प्रतिरोधक सीढ़ी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Electrical circuit}}
{{short description|Electrical circuit}}
प्रतिरोधक [[सीढ़ी]] [[प्रतिरोधों]] की दोहराई जाने वाली इकाइयों से बना एक विद्युत परिपथ है। नीचे दो विन्यासों पर चर्चा की गई है, एक स्ट्रिंग प्रतिरोधक सीढ़ी और एक R-2R सीढ़ी।
प्रतिरोधक [[सीढ़ी]] [[प्रतिरोधों]] की दोहराई जाने वाली इकाइयों से बना एक विद्युत परिपथ है। एक स्ट्रिंग प्रतिरोधक सीढ़ी और एक R-2R सीढ़ी के नीचे दो विन्यासों पर चर्चा की गई है।


एक R-2R लैडर [[डिज़िटल से एनालॉग कन्वर्टर]]|डिजिटल-से-एनालॉग रूपांतरण करने का एक सरल और सस्ता तरीका है, जिसमें लैडर-जैसी कॉन्फ़िगरेशन में सटीक [[रोकनेवाला नेटवर्क]] की दोहराव वाली व्यवस्था का उपयोग किया जाता है। एक स्ट्रिंग रोकनेवाला सीढ़ी गैर-दोहराव वाले संदर्भ नेटवर्क को लागू करता है।
एक R-2R सीढ़ी [[डिज़िटल से एनालॉग कन्वर्टर]]|डिजिटल-से-एनालॉग रूपांतरण करने का एक सरल और सस्ती विधि है, जिसमें सीढ़ी-जैसी कॉन्फ़िगरेशन में स्पष्ट  [[रोकनेवाला नेटवर्क|प्रतिरोधक नेटवर्क]] की दोहराव वाली व्यवस्था का उपयोग किया जाता है। एक स्ट्रिंग प्रतिरोधक सीढ़ी गैर-दोहराव वाले संदर्भ नेटवर्क को प्रयुक्त  करता है।


== स्ट्रिंग रोकनेवाला सीढ़ी नेटवर्क (डिजिटल रूपांतरण, या एडीसी के अनुरूप) ==
== स्ट्रिंग प्रतिरोधक सीढ़ी नेटवर्क (डिजिटल रूपांतरण, या एडीसी के अनुरूप) ==
दो संदर्भ वोल्टेज के बीच जुड़े कई, अक्सर समान रूप से आयाम वाले प्रतिरोधों की एक स्ट्रिंग एक प्रतिरोधक स्ट्रिंग लैडर नेटवर्क है। प्रतिरोधी संदर्भित वोल्टेज के बीच [[ वोल्टेज विभक्त |वोल्टेज विभक्त]] के रूप में कार्य करते हैं। स्ट्रिंग का प्रत्येक टैप एक अलग वोल्टेज उत्पन्न करता है, जिसकी तुलना दूसरे वोल्टेज से की जा सकती है: यह एक [[फ्लैश एडीसी]] (एनालॉग-टू-डिजिटल कनवर्टर) का मूल सिद्धांत है। अक्सर एक वोल्टेज को करंट में बदल दिया जाता है, जिससे R-2R लैडर नेटवर्क का उपयोग करने की संभावना बढ़ जाती है।
दो संदर्भ वोल्टेज के बीच जुड़े कई अधिकांशतः समान रूप से आयाम वाले प्रतिरोधों की एक स्ट्रिंग एक प्रतिरोधक स्ट्रिंग सीढ़ी नेटवर्क है। प्रतिरोधी संदर्भित वोल्टेज के बीच [[ वोल्टेज विभक्त |वोल्टेज विभक्त]] के रूप में कार्य करते हैं। स्ट्रिंग का प्रत्येक टैप एक अलग वोल्टेज उत्पन्न करता है, जिसकी तुलना दूसरे वोल्टेज से की जा सकती है: यह एक [[फ्लैश एडीसी]] (एनालॉग-टू-डिजिटल कनवर्टर) का मूल सिद्धांत है। अधिकांशतः एक वोल्टेज को धारा में बदल दिया जाता है, जिससे R-2R सीढ़ी नेटवर्क का उपयोग करने की संभावना बढ़ जाती है।


* नुकसान: एक एन-बिट एडीसी के लिए, प्रतिरोधों की संख्या [[घातीय वृद्धि]], जैसे <math>2^n</math> प्रतिरोधों की आवश्यकता होती है, जबकि R-2R प्रतिरोधक सीढ़ी केवल बिट्स की संख्या के साथ रैखिक रूप से बढ़ती है, क्योंकि इसे केवल आवश्यकता होती है <math>2n</math> प्रतिरोधक।
* हानि: एक एन-बिट एडीसी के लिए, प्रतिरोधों की संख्या [[घातीय वृद्धि]], जैसे <math>2^n</math> प्रतिरोधों की आवश्यकता होती है, जबकि R-2R प्रतिरोधक सीढ़ी केवल बिट्स की संख्या के साथ रैखिक रूप से बढ़ती है, क्योंकि इसे केवल <math>2n</math> प्रतिरोधों की आवश्यकता होती है।
* लाभ: समान संख्या में घटकों का उपयोग करके उच्च प्रतिबाधा मान प्राप्त किया जा सकता है।
* लाभ: समान संख्या में घटकों का उपयोग करके उच्च प्रतिबाधा मान प्राप्त किया जा सकता है।


==R-2R रेसिस्टर लैडर नेटवर्क (डिजिटल से एनालॉग रूपांतरण)==
==R-2R रेसिस्टर सीढ़ी नेटवर्क (डिजिटल से एनालॉग रूपांतरण)==
[[Image:r2r-ladder.png|thumb|420px|right|चित्रा 1: एन-बिट आर-2आर प्रतिरोधी सीढ़ी]]चित्र 1 में एक बुनियादी R-2R रेसिस्टर लैडर नेटवर्क दिखाया गया है। बिट a<sub>''n''−1</sub> (सबसे महत्वपूर्ण बिट, एमएसबी) बिट ए के माध्यम से<sub>0</sub> (कम से कम महत्वपूर्ण बिट, एलएसबी) डिजिटल लॉजिक गेट्स से संचालित होते हैं। आदर्श रूप से, बिट इनपुट V = 0 (तर्क 0) और V = V के बीच स्विच किए जाते हैं<sub>ref</sub> (तर्क 1)R-2R नेटवर्क इन डिजिटल बिट्स को आउटपुट वोल्टेज V में उनके योगदान में भारित करने का कारण बनता है<sub>out</sub>. इस पर निर्भर करता है कि कौन से बिट 1 पर सेट हैं और कौन से 0 पर, आउटपुट वोल्टेज (V<sub>out</sub>) में 0 और V के बीच संगत [[परिमाणीकरण (सिग्नल प्रोसेसिंग)]] होगा<sub>ref</sub> बिट 0 के अनुरूप न्यूनतम चरण का मान घटाएं। V का वास्तविक मान<sub>ref</sub> (और तर्क का वोल्टेज 0) डिजिटल सिग्नल उत्पन्न करने के लिए उपयोग की जाने वाली तकनीक के प्रकार पर निर्भर करेगा।<ref>[http://www.interfacebus.com/voltage_threshold.html Logic Threshold Voltage Levels].</ref>
[[Image:r2r-ladder.png|thumb|420px|right|चित्रा 1: एन-बिट आर-2आर प्रतिरोधी सीढ़ी]]
N बिट्स और 0 V/V के साथ R–2R DAC के डिजिटल मान VAL के लिए<sub>ref</sub> तर्क स्तर, आउटपुट वोल्टेज वी<sub>out</sub> है:
 
 
चित्र 1 में एक मूल R–2R रेसिस्टर लैडर नेटवर्क दिखाया गया है। बिट a−1 (सबसे महत्वपूर्ण बिट, एमएसबी) बिट a0 (कम से कम महत्वपूर्ण बिट, एलएसबी) के माध्यम से डिजिटल लॉजिक गेट से संचालित होते हैं। आदर्श रूप से, बिट इनपुट V = 0 (तर्क 0) और V = V<sub>ref</sub> (तर्क 1) के बीच स्विच किए जाते हैं। R-2R नेटवर्क इन डिजिटल बिट्स को आउटपुट वोल्टेज V<sub>out</sub> में उनके योगदान में भारित करने का कारण बनता है। इस पर निर्भर करते हुए कि कौन से बिट को 1 पर सेट किया गया है और कौन से 0 पर आउटपुट वोल्टेज (वाउट) का 0 और V<sub>ref</sub> के बीच संबंधित चरणबद्ध मान होगा, बिट 0 के अनुरूप न्यूनतम चरण का मान घटाएगा। V<sub>ref</sub> का वास्तविक मान (और तर्क का वोल्टेज 0) डिजिटल सिग्नल उत्पन्न करने के लिए उपयोग की जाने वाली तकनीक के प्रकार पर निर्भर करेगा।<ref>[http://www.interfacebus.com/voltage_threshold.html Logic Threshold Voltage Levels].</ref>
N बिट्स और 0 V/''V''<sub>ref</sub> लॉजिक स्तरों वाले R–2R डीएसी के डिजिटल मान वैल के लिए, आउटपुट वोल्टेज ''V''<sub>out</sub> है:


: <math>V_o = V_{ref} \times \tfrac{\text{Value}}{2^N}</math>
: <math>V_o = V_{ref} \times \tfrac{\text{Value}}{2^N}</math>
उदाहरण के लिए, यदि N = 5 (इसलिए 2<sup>एन</sup> = 32) और वी<sub>ref</sub> = 3.3 V (विशिष्ट CMOS तर्क 1 वोल्टेज), फिर V<sub>out</sub> 0 वोल्ट (VAL = 0 = 00000) के बीच भिन्न होगा<sub>2</sub>) और अधिकतम (VAL = 31 = 11111<sub>2</sub>):
उदाहरण के लिए, यदि N = 5 (इसलिए 2<sup>''N''</sup> = 32) और ''V''<sub>ref</sub>= 3.3 V (विशिष्ट CMOS तर्क 1 वोल्टेज), फिर V<sub>out</sub> 0 वोल्ट (VAL = 0 = 00000<sub>2</sub>) के बीच भिन्न होगा) और अधिकतम (VAL = 31 = 11111<sub>2</sub>):


: <math>V_o = 3.3\,\text{V} \times \tfrac{31}{2^5} = 3.196875\,\text{V}</math>
: <math>V_o = 3.3\,\text{V} \times \tfrac{31}{2^5} = 3.196875\,\text{V}</math>
चरणों के साथ (VAL = 1 = 00001 के अनुसार<sub>2</sub>)
चरणों के साथ (VAL = 1 = 00001<sub>2</sub> के अनुसार)


: <math>\Delta V_o = 3.3\,\text{V} \times \tfrac {1}{2^5} = 0.103125\,\text{V}</math>
: <math>\Delta V_o = 3.3\,\text{V} \times \tfrac {1}{2^5} = 0.103125\,\text{V}</math>
R–2R सीढ़ी सस्ती है और निर्माण के लिए अपेक्षाकृत आसान है, क्योंकि केवल दो प्रतिरोधक मानों की आवश्यकता होती है (या एक भी, यदि R को 2R की जोड़ी को समानांतर में रखकर बनाया जाता है, या यदि 2R को R की जोड़ी को अंदर रखकर बनाया जाता है शृंखला)। यह तेज है और निश्चित आउटपुट प्रतिबाधा आर है। आर-2आर सीढ़ी वर्तमान डिवाइडर की एक स्ट्रिंग के रूप में काम करती है, जिसकी आउटपुट सटीकता पूरी तरह से इस बात पर निर्भर करती है कि प्रत्येक प्रतिरोधक दूसरों से कितनी अच्छी तरह मेल खाता है। MSB रेसिस्टर्स में छोटी अशुद्धियाँ LSB रेसिस्टर्स के योगदान को पूरी तरह से खत्म कर सकती हैं। इसके परिणामस्वरूप 01111 जैसे प्रमुख क्रॉसिंगों पर गैर-[[मोनोटोनिक]] व्यवहार हो सकता है<sub>2</sub> 10000 तक<sub>2</sub>. उपयोग किए गए लॉजिक गेट्स के प्रकार और लॉजिक सर्किट के डिज़ाइन के आधार पर, ऐसे प्रमुख क्रॉसिंग पर संक्रमणकालीन वोल्टेज स्पाइक्स हो सकते हैं, यहां तक ​​​​कि पूर्ण प्रतिरोधी मूल्यों के साथ भी। इन्हें आउटपुट नोड पर समाई के साथ फ़िल्टर किया जा सकता है (बैंडविड्थ में परिणामी कमी कुछ अनुप्रयोगों में महत्वपूर्ण हो सकती है)। अंत में, 2R प्रतिरोध डिजिटल-आउटपुट प्रतिबाधा के साथ श्रृंखला में है। कुछ मामलों में उच्च-आउटपुट-प्रतिबाधा द्वार (जैसे, [[LVDS]]) अनुपयुक्त हो सकते हैं। उपरोक्त सभी कारणों (और निश्चित रूप से अन्य) के लिए, इस प्रकार का DAC अपेक्षाकृत कम संख्या में बिट्स तक ही सीमित रहता है; हालांकि एकीकृत सर्किट बिट्स की संख्या को 14 या इससे भी अधिक तक बढ़ा सकते हैं, 8 बिट या उससे कम अधिक विशिष्ट है।
R–2R सीढ़ी सस्ती है और निर्माण के लिए अपेक्षाकृत आसान है क्योंकि केवल दो प्रतिरोधक मानों की आवश्यकता होती है (या एक भी, यदि R को 2R की जोड़ी को समानांतर में रखकर बनाया जाता है, या यदि 2R को R की जोड़ी को अंदर रखकर बनाया जाता है शृंखला)। यह तेज है और निश्चित आउटपुट प्रतिबाधा R है। R–2R  सीढ़ी वर्तमान डिवाइडर की एक स्ट्रिंग के रूप में काम करती है, जिसकी आउटपुट स्पष्ट ता पूरी तरह से इस बात पर निर्भर करती है कि प्रत्येक प्रतिरोधक दूसरों से कितनी अच्छी तरह मेल खाता है। एमएसबी रेसिस्टर्स में छोटी अशुद्धियाँ एलएसबी रेसिस्टर्स के योगदान को पूरी तरह से समाप्त कर सकती हैं। इसका परिणाम प्रमुख क्रॉसिंगों पर गैर-मोनोटोनिक व्यवहार हो सकता है, जैसे कि 01111<sub>2</sub> से 10000<sub>2</sub> तक उपयोग किए गए लॉजिक गेट्स के प्रकार और लॉजिक परिपथ के डिज़ाइन के आधार पर, ऐसे प्रमुख क्रॉसिंग पर संक्रमणकालीन वोल्टेज स्पाइक्स हो सकते हैं, यहां तक ​​​​कि पूर्ण प्रतिरोधी मूल्यों के साथ भी इन्हें आउटपुट नोड पर समाई के साथ फ़िल्टर किया जा सकता है (बैंडविड्थ में परिणामी कमी कुछ अनुप्रयोगों में महत्वपूर्ण हो सकती है)। अंत में, 2R प्रतिरोध डिजिटल-आउटपुट प्रतिबाधा के साथ श्रृंखला में है। कुछ स्थितियों में उच्च-आउटपुट-प्रतिबाधा द्वार (जैसे, [[LVDS|एलवीडीएस]]) अनुपयुक्त हो सकते हैं। उपरोक्त सभी कारणों (और निश्चित रूप से अन्य) के लिए, इस प्रकार का डीएसी अपेक्षाकृत कम संख्या में बिट्स तक ही सीमित रहता है चूँकि एकीकृत परिपथ बिट्स की संख्या को 14 या इससे भी अधिक तक बढ़ा सकते हैं जो की  8 बिट या उससे कम अधिक विशिष्ट है।
 
=== R-2R प्रतिरोधक सीढ़ी की स्पष्टता ===
अधिक महत्वपूर्ण बिट्स के साथ उपयोग किए जाने वाले प्रतिरोधों को कम महत्वपूर्ण बिट्स के साथ उपयोग किए जाने वाले प्रतिरोधों की तुलना में आनुपातिक रूप से अधिक स्पष्ट  होना चाहिए; उदाहरण के लिए, ऊपर चर्चा किए गए R–2R नेटवर्क में, बिट-4 (एमएसबी) रेसिस्टर्स में अशुद्धियाँ R/32 (अर्थात, 3% से बहुत उत्तम ) की तुलना में नगण्य होनी चाहिए। इसके अतिरिक्त 10000<sub>2</sub>-से-01111<sub>2</sub> पर समस्याओं से बचने के लिए संक्रमण निचले बिट्स में अशुद्धियों का योग R/32 से अधिक कम होना चाहिए। आवश्यक स्पष्ट ता प्रत्येक अतिरिक्त बिट के साथ दोगुनी हो जाती है: 8 बिट्स के लिए आवश्यक स्पष्ट ता 1/256 (0.4%) से उत्तम  होगी। [[एकीकृत परिपथ]] के अंदर उच्च स्पष्ट ता वाले R-2R नेटवर्क को [[ पतली फिल्म |पतली फिल्म]] तकनीक का उपयोग करके सीधे एक सब्सट्रेट पर मुद्रित किया जा सकता है यह सुनिश्चित करते हुए कि प्रतिरोध समान विद्युत विशेषताओं को साझा करते हैं। फिर भी आवश्यक स्पष्ट ता प्राप्त करने के लिए उन्हें अधिकांशतः [[लेजर ट्रिमिंग]] लेज़र-ट्रिम किया जाना चाहिए। 16-बिट स्पष्ट ता प्राप्त करने वाले डिजिटल-से-एनालॉग कन्वर्टर्स के लिए इस तरह के [[ एकीकृत सर्किट |एकीकृत]] परिपथ ऑन-चिप रेसिस्टर सीढ़ी का प्रदर्शन किया गया है।<ref>http://www.ti.com/lit/ds/symlink/dac161s055.pdf {{Bare URL PDF|date=March 2022}}</ref>


=== R-2R प्रतिरोधक सीढ़ी की सटीकता ===
अधिक महत्वपूर्ण बिट्स के साथ उपयोग किए जाने वाले प्रतिरोधों को कम महत्वपूर्ण बिट्स के साथ उपयोग किए जाने वाले प्रतिरोधों की तुलना में आनुपातिक रूप से अधिक सटीक होना चाहिए; उदाहरण के लिए, ऊपर चर्चा किए गए R–2R नेटवर्क में, बिट-4 (MSB) रेसिस्टर्स में अशुद्धियाँ R/32 (यानी, 3% से बहुत बेहतर) की तुलना में नगण्य होनी चाहिए। इसके अलावा, 10000 पर समस्याओं से बचने के लिए<sub>2</sub>-to-01111<sub>2</sub> संक्रमण, निचले बिट्स में अशुद्धियों का योग R/32 से काफी कम होना चाहिए। आवश्यक सटीकता प्रत्येक अतिरिक्त बिट के साथ दोगुनी हो जाती है: 8 बिट्स के लिए, आवश्यक सटीकता 1/256 (0.4%) से बेहतर होगी। [[एकीकृत परिपथ]]ों के भीतर, उच्च सटीकता वाले R-2R नेटवर्क को [[ पतली फिल्म |पतली फिल्म]] तकनीक का उपयोग करके सीधे एक सब्सट्रेट पर मुद्रित किया जा सकता है, यह सुनिश्चित करते हुए कि प्रतिरोध समान विद्युत विशेषताओं को साझा करते हैं। फिर भी, आवश्यक सटीकता प्राप्त करने के लिए उन्हें अक्सर [[लेजर ट्रिमिंग]]|लेज़र-ट्रिम किया जाना चाहिए। 16-बिट सटीकता प्राप्त करने वाले डिजिटल-टू-एनालॉग कन्वर्टर्स के लिए इस तरह के [[ एकीकृत सर्किट |एकीकृत सर्किट]] |ऑन-चिप रेसिस्टर लैडर का प्रदर्शन किया गया है।<ref>http://www.ti.com/lit/ds/symlink/dac161s055.pdf {{Bare URL PDF|date=March 2022}}</ref>




== असमान पायदानों के साथ अवरोधक सीढ़ी ==
== असमान रग के साथ अवरोधक सीढ़ी ==
[[Image:UnequalLadder.svg|thumb|336px|right|चित्र 2: असमान प्रतिरोधों का उपयोग करते हुए 4-बिट रैखिक R–2R DAC]]यह आवश्यक नहीं है कि R–2R सीढ़ी का प्रत्येक डंडा समान प्रतिरोधक मानों का उपयोग करता है। यह केवल आवश्यक है कि 2R मान, R मान के योग के साथ-साथ थेवेनिन के प्रमेय से मेल खाता हो। थेवेनिन-निम्न-महत्व के समतुल्य प्रतिरोध। चित्रा 2 असमान प्रतिरोधकों के साथ एक रैखिक 4-बिट डीएसी दिखाता है।
[[Image:UnequalLadder.svg|thumb|336px|right|चित्र 2: असमान प्रतिरोधों का उपयोग करते हुए 4-बिट रैखिक R–2R डीएसी ]]यह आवश्यक नहीं है कि R–2R सीढ़ी का प्रत्येक रग समान प्रतिरोधक मानों का उपयोग करता है। यह केवल आवश्यक है कि 2R मान, R मान के योग के साथ-साथ थेवेनिन के प्रमेय से मेल खाता हो। थेवेनिन-निम्न-महत्व के समतुल्य प्रतिरोध चित्रा 2 असमान प्रतिरोधकों के साथ एक रैखिक 4-बिट डीएसी दिखाता है।


यह एक समय में एक बिट DAC बनाकर प्रतिरोधों के विषम संग्रह से यथोचित सटीक DAC बनाने की अनुमति देता है। प्रत्येक चरण में, डंडा और लेग के लिए प्रतिरोधों को चुना जाता है ताकि डंडा मान लेग मान और पिछले डंडों के समतुल्य प्रतिरोध से मेल खाता हो। उपलब्ध संयोजनों की संख्या बढ़ाने के लिए अन्य प्रतिरोधों को श्रृंखला या समानांतर में जोड़कर डंडा और पैर प्रतिरोधों का निर्माण किया जा सकता है। यह प्रक्रिया स्वचालित हो सकती है।
यह एक समय में एक बिट डीएसी बनाकर प्रतिरोधों के विषम संग्रह से यथोचित स्पष्ट  डीएसी बनाने की अनुमति देता है। प्रत्येक चरण में, रग और लेग के लिए प्रतिरोधों को चुना जाता है जिससे रग मान लेग मान और पिछले रूंगों के समतुल्य प्रतिरोध से मेल खाता हो। उपलब्ध संयोजनों की संख्या बढ़ाने के लिए अन्य प्रतिरोधों को श्रृंखला या समानांतर में जोड़कर रग और लेग प्रतिरोधों का निर्माण किया जा सकता है। यह प्रक्रिया स्वचालित हो सकती है।


== यह भी देखें ==
== यह भी देखें                                                               ==
* लॉगरिदमिक प्रतिरोधी सीढ़ी
* लॉगरिदमिक प्रतिरोधी सीढ़ी
* डिज़िटल से एनालॉग कन्वर्टर
* डिज़िटल से एनालॉग कन्वर्टर
Line 44: Line 48:
== बाहरी संबंध ==
== बाहरी संबंध ==
{{Commons category|Mixed analog and digital circuits}}
{{Commons category|Mixed analog and digital circuits}}
* [https://web.archive.org/web/20110807171756/http://www2.ece.ohio-state.edu/~pavlict/ece209/lab7_DAC/lab7_DAC_notes.pdf ECE209: DAC Lecture Notes] - Ohio State University
* [https://web.archive.org/web/20110807171756/http://www2.ece.ohio-state.edu/~pavlict/ece209/lab7_DAC/lab7_DAC_notes.pdf ECE209: डीएसी Lecture Notes] - Ohio State University
* [https://inst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L14_2_f09.pdf EE247: D/A Converters] - Berkeley University of California
* [https://inst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L14_2_f09.pdf EE247: D/A Converters] - Berkeley University of California
* [http://www-personal.engin.umd.umich.edu/~fmeral/ELECTRONICS%20II/11%25c3-DAC_ADC%20Project/DAC%252fADC_Notes.pdf Simplified DAC/ADC Lecture Notes] - University of Michigan
* [http://www-personal.engin.umd.umich.edu/~fmeral/ELECTRONICS%20II/11%25c3-DAC_ADC%20Project/DAC%252fADC_Notes.pdf Simplified DAC/ADC Lecture Notes] - University of Michigan

Revision as of 09:26, 21 June 2023

प्रतिरोधक सीढ़ी प्रतिरोधों की दोहराई जाने वाली इकाइयों से बना एक विद्युत परिपथ है। एक स्ट्रिंग प्रतिरोधक सीढ़ी और एक R-2R सीढ़ी के नीचे दो विन्यासों पर चर्चा की गई है।

एक R-2R सीढ़ी डिज़िटल से एनालॉग कन्वर्टर|डिजिटल-से-एनालॉग रूपांतरण करने का एक सरल और सस्ती विधि है, जिसमें सीढ़ी-जैसी कॉन्फ़िगरेशन में स्पष्ट प्रतिरोधक नेटवर्क की दोहराव वाली व्यवस्था का उपयोग किया जाता है। एक स्ट्रिंग प्रतिरोधक सीढ़ी गैर-दोहराव वाले संदर्भ नेटवर्क को प्रयुक्त करता है।

स्ट्रिंग प्रतिरोधक सीढ़ी नेटवर्क (डिजिटल रूपांतरण, या एडीसी के अनुरूप)

दो संदर्भ वोल्टेज के बीच जुड़े कई अधिकांशतः समान रूप से आयाम वाले प्रतिरोधों की एक स्ट्रिंग एक प्रतिरोधक स्ट्रिंग सीढ़ी नेटवर्क है। प्रतिरोधी संदर्भित वोल्टेज के बीच वोल्टेज विभक्त के रूप में कार्य करते हैं। स्ट्रिंग का प्रत्येक टैप एक अलग वोल्टेज उत्पन्न करता है, जिसकी तुलना दूसरे वोल्टेज से की जा सकती है: यह एक फ्लैश एडीसी (एनालॉग-टू-डिजिटल कनवर्टर) का मूल सिद्धांत है। अधिकांशतः एक वोल्टेज को धारा में बदल दिया जाता है, जिससे R-2R सीढ़ी नेटवर्क का उपयोग करने की संभावना बढ़ जाती है।

  • हानि: एक एन-बिट एडीसी के लिए, प्रतिरोधों की संख्या घातीय वृद्धि, जैसे प्रतिरोधों की आवश्यकता होती है, जबकि R-2R प्रतिरोधक सीढ़ी केवल बिट्स की संख्या के साथ रैखिक रूप से बढ़ती है, क्योंकि इसे केवल प्रतिरोधों की आवश्यकता होती है।
  • लाभ: समान संख्या में घटकों का उपयोग करके उच्च प्रतिबाधा मान प्राप्त किया जा सकता है।

R-2R रेसिस्टर सीढ़ी नेटवर्क (डिजिटल से एनालॉग रूपांतरण)

चित्रा 1: एन-बिट आर-2आर प्रतिरोधी सीढ़ी


चित्र 1 में एक मूल R–2R रेसिस्टर लैडर नेटवर्क दिखाया गया है। बिट a−1 (सबसे महत्वपूर्ण बिट, एमएसबी) बिट a0 (कम से कम महत्वपूर्ण बिट, एलएसबी) के माध्यम से डिजिटल लॉजिक गेट से संचालित होते हैं। आदर्श रूप से, बिट इनपुट V = 0 (तर्क 0) और V = Vref (तर्क 1) के बीच स्विच किए जाते हैं। R-2R नेटवर्क इन डिजिटल बिट्स को आउटपुट वोल्टेज Vout में उनके योगदान में भारित करने का कारण बनता है। इस पर निर्भर करते हुए कि कौन से बिट को 1 पर सेट किया गया है और कौन से 0 पर आउटपुट वोल्टेज (वाउट) का 0 और Vref के बीच संबंधित चरणबद्ध मान होगा, बिट 0 के अनुरूप न्यूनतम चरण का मान घटाएगा। Vref का वास्तविक मान (और तर्क का वोल्टेज 0) डिजिटल सिग्नल उत्पन्न करने के लिए उपयोग की जाने वाली तकनीक के प्रकार पर निर्भर करेगा।[1] N बिट्स और 0 V/Vref लॉजिक स्तरों वाले R–2R डीएसी के डिजिटल मान वैल के लिए, आउटपुट वोल्टेज Vout है:

उदाहरण के लिए, यदि N = 5 (इसलिए 2N = 32) और Vref= 3.3 V (विशिष्ट CMOS तर्क 1 वोल्टेज), फिर Vout 0 वोल्ट (VAL = 0 = 000002) के बीच भिन्न होगा) और अधिकतम (VAL = 31 = 111112):

चरणों के साथ (VAL = 1 = 000012 के अनुसार)

R–2R सीढ़ी सस्ती है और निर्माण के लिए अपेक्षाकृत आसान है क्योंकि केवल दो प्रतिरोधक मानों की आवश्यकता होती है (या एक भी, यदि R को 2R की जोड़ी को समानांतर में रखकर बनाया जाता है, या यदि 2R को R की जोड़ी को अंदर रखकर बनाया जाता है शृंखला)। यह तेज है और निश्चित आउटपुट प्रतिबाधा R है। R–2R सीढ़ी वर्तमान डिवाइडर की एक स्ट्रिंग के रूप में काम करती है, जिसकी आउटपुट स्पष्ट ता पूरी तरह से इस बात पर निर्भर करती है कि प्रत्येक प्रतिरोधक दूसरों से कितनी अच्छी तरह मेल खाता है। एमएसबी रेसिस्टर्स में छोटी अशुद्धियाँ एलएसबी रेसिस्टर्स के योगदान को पूरी तरह से समाप्त कर सकती हैं। इसका परिणाम प्रमुख क्रॉसिंगों पर गैर-मोनोटोनिक व्यवहार हो सकता है, जैसे कि 011112 से 100002 तक उपयोग किए गए लॉजिक गेट्स के प्रकार और लॉजिक परिपथ के डिज़ाइन के आधार पर, ऐसे प्रमुख क्रॉसिंग पर संक्रमणकालीन वोल्टेज स्पाइक्स हो सकते हैं, यहां तक ​​​​कि पूर्ण प्रतिरोधी मूल्यों के साथ भी इन्हें आउटपुट नोड पर समाई के साथ फ़िल्टर किया जा सकता है (बैंडविड्थ में परिणामी कमी कुछ अनुप्रयोगों में महत्वपूर्ण हो सकती है)। अंत में, 2R प्रतिरोध डिजिटल-आउटपुट प्रतिबाधा के साथ श्रृंखला में है। कुछ स्थितियों में उच्च-आउटपुट-प्रतिबाधा द्वार (जैसे, एलवीडीएस) अनुपयुक्त हो सकते हैं। उपरोक्त सभी कारणों (और निश्चित रूप से अन्य) के लिए, इस प्रकार का डीएसी अपेक्षाकृत कम संख्या में बिट्स तक ही सीमित रहता है चूँकि एकीकृत परिपथ बिट्स की संख्या को 14 या इससे भी अधिक तक बढ़ा सकते हैं जो की 8 बिट या उससे कम अधिक विशिष्ट है।

R-2R प्रतिरोधक सीढ़ी की स्पष्टता

अधिक महत्वपूर्ण बिट्स के साथ उपयोग किए जाने वाले प्रतिरोधों को कम महत्वपूर्ण बिट्स के साथ उपयोग किए जाने वाले प्रतिरोधों की तुलना में आनुपातिक रूप से अधिक स्पष्ट होना चाहिए; उदाहरण के लिए, ऊपर चर्चा किए गए R–2R नेटवर्क में, बिट-4 (एमएसबी) रेसिस्टर्स में अशुद्धियाँ R/32 (अर्थात, 3% से बहुत उत्तम ) की तुलना में नगण्य होनी चाहिए। इसके अतिरिक्त 100002-से-011112 पर समस्याओं से बचने के लिए संक्रमण निचले बिट्स में अशुद्धियों का योग R/32 से अधिक कम होना चाहिए। आवश्यक स्पष्ट ता प्रत्येक अतिरिक्त बिट के साथ दोगुनी हो जाती है: 8 बिट्स के लिए आवश्यक स्पष्ट ता 1/256 (0.4%) से उत्तम होगी। एकीकृत परिपथ के अंदर उच्च स्पष्ट ता वाले R-2R नेटवर्क को पतली फिल्म तकनीक का उपयोग करके सीधे एक सब्सट्रेट पर मुद्रित किया जा सकता है यह सुनिश्चित करते हुए कि प्रतिरोध समान विद्युत विशेषताओं को साझा करते हैं। फिर भी आवश्यक स्पष्ट ता प्राप्त करने के लिए उन्हें अधिकांशतः लेजर ट्रिमिंग लेज़र-ट्रिम किया जाना चाहिए। 16-बिट स्पष्ट ता प्राप्त करने वाले डिजिटल-से-एनालॉग कन्वर्टर्स के लिए इस तरह के एकीकृत परिपथ ऑन-चिप रेसिस्टर सीढ़ी का प्रदर्शन किया गया है।[2]


असमान रग के साथ अवरोधक सीढ़ी

चित्र 2: असमान प्रतिरोधों का उपयोग करते हुए 4-बिट रैखिक R–2R डीएसी

यह आवश्यक नहीं है कि R–2R सीढ़ी का प्रत्येक रग समान प्रतिरोधक मानों का उपयोग करता है। यह केवल आवश्यक है कि 2R मान, R मान के योग के साथ-साथ थेवेनिन के प्रमेय से मेल खाता हो। थेवेनिन-निम्न-महत्व के समतुल्य प्रतिरोध चित्रा 2 असमान प्रतिरोधकों के साथ एक रैखिक 4-बिट डीएसी दिखाता है।

यह एक समय में एक बिट डीएसी बनाकर प्रतिरोधों के विषम संग्रह से यथोचित स्पष्ट डीएसी बनाने की अनुमति देता है। प्रत्येक चरण में, रग और लेग के लिए प्रतिरोधों को चुना जाता है जिससे रग मान लेग मान और पिछले रूंगों के समतुल्य प्रतिरोध से मेल खाता हो। उपलब्ध संयोजनों की संख्या बढ़ाने के लिए अन्य प्रतिरोधों को श्रृंखला या समानांतर में जोड़कर रग और लेग प्रतिरोधों का निर्माण किया जा सकता है। यह प्रक्रिया स्वचालित हो सकती है।

यह भी देखें

संदर्भ


बाहरी संबंध