यादृच्छिक संख्या तालिका: Difference between revisions

From Vigyanwiki
(Created page with "{{Multiple issues| {{more footnotes|date=April 2009}} {{one source|date=March 2011}} {{cleanup rewrite|date=March 2011}} }} यादृच्छिक संख्या त...")
 
No edit summary
Line 1: Line 1:
{{Multiple issues|
{{more footnotes|date=April 2009}}
{{one source|date=March 2011}}
{{cleanup rewrite|date=March 2011}}
}}
यादृच्छिक संख्या तालिका का उपयोग आँकड़ों में चयनित यादृच्छिकता नमूने जैसे कार्यों के लिए किया गया है। यह मैन्युअल रूप से यादृच्छिक नमूने (पासा, कार्ड, आदि के साथ) चुनने से कहीं अधिक प्रभावी था। आजकल, [[अनियमितता]] नंबरों की तालिकाओं को कम्प्यूटेशनल [[ रैंडम संख्या जनरेटर ]] द्वारा बदल दिया गया है।
यादृच्छिक संख्या तालिका का उपयोग आँकड़ों में चयनित यादृच्छिकता नमूने जैसे कार्यों के लिए किया गया है। यह मैन्युअल रूप से यादृच्छिक नमूने (पासा, कार्ड, आदि के साथ) चुनने से कहीं अधिक प्रभावी था। आजकल, [[अनियमितता]] नंबरों की तालिकाओं को कम्प्यूटेशनल [[ रैंडम संख्या जनरेटर ]] द्वारा बदल दिया गया है।


Line 18: Line 12:


प्रकाशित तालिकाओं में अभी भी आला उपयोग हैं, विशेष रूप से प्रायोगिक संगीत टुकड़ों के प्रदर्शन में जो उनके लिए कॉल करते हैं, जैसे कि [[ला मोंटे यंग]] द्वारा विजन (1959) और कविता (1960)।<ref>{{cite web|title=एक सीधी रेखा के बाद|url=http://www.users.waitrose.com/~chobbs/smithyoung.html|accessdate=29 August 2012}}</ref>
प्रकाशित तालिकाओं में अभी भी आला उपयोग हैं, विशेष रूप से प्रायोगिक संगीत टुकड़ों के प्रदर्शन में जो उनके लिए कॉल करते हैं, जैसे कि [[ला मोंटे यंग]] द्वारा विजन (1959) और कविता (1960)।<ref>{{cite web|title=एक सीधी रेखा के बाद|url=http://www.users.waitrose.com/~chobbs/smithyoung.html|accessdate=29 August 2012}}</ref>
== यह भी देखें ==
== यह भी देखें ==
* 100,000 सामान्य विचलन के साथ एक लाख यादृच्छिक अंक
* 100,000 सामान्य विचलन के साथ एक लाख यादृच्छिक अंक
Line 26: Line 18:
==संदर्भ==
==संदर्भ==
{{Reflist}}
{{Reflist}}


==बाहरी संबंध==
==बाहरी संबंध==
* [http://www.rand.org/pubs/monograph_reports/MR1418/ Data from ''A Million Random Digits With 100,000 Normal Deviates''] by the RAND Corporation
* [http://www.rand.org/pubs/monograph_reports/MR1418/ Data from ''A Million Random Digits With 100,000 Normal Deviates''] by the RAND Corporation
{{Authority control}}
[[Category: यादृच्छिक संख्या पीढ़ी]]  
[[Category: यादृच्छिक संख्या पीढ़ी]]  



Revision as of 12:06, 11 June 2023

यादृच्छिक संख्या तालिका का उपयोग आँकड़ों में चयनित यादृच्छिकता नमूने जैसे कार्यों के लिए किया गया है। यह मैन्युअल रूप से यादृच्छिक नमूने (पासा, कार्ड, आदि के साथ) चुनने से कहीं अधिक प्रभावी था। आजकल, अनियमितता नंबरों की तालिकाओं को कम्प्यूटेशनल रैंडम संख्या जनरेटर द्वारा बदल दिया गया है।

यदि सावधानी से तैयार किया जाता है, तो फ़िल्टरिंग और परीक्षण प्रक्रियाएँ हार्डवेयर-जनित मूल संख्याओं से किसी भी ध्यान देने योग्य पूर्वाग्रह या विषमता को दूर करती हैं ताकि ऐसी तालिकाएँ आकस्मिक उपयोगकर्ता के लिए उपलब्ध सबसे विश्वसनीय यादृच्छिक संख्याएँ प्रदान करें।

ध्यान दें कि कोई भी प्रकाशित (या अन्यथा सुलभ) यादृच्छिक डेटा तालिका क्रिप्टोग्राफ़िक उद्देश्यों के लिए अनुपयुक्त है क्योंकि संख्याओं की पहुंच उन्हें प्रभावी ढंग से अनुमानित करती है, और इसलिए क्रिप्टोसिस्टम पर उनका प्रभाव भी अनुमानित है। इसके विपरीत, वास्तव में यादृच्छिक संख्याएँ जो केवल इच्छित एनकोडर और डिकोडर के लिए सुलभ हैं, एक-बार पैड के रूप में जानी जाने वाली विधि में समान या कम सार्थक डेटा (एक साधारण अनन्य या ऑपरेशन का उपयोग करके) के शाब्दिक रूप से अटूट एन्क्रिप्शन की अनुमति देती हैं। जिसमें अक्सर दुर्गम समस्याएँ होती हैं जो इस पद्धति को सही ढंग से लागू करने में बाधाएँ हैं।

इतिहास

यादृच्छिक संख्याओं की तालिकाओं में वांछित गुण होते हैं, चाहे तालिका से कैसे भी चुना गया हो: पंक्ति, स्तंभ, विकर्ण या अनियमित रूप से। इस तरह की पहली तालिका एलएचसी द्वारा प्रकाशित की गई थी। 1927 में टिप्पीट, और तब से ऐसी कई अन्य तालिकाएँ विकसित की गईं। पहली सारणियाँ विभिन्न तरीकों से तैयार की गई थीं- एक (एल.एच.सी. टिप्पीट द्वारा) ने जनगणना रजिस्टरों से यादृच्छिक रूप से अपनी संख्याएँ लीं, दूसरी (आरए फिशर और फ्रांसिस येट्स द्वारा) लघुगणक तालिकाओं से यादृच्छिक रूप से ली गई संख्याओं का उपयोग किया, और 1939 में 100,000 अंक एम.जी. द्वारा प्रकाशित किए गए थे। Kendall और B. Babington Smith ने एक मानव ऑपरेटर के साथ मिलकर एक विशेष मशीन द्वारा निर्मित किया। 1940 के दशक के मध्य में, RAND Corporation मोंटे कार्लो विधि पद्धति के उपयोग के लिए यादृच्छिक संख्याओं की एक बड़ी तालिका विकसित करने की तैयारी की, और एक हार्डवेयर यादृच्छिक संख्या जनरेटर का उपयोग करके 100,000 सामान्य विचलन के साथ एक मिलियन यादृच्छिक अंक उत्पन्न किए। रैंड टेबल में कंप्यूटर से जुड़े रूलेट व्हील के इलेक्ट्रॉनिक सिमुलेशन का इस्तेमाल किया गया था, जिसके परिणाम तालिका बनाने के लिए उपयोग किए जाने से पहले सावधानी से फ़िल्टर किए गए और परीक्षण किए गए थे। यादृच्छिक संख्या देने में रैंड तालिका एक महत्वपूर्ण सफलता थी क्योंकि इतनी बड़ी और सावधानी से तैयार की गई तालिका पहले कभी उपलब्ध नहीं थी (पहले प्रकाशित सबसे बड़ी तालिका आकार में दस गुना छोटी थी), और क्योंकि यह आईबीएम छिद्रित कार्ड पर भी उपलब्ध थी, जो कंप्यूटर में इसके उपयोग की अनुमति है। 1950 के दशक में, ERNIE नाम के एक हार्डवेयर रैंडम नंबर जनरेटर का इस्तेमाल ब्रिटिश प्रीमियम बॉन्ड नंबर निकालने के लिए किया गया था।

सांख्यिकीय यादृच्छिकता के लिए यादृच्छिक संख्याओं का पहला परीक्षण एम.जी. द्वारा विकसित किया गया था। 1930 के दशक के अंत में केंडल और बी। बबिंगटन स्मिथ, और एक दिए गए क्रम में कुछ प्रकार की संभावित अपेक्षाओं की तलाश पर आधारित था। सबसे सरल परीक्षण यह सुनिश्चित करने के लिए देखा गया कि 1s, 2s, 3s, आदि की लगभग समान संख्याएँ मौजूद थीं; अधिक जटिल परीक्षण लगातार 0 के बीच अंकों की संख्या की तलाश करते हैं और उनकी अपेक्षित संभावनाओं के साथ कुल गणना की तुलना करते हैं। इन वर्षों में अधिक जटिल परीक्षण विकसित किए गए। केंडल और स्मिथ ने 'स्थानीय यादृच्छिकता' की धारणा भी बनाई, जिससे यादृच्छिक संख्याओं का एक सेट विभाजित हो जाएगा और खंडों में परीक्षण किया जाएगा। उनके 100,000 नंबरों के सेट में, उदाहरण के लिए, हजारों में से दो बाकी की तुलना में कुछ हद तक स्थानीय रूप से यादृच्छिक थे, लेकिन एक पूरे के रूप में सेट अपने परीक्षण पास करेगा। केंडल और स्मिथ ने अपने पाठकों को सलाह दी कि वे परिणाम के रूप में स्वयं उन हजारों का उपयोग न करें।

प्रकाशित तालिकाओं में अभी भी आला उपयोग हैं, विशेष रूप से प्रायोगिक संगीत टुकड़ों के प्रदर्शन में जो उनके लिए कॉल करते हैं, जैसे कि ला मोंटे यंग द्वारा विजन (1959) और कविता (1960)।[1]

यह भी देखें

  • 100,000 सामान्य विचलन के साथ एक लाख यादृच्छिक अंक
  • किश ग्रिड

संदर्भ

  1. "एक सीधी रेखा के बाद". Retrieved 29 August 2012.

बाहरी संबंध