कमजोर स्थानीयकरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 13: Line 13:
प्रभाव प्रकृति में क्वांटम-मैकेनिकल है और इसकी उत्पत्ति निम्न है: यह एक अव्यवस्थित [[इलेक्ट्रॉन|इलेक्ट्रॉनिक]] प्रणाली में, इलेक्ट्रॉन गति बैलिस्टिक के अतिरिक्त विसरित होती है। अर्थात्, एक इलेक्ट्रॉन एक सीधी रेखा के साथ नहीं चलता है, किंतु अशुद्धियों से यादृच्छिक प्रकीर्णन की श्रृंखला का अनुभव करता है जिसके परिणामस्वरूप यादृच्छिक चलना होता है।
प्रभाव प्रकृति में क्वांटम-मैकेनिकल है और इसकी उत्पत्ति निम्न है: यह एक अव्यवस्थित [[इलेक्ट्रॉन|इलेक्ट्रॉनिक]] प्रणाली में, इलेक्ट्रॉन गति बैलिस्टिक के अतिरिक्त विसरित होती है। अर्थात्, एक इलेक्ट्रॉन एक सीधी रेखा के साथ नहीं चलता है, किंतु अशुद्धियों से यादृच्छिक प्रकीर्णन की श्रृंखला का अनुभव करता है जिसके परिणामस्वरूप यादृच्छिक चलना होता है।


प्रणाली की प्रतिरोधकता अंतरिक्ष में दो दिए गए बिंदुओं के बीच एक इलेक्ट्रॉन के प्रसार की संभावना से संबंधित है। मौलिक भौतिकी मानती है कि कुल संभावना दो बिंदुओं को जोड़ने वाले रास्तों की संभावनाओं का योग है। चूँकि [[क्वांटम यांत्रिकी]] हमें बताती है कि कुल संभावना का पता लगाने के लिए हमें स्वयं संभावनाओं के अतिरिक्त रास्तों के क्वांटम-मैकेनिकल एम्पलीट्यूड का योग करना होगा। इसलिए इलेक्ट्रॉन के लिए बिंदु A से बिंदु B तक जाने की संभावना के लिए सही (क्वांटम-मैकेनिकल) सूत्र में मौलिक भाग (विसरित पथों की व्यक्तिगत संभावनाएँ) और कई हस्तक्षेप शब्द (एम्पलीट्यूड के उत्पाद) सम्मिलित हैं। अलग-अलग रास्ते) ये हस्तक्षेप नियमित प्रभावी रूप से इस बात की अधिक संभावना बनाती हैं कि एक वाहक अन्यथा की तुलना में एक चक्र में इधर-उधर अस्पष्ट होगा, जिससे शुद्ध प्रतिरोधकता में वृद्धि होती है। एक धातु की चालकता के लिए सामान्य सूत्र (तथाकथित [[ड्रूड सूत्र]]) पूर्व मौलिक नियम से मेल खाता है, जबकि अशक्त स्थानीयकरण सुधार बाद के क्वांटम हस्तक्षेप नियमित से मेल खाता है जो अव्यवस्था की प्राप्ति पर औसत है।
प्रणाली की प्रतिरोधकता अंतरिक्ष में दो दिए गए बिंदुओं के बीच एक इलेक्ट्रॉन के प्रसार की संभावना से संबंधित है। मौलिक भौतिकी मानती है कि कुल संभावना दो बिंदुओं को जोड़ने वाले रास्तों की संभावनाओं का योग है। चूँकि [[क्वांटम यांत्रिकी]] हमें बताती है कि कुल संभावना का पता लगाने के लिए हमें स्वयं संभावनाओं के अतिरिक्त रास्तों के क्वांटम-मैकेनिकल एम्पलीट्यूड का योग करना होगा। इसलिए इलेक्ट्रॉन के लिए बिंदु A से बिंदु B तक जाने की संभावना के लिए सही (क्वांटम-मैकेनिकल) सूत्र में मौलिक भाग (विसरित पथों की व्यक्तिगत संभावनाएँ) और कई हस्तक्षेप शब्द (एम्पलीट्यूड के उत्पाद) सम्मिलित हैं। अलग-अलग रास्ते) ये हस्तक्षेप नियमित प्रभावी रूप से इस बात की अधिक संभावना बनाती हैं कि एक वाहक अन्यथा की तुलना में एक चक्र में इधर-उधर अस्पष्ट होगा, जिससे शुद्ध प्रतिरोधकता में वृद्धि होती है। एक धातु की चालकता के लिए सामान्य सूत्र (तथाकथित [[ड्रूड सूत्र]]) पूर्व मौलिक नियम से मेल खाता है, जबकि अशक्त स्थानीयकरण सुधार बाद के क्वांटम हस्तक्षेप नियमित से मेल खाता है जो अव्यवस्था की प्राप्ति पर औसत है।


अशक्त स्थानीयकरण सुधार को अधिकत्तर स्व-क्रॉसिंग पथों के बीच क्वांटम हस्तक्षेप से आने के लिए दिखाया जा सकता है जिसमें इलेक्ट्रॉन लूप के चारों ओर दक्षिणावर्त और वामावर्त दिशा में फैल सकता है। पाश के साथ दो रास्तों की समान लंबाई के कारण, क्वांटम चरण एक दूसरे को पूर्ण रूप से समाप्त कर देते हैं और ये (अन्यथा संकेत में यादृच्छिक) क्वांटम हस्तक्षेप शब्द विकार औसत से बचे रहते हैं। चूंकि यह कम आयामों में एक स्व-क्रॉसिंग प्रक्षेपवक्र को खोजने की अधिक संभावना है अशक्त स्थानीयकरण प्रभाव कम-आयामी प्रणालियों (फिल्मों और तारों) में स्वयं को अधिक शसक्त रूप से प्रकट करता है।<ref>{{cite book
अशक्त स्थानीयकरण सुधार को अधिकत्तर स्व-क्रॉसिंग पथों के बीच क्वांटम हस्तक्षेप से आने के लिए दिखाया जा सकता है जिसमें इलेक्ट्रॉन लूप के चारों ओर दक्षिणावर्त और वामावर्त दिशा में फैल सकता है। पाश के साथ दो रास्तों की समान लंबाई के कारण, क्वांटम चरण एक दूसरे को पूर्ण रूप से समाप्त कर देते हैं और ये (अन्यथा संकेत में यादृच्छिक) क्वांटम हस्तक्षेप शब्द विकार औसत से बचे रहते हैं। चूंकि यह कम आयामों में एक स्व-क्रॉसिंग प्रक्षेपवक्र को खोजने की अधिक संभावना है अशक्त स्थानीयकरण प्रभाव कम-आयामी प्रणालियों (फिल्मों और तारों) में स्वयं को अधिक शसक्त रूप से प्रकट करता है।<ref>{{cite book
  | last = Datta
  | last = Datta
  | first = S.
  | first = S.
Line 56: Line 56:
:::::::<math>- {3e^2 \over 2 \pi^2 \hbar} \left [ \ln \left ( {(4/3)B_\text{SO} + B_\phi \over B}\right ) - \psi \left ({1 \over 2} + {(4/3)B_\text{SO}+B_\phi \over B} \right ) \right]</math>
:::::::<math>- {3e^2 \over 2 \pi^2 \hbar} \left [ \ln \left ( {(4/3)B_\text{SO} + B_\phi \over B}\right ) - \psi \left ({1 \over 2} + {(4/3)B_\text{SO}+B_\phi \over B} \right ) \right]</math>


<math>\psi</math> डिगामा कार्य है। <math>B_\phi</math> चरण सुसंगतता विशेषता क्षेत्र है, जो मोटे तौर पर चरण सुसंगतता को नष्ट करने के लिए आवश्यक चुंबकीय क्षेत्र है, <math>B_\text{SO}</math> स्पिन-ऑर्बिट विशेषता क्षेत्र है जिसे स्पिन-ऑर्बिट इंटरैक्शन की ताकत का एक उपाय माना जा सकता है स्पिन-ऑर्बिट इंटरैक्शन और <math>B_e</math> लोचदार विशेषता क्षेत्र है। विशेषता क्षेत्रों को उनकी संबंधित विशेषता लंबाई के संदर्भ में उत्तम समझा जाता है जो कि <math>{B_i = \hbar / 4 e l_i^2}</math> , <math>l_\phi</math> से घटाया जाता है इसके बाद एक इलेक्ट्रॉन द्वारा तय की गई दूरी के रूप में समझा जा सकता है इससे पहले कि वह चरण सुसंगतता खो देता है, <math>l_\text{SO}</math> के बारे में सोचा जा सकता है क्योंकि इलेक्ट्रॉन के स्पिन से पहले तय की गई दूरी स्पिन-ऑर्बिट इंटरैक्शन के प्रभाव से गुजरती है, और अंत में <math>l_e</math> औसत मुक्त पथ है।
<math>\psi</math> डिगामा कार्य है। <math>B_\phi</math> चरण सुसंगतता विशेषता क्षेत्र है, जो मोटे तौर पर चरण सुसंगतता को नष्ट करने के लिए आवश्यक चुंबकीय क्षेत्र है, <math>B_\text{SO}</math> स्पिन-ऑर्बिट विशेषता क्षेत्र है जिसे स्पिन-ऑर्बिट इंटरैक्शन की ताकत का एक उपाय माना जा सकता है स्पिन-ऑर्बिट इंटरैक्शन और <math>B_e</math> लोचदार विशेषता क्षेत्र है। विशेषता क्षेत्रों को उनकी संबंधित विशेषता लंबाई के संदर्भ में उत्तम समझा जाता है जो कि <math>{B_i = \hbar / 4 e l_i^2}</math> , <math>l_\phi</math> से घटाया जाता है इसके बाद एक इलेक्ट्रॉन द्वारा तय की गई दूरी के रूप में समझा जा सकता है इससे पहले कि वह चरण सुसंगतता खो देता है, <math>l_\text{SO}</math> के बारे में सोचा जा सकता है क्योंकि इलेक्ट्रॉन के स्पिन से पहले तय की गई दूरी स्पिन-ऑर्बिट इंटरैक्शन के प्रभाव से गुजरती है, और अंत में <math>l_e</math> औसत मुक्त पथ है।




Line 68: Line 68:




'''सुसंगतता विशेषता क्षेत्र है, जो मोटे तौर पर चरण सुसंगतता को नष्ट करने के लिए आवश्यक चुंबकीय क्षेत्र है, <math>B_\text{SO}</math> स्पिन-ऑर्बिट विशेषता क्षेत्र है जिसे स्पिन-ऑर्बिट इंटरैक्शन की ताकत का एक उपाय माना जा सकता है  स्पिन-ऑर्बि'''
'''सुसंगतता विशेषता क्षेत्र है, जो मोटे तौर पर चरण सुसंगतता को नष्ट करने के लिए'''  


== यह भी देखें                    ==
== यह भी देखें                    ==

Revision as of 08:49, 23 June 2023

अव्यवस्थित प्रणाली में कई संभावित प्रकीर्णन पथ हैं
अशक्त स्थानीयकरण मुख्य रूप से स्व-प्रतिच्छेदी प्रकीर्णन वाले रास्तों के कारण होता है

अशक्त स्थानीयकरण एक भौतिक प्रभाव है जो अव्यवस्थित इलेक्ट्रॉनिक प्रणालियों में बहुत कम तापमान पर होता है। यह प्रभाव धातु या अर्धचालक की प्रतिरोधकता के लिए एक सकारात्मक सुधार के रूप में प्रकट होता है।[1] इसमें नाम इस तथ्य पर जोर देता है कि अशक्त स्थानीयकरण एंडरसन स्थानीयकरण का अग्रदूत है, जो विवश विकार पर होता है।

सामान्य सिद्धांत

प्रभाव प्रकृति में क्वांटम-मैकेनिकल है और इसकी उत्पत्ति निम्न है: यह एक अव्यवस्थित इलेक्ट्रॉनिक प्रणाली में, इलेक्ट्रॉन गति बैलिस्टिक के अतिरिक्त विसरित होती है। अर्थात्, एक इलेक्ट्रॉन एक सीधी रेखा के साथ नहीं चलता है, किंतु अशुद्धियों से यादृच्छिक प्रकीर्णन की श्रृंखला का अनुभव करता है जिसके परिणामस्वरूप यादृच्छिक चलना होता है।

प्रणाली की प्रतिरोधकता अंतरिक्ष में दो दिए गए बिंदुओं के बीच एक इलेक्ट्रॉन के प्रसार की संभावना से संबंधित है। मौलिक भौतिकी मानती है कि कुल संभावना दो बिंदुओं को जोड़ने वाले रास्तों की संभावनाओं का योग है। चूँकि क्वांटम यांत्रिकी हमें बताती है कि कुल संभावना का पता लगाने के लिए हमें स्वयं संभावनाओं के अतिरिक्त रास्तों के क्वांटम-मैकेनिकल एम्पलीट्यूड का योग करना होगा। इसलिए इलेक्ट्रॉन के लिए बिंदु A से बिंदु B तक जाने की संभावना के लिए सही (क्वांटम-मैकेनिकल) सूत्र में मौलिक भाग (विसरित पथों की व्यक्तिगत संभावनाएँ) और कई हस्तक्षेप शब्द (एम्पलीट्यूड के उत्पाद) सम्मिलित हैं। अलग-अलग रास्ते) ये हस्तक्षेप नियमित प्रभावी रूप से इस बात की अधिक संभावना बनाती हैं कि एक वाहक अन्यथा की तुलना में एक चक्र में इधर-उधर अस्पष्ट होगा, जिससे शुद्ध प्रतिरोधकता में वृद्धि होती है। एक धातु की चालकता के लिए सामान्य सूत्र (तथाकथित ड्रूड सूत्र) पूर्व मौलिक नियम से मेल खाता है, जबकि अशक्त स्थानीयकरण सुधार बाद के क्वांटम हस्तक्षेप नियमित से मेल खाता है जो अव्यवस्था की प्राप्ति पर औसत है।

अशक्त स्थानीयकरण सुधार को अधिकत्तर स्व-क्रॉसिंग पथों के बीच क्वांटम हस्तक्षेप से आने के लिए दिखाया जा सकता है जिसमें इलेक्ट्रॉन लूप के चारों ओर दक्षिणावर्त और वामावर्त दिशा में फैल सकता है। पाश के साथ दो रास्तों की समान लंबाई के कारण, क्वांटम चरण एक दूसरे को पूर्ण रूप से समाप्त कर देते हैं और ये (अन्यथा संकेत में यादृच्छिक) क्वांटम हस्तक्षेप शब्द विकार औसत से बचे रहते हैं। चूंकि यह कम आयामों में एक स्व-क्रॉसिंग प्रक्षेपवक्र को खोजने की अधिक संभावना है अशक्त स्थानीयकरण प्रभाव कम-आयामी प्रणालियों (फिल्मों और तारों) में स्वयं को अधिक शसक्त रूप से प्रकट करता है।[2]


अशक्त विरोधी स्थानीयकरण

स्पिन-ऑर्बिट कपलिंग वाली प्रणाली में वाहक का स्पिन उसकी गति से जुड़ा होता है। वाहक का स्पिन घूमता है क्योंकि यह एक स्व-प्रतिच्छेदी पथ के चारों ओर जाता है और इस घुमाव की दिशा लूप के बारे में दो दिशाओं के विपरीत होती है। इस वजह से किसी भी पाश के साथ दो रास्ते विनाशकारी रूप से हस्तक्षेप करते हैं जिससे कम शुद्ध प्रतिरोधकता होती है। [3]


दो आयामों में

दो आयामों में एक चुंबकीय क्षेत्र को प्रयुक्त करने से चालकता में परिवर्तन या तो अशक्त स्थानीयकरण या अशक्त विरोधी स्थानीयकरण के कारण हिकामी-लार्किन-नागोका समीकरण द्वारा वर्णित किया जा सकता है:[3][4]

जहाँ , और विभिन्न विश्राम (भौतिकी) हैं। यह सैद्धांतिक रूप से व्युत्पन्न समीकरण जल्द ही विशेषता क्षेत्रों के संदर्भ में प्रसारित किया गया था, जो अधिक प्रत्यक्ष रूप से प्रायोगिक रूप से प्रासंगिक मात्राएँ हैं:[5]

जहां विशिष्ट क्षेत्र हैं:

जहाँ संभावित बिखराव है, बेलोचदार बिखराव है, चुंबकीय प्रकीर्णन वाला है, और स्पिन-ऑर्बिट स्कैटरिंग है। किसी नियम के तहत,[which?] इसे फिर से लिखा जा सकता है:

डिगामा कार्य है। चरण सुसंगतता विशेषता क्षेत्र है, जो मोटे तौर पर चरण सुसंगतता को नष्ट करने के लिए आवश्यक चुंबकीय क्षेत्र है, स्पिन-ऑर्बिट विशेषता क्षेत्र है जिसे स्पिन-ऑर्बिट इंटरैक्शन की ताकत का एक उपाय माना जा सकता है स्पिन-ऑर्बिट इंटरैक्शन और लोचदार विशेषता क्षेत्र है। विशेषता क्षेत्रों को उनकी संबंधित विशेषता लंबाई के संदर्भ में उत्तम समझा जाता है जो कि , से घटाया जाता है इसके बाद एक इलेक्ट्रॉन द्वारा तय की गई दूरी के रूप में समझा जा सकता है इससे पहले कि वह चरण सुसंगतता खो देता है, के बारे में सोचा जा सकता है क्योंकि इलेक्ट्रॉन के स्पिन से पहले तय की गई दूरी स्पिन-ऑर्बिट इंटरैक्शन के प्रभाव से गुजरती है, और अंत में औसत मुक्त पथ है।


शसक्त स्पिन-कक्षा युग्मन की सीमा में , उपरोक्त समीकरण कम हो जाता है:

इस समीकरण में अशक्त स्थानीयकरण के लिए -1 और अशक्त स्थानीयकरण के लिए +1/2 है।

चुंबकीय क्षेत्र निर्भरता

अशक्त स्थानीयकरण या अशक्त विरोधी - स्थानीयकरण की ताकत एक चुंबकीय क्षेत्र की उपस्थिति में जल्दी से गिर जाती है, जिसके कारण वाहक एक अतिरिक्त चरण प्राप्त कर लेते हैं क्योंकि वे पथ के चारों ओर घूमते हैं।


सुसंगतता विशेषता क्षेत्र है, जो मोटे तौर पर चरण सुसंगतता को नष्ट करने के लिए

यह भी देखें

संदर्भ

  1. Altshuler, B. L.; D. Khmel'nitzkii; A. I. Larkin; P. A. Lee (1980). "Magnetoresistance and Hall effect in a disordered two-dimensional electron gas". Phys. Rev. B. 22 (11): 5142. Bibcode:1980PhRvB..22.5142A. doi:10.1103/PhysRevB.22.5142.
  2. Datta, S. (1995). Electronic Transport in Mesoscopic Systems. Cambridge University Press. ISBN 978-0521599436.
  3. 3.0 3.1 Hikami, S.; A. I Larkin; Y. Nagaoka (1980). "Spin–Orbit Interaction and Magnetoresistance in the Two-Dimensional Random System". Progress of Theoretical Physics. 63 (2): 707–710. Bibcode:1980PThPh..63..707H. doi:10.1143/PTP.63.707.
  4. Poole, D A; Pepper, M; Hughes, A (1982-11-20). "Spin-orbit coupling and weak localisation in the 2D inversion layer of indium phosphide". Journal of Physics C: Solid State Physics. IOP Publishing. 15 (32): L1137–L1145. doi:10.1088/0022-3719/15/32/005. ISSN 0022-3719.
  5. Bergman, Gerd (1982-04-12). "कमजोर स्थानीयकरण पर स्पिन-ऑर्बिट कपलिंग का प्रभाव". Physical Review Letters. American Physical Society (APS). 48 (15): 1046–1049. Bibcode:1982PhRvL..48.1046B. doi:10.1103/physrevlett.48.1046. ISSN 0031-9007.