संभाव्यता से बिखरने में अनुनाद: Difference between revisions

From Vigyanwiki
No edit summary
Line 55: Line 55:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 24/05/2023]]
[[Category:Created On 24/05/2023]]
[[Category:Vigyan Ready]]

Revision as of 13:52, 26 June 2023

क्वांटम यांत्रिकी में, अनुनाद क्रॉस सेक्शन क्वांटम स्कैटरिंग सिद्धांत के संदर्भ में होता है, जो क्षमता से क्वांटम कणों के बिखरने का अध्ययन करने से संबंधित है। प्रकीर्णन समस्या विभव के फलन के रूप में बिखरे हुए कणों/तरंगों के फ्लक्स वितरण और आपतित कण की स्थिति (संवेग/ऊर्जा के संरक्षण द्वारा विशेषता) की गणना से संबंधित है। विभव पर मुक्त क्वांटम कण आपतित के लिए, समय-स्वतंत्र श्रोडिंगर तरंग समीकरण का समतल तरंग समाधान है:

आयामी समस्याओं के लिए, संचरण गुणांक रुचि का है। इसे इस प्रकार परिभाषित किया गया है:

जहाँ प्रायिकता धारा घनत्व है। यह कणों की आपतित किरण का वह भाग है जो इसे विभव से पार कराता है। त्रि-आयामी समस्याओं के लिए, बिखरने वाले क्रॉस-सेक्शन की गणना करता है, जो, सामान्यतः, बिखरे हुए आपतित किरण का कुल क्षेत्रफल है। प्रासंगिकता की मात्रा आंशिक क्रॉस-सेक्शन है, जो निश्चित कोणीय संवेग ईजेनस्टेट की आंशिक तरंग के लिए बिखरने वाले क्रॉस सेक्शन को दर्शाता है। ये मात्राएँ स्वाभाविक रूप से पर निर्भर करती हैं, आपतित तरंग का तरंग-वेक्टर, जो इसकी ऊर्जा से संबंधित है:

ब्याज की इन मात्राओं का मान, संचरण गुणांक (आयामी क्षमता की स्तिथि में), और आंशिक क्रॉस-सेक्शन घटना ऊर्जा के साथ उनकी भिन्नता में शिखर दिखाते हैं, इन घटनाओं को अनुनाद कहा जाता है।

आयामी स्तिथि

गणितीय विवरण

आयामी परिमित वर्ग विभव(QM) किसके द्वारा दिया जाता है?

का चिह्न निर्धारित करता है कि वर्ग क्षमता एक घेरा है या अवरोध है। प्रतिध्वनि की घटना का अध्ययन करने के लिए, ऊर्जा के साथ एक विशाल कण की स्थिर स्थिति के लिए समय-स्वतंत्र श्रोडिंगर समीकरण का समाधान किया गया:

तीन क्षेत्रों के लिए फलन समाधान हैं

जहाँ, और क्रमशः विभव-मुक्त क्षेत्र और विभव के भीतर तरंग संख्याएँ हैं:

की गणना करना, तरंग फलन में गुणांक के रूप में सेट किया गया है , जो इस तथ्य से युग्मित होता है कि दाईं ओर से विभव पर कोई तरंग घटना नहीं है। यह नियम है कि तरंग कार्य है और इसका व्युत्पन्न बाधा सीमाओं पर निरंतर होना चाहिए और , गुणांकों के मध्य संबंध हैं, जो अनुमति देता है कि को इस रूप में पाया जायेंगा:

यह इस प्रकार है कि संचरण गुणांक अपने अधिकतम मान 1 पर पहुँचता है जब:

किसी भी पूर्णांक मान के लिए यह प्रतिध्वनि की स्थिति है, जो चरमोत्कर्ष की ओर ले जाती है इसकी अधिकतम सीमा तक को अनुनाद कहा जाता है।

भौतिक चित्र (स्टैंडिंग डी ब्रोगली वेव्स और फेब्री-पेरोट एटलॉन)

उपरोक्त अभिव्यक्ति से, अनुनाद तब होता है जब कण द्वारा उत्तम प्रकार से और वापस आने में तय की गई दूरी () क्षमता के अंदर कण के डी ब्रोगली तरंग दैर्ध्य का अभिन्न गुणक है, संभावित विच्छिन्नता संभावित असंततता पर प्रतिबिंब किसी भी चरण परिवर्तन के साथ नहीं होते हैं।[1] इसलिए, अनुनाद संभावित बाधा के भीतर स्थायी तरंगों के गठन के अनुरूप होती हैं। अनुनाद पर, तरंगें विभव पर आपतित होती हैं और विभव की दीवारों के मध्य परावर्तित तरंगें चरण में हैं, और एक दूसरे को सुदृढ़ करती हैं। अनुनादों से दूर, स्थायी तरंगें नहीं बनाई जा सकतीं। फिर, विभव की दोनों दीवारों के मध्य परावर्तित होने वाली तरंगें (पर और ) पर संचारित होती है चरण से बाहर हैं, और हस्तक्षेप से एक दूसरे को नष्ट कर देते हैं। भौतिकी प्रकाशिकी में फेब्री-पेरोट इंटरफेरोमीटर में संचरण के समान है, जहां अनुनाद की स्थिति और संचरण गुणांक का कार्यात्मक रूप समान हैं।

30 के आकार कारक के लिए (E/V0) के विरुद्ध संचरण गुणांक का प्लॉट
13 के आकार कारक के लिए (E/V0) के विरुद्ध संचरण गुणांक का प्लॉट

अनुनाद वक्रों की प्रकृति

संचरण गुणांक अधिकतम 1 और न्यूनतम के मध्य होता है वर्ग की लंबाई के फलन के रूप में () की अवधि के साथ संचरण की न्यूनतम प्रवृत्ति होती है बड़ी ऊर्जा की सीमा में , जिसके परिणामस्वरूप अधिक विपरीत अनुनाद होते हैं, और इसके विपरीत रूप से प्रवृत्त होती है कम ऊर्जा की सीमा में , जिसके परिणामस्वरूप तीव्र प्रतिध्वनि होती है। इसे आकार कारक के निश्चित मानों के लिए आपतित कण ऊर्जा के विरुद्ध संचरण गुणांक के भूखंडों में प्रदर्शित किया गया है, जिसे इस प्रकार परिभाषित किया गया है:

  1. Claude Cohen-Tannaoudji, Bernanrd Diu, Frank Laloe.(1992), Quantum Mechanics ( Vol. 1), Wiley-VCH, p.73

संदर्भ

  • Merzbacher Eugene. Quantum Mechanics. John Wiley and Sons.
  • Cohen-Tannoudji Claude. Quantum Mechanics. Wiley-VCH.