष विद्युत-क्षेत्र पुनर्निर्माण या मल्टीफ़ोटो इंट्रापल्स हस्तक्षेप चरण स्कैन के लिए स्पेक्ट्रल चरण इंटरफेरोमेट्री का उपयोग किया जाता है।

अनुप्रयोग

  • परमाणु संलयन (जड़त्वीय बंधन संलयन)।
  • नॉनलाइनियर ऑप्टिक्स, जैसे कि दूसरी-हार्मोनिक पीढ़ी, पैरामीट्रिक डाउन-रूपांतरण, ऑप्टिकल पैरामीट्रिक ऑसिलेटर, और टेराहर्ट्ज़ विकिरण की पीढ़ी।
  • ऑप्टिकल डेटा स्टोरेज में लेजर का उपयोग होता है, और 3डी ऑप्टिकल डेटा स्टोरेज की उभरती हुई तकनीक सामान्यतः अरैखिक प्रकाश रसायन पर निर्भर करती है। इस कारण से, कई उदाहरण मोड-लॉक्ड लेजर का उपयोग करते हैं, क्योंकि वे अल्ट्राशॉर्ट स्पन्दों की बहुत उच्च पुनरावृत्ति दर प्रदान कर सकते हैं।
  • फेमटोसेकंड लेजर नैनोमशीनिंग - कई प्रकार की सामग्रियों में शॉर्ट स्पन्दों का उपयोग नैनोमैचिन के लिए किया जा सकता है।
  • पिको- और फेमटोसेकंड माइक्रोमशीनिंग का एक उदाहरण इंकजेट प्रिंटर की सिलिकॉन जेट सतह की ड्रिलिंग है।
  • दो दो-फोटॉन माइक्रोस्कोपी
  • कॉर्नियल सर्जरी (अपवर्तक सर्जरी देखें)। फेम्टोसेकंड लेजर का उपयोग कॉर्निया में बुलबुले बनाने के लिए किया जा सकता है। माइक्रोकेराटोम की जगह, कॉर्निया में कट बनाने के लिए बुलबुले की पंक्ति का उपयोग किया जा सकता है, उदा। लेसिक सर्जरी में आवरक के निर्माण के लिए (इसे कभी-कभी इंट्रालेसिक या ऑल-लेजर सर्जरी कहा जाता है)। कई परतों में बुलबुले भी बनाए जा सकते हैं ताकि इन परतों के बीच कॉर्नियल ऊतक का एक टुकड़ा हटाया जा सके (एक प्रक्रिया जिसे अल्प चीरा लेंटिकुल निष्कर्षण के रूप में जाना जाता है)।
  • लेसर तकनीक विकसित की गई है जो धातुओं की सतह को गहरे काले रंग में रंग देती है। फेमटोसेकंड लेजर पल्स धातु की सतह को विकृत करता है, जिससे नैनोसंरचना बनती है। बेहद बढ़ा हुआ सतह क्षेत्र उस पर पड़ने वाले लगभग सभी प्रकाश को अवशोषित कर सकता है, इस प्रकार इसे गहरा काला बना देता है। यह एक प्रकार का काला सोना होता है।[3]
  • फोटोनिक नमूनाकरण, इलेक्ट्रॉनिक एडीसी में नमूनाकरण त्रुटि को कम करने के लिए इलेक्ट्रॉनिक घड़ियों पर लेजर की उच्च सटीकता का उपयोग करना है।

लेजर कैविटी का लॉकिंग मैकेनिज्म

मोनोक्रोमैटिक प्रकाश लेजर की संपत्ति लेजर के मौलिक कार्य सिद्धांत पर निर्भर करती है जिसमें आवृत्ति चयनात्मक तत्व होते हैं। उदाहरण के लिए लेज़र डायोड में, बाहरी दर्पण अनुनाद और ग्रेटिंग वे तत्व हैं। इन तत्वों की मदद से, आवृत्ति चयन प्रकाश के बहुत संकीर्ण वर्णक्रमीय उत्सर्जन की ओर ले जाता है। हालांकि, जब बारीकी से देखा जाता है, तो विभिन्न समय के पैमाने पर आवृत्ति में उतार-चढ़ाव होते हैं। उनकी उत्पत्ति के अलग-अलग कारण हो सकते हैं, उदाहरण के लिए। इनपुट वोल्टेज में उतार-चढ़ाव, ध्वनिक कंपन या आसपास के दबाव और तापमान में परिवर्तन। इसलिए, इन आवृत्ति उतार-चढ़ाव को कम करने के लिए, लेजर के चरण या आवृत्ति को एक बाहरी सीमा तक स्थिर करना आवश्यक है। किसी भी बाहरी स्रोत या बाहरी संदर्भ का उपयोग करके लेजर संपत्ति को स्थिर करना सामान्यतः 'लॉकर लॉकिंग' या बस 'लॉकिंग' कहा जाता है।

त्रुटि संकेत पीढ़ी

त्रुटि संकेतों को उत्पन्न करने का कारण इलेक्ट्रॉनिक सिग्नल बनाना है जो एक विशेष समूह आवृत्ति या चरण से लेजर के विचलन के समानुपाती होता है जिसे 'लॉक पॉइंट' कहा जाता है। यदि लेज़र आवृत्ति अधिक है तो संकेत धनात्मक है, यदि आवृत्ति बहुत कम है तो संकेत ऋणात्मक है। जिस बिंदु पर सिग्नल शून्य होता है उसे लॉक पॉइंट कहा जाता है। त्रुटि संकेत के आधार पर लेजर लॉकिंग जो आवृत्ति का एक कार्य है, आवृत्ति लॉकिंग कहा जाता है और यदि त्रुटि संकेत लेजर के चरण विचलन का एक कार्य है, तो इस लॉकिंग को लेजर के चरण लॉकिंग के रूप में जाना जाता है। यदि सिग्नल एक ऑप्टिकल समूहअप का उपयोग करके बनाया गया है जिसमें आवृत्ति संदर्भ जैसे संदर्भ सम्मिलित हैं। संदर्भ का उपयोग करते हुए, ऑप्टिकल सिग्नल सीधे ओवर फ्रीक्वेंसी में परिवर्तित हो जाता है जिसे सीधे पता लगाया जा सकता है। दूसरा तरीका फोटोडायोड या कैमरे का उपयोग करके सिग्नल रिकॉर्ड करना है और इस सिग्नल को इलेक्ट्रॉनिक रूप से परिवर्तित करना है।

यह भी देखें

संदर्भ

  1. Mayer, B., et al. "Long-term mutual phase locking of picosecond pulse pairs generated by a semiconductor nanowire laser". Nature Communications 8 (2017): 15521.
  2. R. Huber, M. Wojtkowski, J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography", Opt. Express 14, 3225–3237 (2006).
  3. "Ultra-Intense Laser Blast Creates True 'Black Metal'". Retrieved 2007-11-21.


अग्रिम पठन


बाहरी संबंध