सिस्टोलिक सरणी: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|A type of parallel computing architecture of tightly coupled nodes}} {{Use dmy dates|date=October 2019}} समांतर कंप्यूटिंग...")
 
No edit summary
 
(10 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|A type of parallel computing architecture of tightly coupled nodes}}
{{Short description|A type of parallel computing architecture of tightly coupled nodes}}
{{Use dmy dates|date=October 2019}}
समांतर कंप्यूटिंग [[कंप्यूटर आर्किटेक्चर|कंप्यूटर स्थापत्य]] में सिस्टोलिक शृंखला दृढ़ता युग्मित [[डाटा प्रोसेसिंग यूनिट|डाटा संसाधन इकाई]] (डीपीयू) का सजातीय [[ग्राफ (असतत गणित)|नेटवर्क(असतत गणित)]] है जिसे सेल या [[नोड (कंप्यूटर विज्ञान)|बिंदु (कंप्यूटर विज्ञान)]] कहा जाता है। प्रत्येक बिंदु या डीपीयू स्वतंत्र रूप से अपने प्रतिप्रवाह निकटतम से प्राप्त डेटा के कार्य के रूप में आंशिक परिणाम की गणना करता है, परिणाम को अपने अंदर संग्रहीत करता है और इसे अनुप्रवाह पारित करता है। सिस्टोलिक सारणियों का प्रथम बार उपयोग [[ बादशाह कंप्यूटर |कोलोसस]] में किया गया था, जो [[द्वितीय विश्व युद्ध]] के समय जर्मन [[लॉरेंज सिफर]] सिफर को समाप्त के लिए प्रयुक्त किया जाने वाला प्रारंभिक कंप्यूटर था।<ref>{{YouTube |id=g2tMcMQqSbA |title=Colossus - The Greatest Secret in the History of Computing |time=41m45s}}</ref> कोलोसस की वर्गीकृत प्रकृति के कारण, वे स्वतंत्र रूप से एचटी कुंग और [[चार्ल्स लीजरसन]] के माध्यम से आविष्कार या फिर से खोजे गए थे, जिन्होंने बैंडेड आव्युहों के लिए अनेक घने रैखिक बीजगणित गणनाओं (आव्यूह परिणाम, रैखिक समीकरणों की प्रणाली को हल करना एलयू अपघटन आदि) के लिए सारणियों का वर्णन किया था। प्रारंभिक अनुप्रयोगों में पूर्णांकों और बहुपदों के अधिकतम सामान्य विभाजकों की गणना करना सम्मिलित है।<ref>http://www.eecs.harvard.edu/~htk/publication/1984-ieeetoc-brent-kung.pdf {{Bare URL PDF|date=March 2022}}</ref> उन्हें कभी-कभी फ्लिन की वर्गीकरण के अनुसार एकाधिक-निर्देश एकल-डेटा (एमआईएसडी) स्थापत्य के रूप में वर्गीकृत किया जाता है किन्तु यह वर्गीकरण संशयात्मक है क्योंकि फ्लिन की चार श्रेणियों में से किसी से [[ धमनी का संकुचन |सिस्टोलिक]] शृंखला को भिन्न करने के लिए दृढ़ तर्क दिया जा सकता है। एसआईएसडी एसआईएमडी, एमआईएसडी, एमआईएमडी, जैसा कि इस आलेख में बाद में विचार की गई है।
समांतर कंप्यूटिंग [[कंप्यूटर आर्किटेक्चर]] में, एक सिस्टोलिक सरणी कसकर युग्मित [[डाटा प्रोसेसिंग यूनिट]] (डीपीयू) का एक सजातीय [[ग्राफ (असतत गणित)]] है जिसे सेल या [[नोड (कंप्यूटर विज्ञान)]] कहा जाता है। प्रत्येक नोड या डीपीयू स्वतंत्र रूप से अपने अपस्ट्रीम पड़ोसियों से प्राप्त डेटा के एक समारोह के रूप में आंशिक परिणाम की गणना करता है, परिणाम को अपने भीतर संग्रहीत करता है और इसे डाउनस्ट्रीम पास करता है। सिस्टोलिक सरणियों का पहली बार [[ बादशाह कंप्यूटर ]] में उपयोग किया गया था, जो [[द्वितीय विश्व युद्ध]] के दौरान जर्मन [[लॉरेंज सिफर]] सिफर को तोड़ने के लिए इस्तेमाल किया जाने वाला एक प्रारंभिक कंप्यूटर था।<ref>{{YouTube |id=g2tMcMQqSbA |title=Colossus - The Greatest Secret in the History of Computing |time=41m45s}}</ref> कोलोसस की वर्गीकृत प्रकृति के कारण, वे स्वतंत्र रूप से एचटी कुंग और [[चार्ल्स लीजरसन]] द्वारा आविष्कार या फिर से खोजे गए थे, जिन्होंने बैंडेड मैट्रिसेस के लिए कई घने रैखिक बीजगणित संगणनाओं (मैट्रिक्स उत्पाद, रैखिक समीकरणों की प्रणाली को हल करना, एलयू अपघटन, आदि) के लिए सरणियों का वर्णन किया था। प्रारंभिक अनुप्रयोगों में पूर्णांकों और बहुपदों के महानतम सामान्य विभाजकों की गणना करना शामिल है।<ref>http://www.eecs.harvard.edu/~htk/publication/1984-ieeetoc-brent-kung.pdf {{Bare URL PDF|date=March 2022}}</ref> उन्हें कभी-कभी फ्लिन के वर्गीकरण के तहत एकाधिक निर्देश, एकल [[आंकड़े]] | एकाधिक-निर्देश एकल-डेटा (एमआईएसडी) आर्किटेक्चर के रूप में वर्गीकृत किया जाता है, लेकिन यह वर्गीकरण संदिग्ध है क्योंकि फ्लिन की चार श्रेणियों में से किसी से [[ धमनी का संकुचन ]]िक सरणी को अलग करने के लिए एक मजबूत तर्क दिया जा सकता है: एकल निर्देश , एकल डेटा, एकल निर्देश, एकाधिक डेटा, एकाधिक निर्देश, एकल डेटा, एकाधिक निर्देश, एकाधिक डेटा, जैसा कि इस आलेख में बाद में चर्चा की गई है।


समानांतर इनपुट डेटा हार्ड-वायर्ड [[माइक्रोप्रोसेसर]] नोड्स के एक नेटवर्क के माध्यम से प्रवाहित होता है, जो एक व्युत्पन्न परिणाम में इनपुट डेटा को संयोजित, संसाधित, [[विलय एल्गोरिथ्म]] या [[छँटाई एल्गोरिथ्म]] करता है। क्योंकि एक सिस्टोलिक सरणी के माध्यम से डेटा का तरंग जैसा प्रसार मानव संचार प्रणाली की नब्ज जैसा दिखता है, सिस्टोलिक नाम चिकित्सा शब्दावली से गढ़ा गया था। यह नाम हृदय द्वारा रक्त के नियमित पम्पिंग के सादृश्य के रूप में सिस्टोल से लिया गया है।
समानांतर इनपुट डेटा यंत्रस्थ [[माइक्रोप्रोसेसर]] बिंदुओ के नेटवर्क के माध्यम से प्रवाहित होता है जो व्युत्पन्न परिणाम में इनपुट डेटा को संयोजित, संसाधित, [[विलय एल्गोरिथ्म]] या [[छँटाई एल्गोरिथ्म|प्रथक एल्गोरिथ्म]] करता है। क्योंकि सिस्टोलिक शृंखला के माध्यम से डेटा का तरंग जैसा प्रसार मानव संचार प्रणाली की नाडी जैसा दिखता है, सिस्टोलिक नाम चिकित्सा शब्दावली से लिया गया था। यह नाम हृदय के माध्यम से रक्त के नियमित स्पंदित के सादृश्य के रूप में सिस्टोल से लिया गया है।        


== अनुप्रयोग ==
== अनुप्रयोग ==
बड़े पैमाने पर समानांतर कंप्यूटिंग एकीकरण, दृढ़ संकल्प, सहसंबंध, [[मैट्रिक्स गुणन]] या डेटा सॉर्टिंग कार्यों को करने के लिए सिस्टोलिक सरणियों को अक्सर विशिष्ट संचालन के लिए हार्ड-वायर्ड किया जाता है, जैसे गुणा और संचय। उनका उपयोग [[गतिशील प्रोग्रामिंग]] एल्गोरिदम के लिए भी किया जाता है, जिसका उपयोग डीएनए और प्रोटीन [[अनुक्रम विश्लेषण]] में किया जाता है।
बड़े मापदंड पर समानांतर कंप्यूटिंग एकीकरण, संवलन, सहसंबंध, [[मैट्रिक्स गुणन|आव्यूह गुणन]] या डेटा पृथक्करण कार्यों को करने के लिए सिस्टोलिक सारणियों को अधिकांशतः विशिष्ट संचालन जैसे "गुणा और संचय" के लिए हार्ड-वायर्ड होती हैं। उनका उपयोग [[गतिशील प्रोग्रामिंग]] एल्गोरिदम के लिए भी किया जाता है, जिसका उपयोग डीएनए और प्रोटीन [[अनुक्रम विश्लेषण]] में किया जाता है।


== आर्किटेक्चर ==
== स्थापत्य ==
एक सिस्टोलिक सरणी में आमतौर पर आदिम कंप्यूटिंग नोड (कंप्यूटर विज्ञान) के एक बड़े [[ अखंड प्रणाली ]] ग्राफ़ (असतत गणित) होते हैं, जिन्हें किसी विशिष्ट एप्लिकेशन के लिए हार्डवेयर्ड या सॉफ़्टवेयर कॉन्फ़िगर किया जा सकता है। नोड्स आमतौर पर निश्चित और समान होते हैं, जबकि इंटरकनेक्ट प्रोग्राम करने योग्य होता है। अधिक सामान्य वेव फ्रंट प्रोसेसर, इसके विपरीत, परिष्कृत और व्यक्तिगत रूप से प्रोग्राम करने योग्य नोड्स को नियोजित करते हैं जो सरणी आकार और डिज़ाइन पैरामीटर के आधार पर मोनोलिथिक हो सकते हैं या नहीं भी हो सकते हैं। अन्य अंतर यह है कि सिस्टोलिक सरणियाँ [[ एक समय का ]] डेटा ट्रांसफर पर निर्भर करती हैं, जबकि [[ wavefront ]] काम करने की प्रवृत्ति रखते हैं: एसिंक्रोनस रूप से।
एक सिस्टोलिक शृंखला में सामान्यतः प्राथमिक कंप्यूटिंग बिंदु (कंप्यूटर विज्ञान) के बड़े [[ अखंड प्रणाली |मोनोलिथ]] प्रणाली नेटवर्क (असतत गणित) होते हैं, जिन्हें किसी विशिष्ट एप्लीकेशन के लिए हार्डवेयर्ड या सॉफ़्टवेयर समनुरूप किया जा सकता है। बिंदुओ सामान्यतः निश्चित और समान होते हैं जबकि यह अन्तर्संबद्ध प्रोग्राम करने योग्य होता है। इसके विपरीत अधिक सामान्य तरंग अग्र प्रोसेसर परिष्कृत और व्यक्तिगत रूप से प्रोग्राम करने योग्य बिंदुओ को नियोजित करते हैं जो शृंखला आकार और रचना मापदंडों के आधार पर मोनोलिथिक हो सकते हैं या नहीं भी हो सकते हैं। अन्य अंतर यह है कि सिस्टोलिक सारणियाँ [[ एक समय का |समकालिक]] डेटा स्थानान्तरण पर निर्भर करती हैं, जबकि [[ wavefront |तरंगाग्र]] अतुल्यकालिक रूप से काम करने की प्रवृत्ति रखते हैं।


अधिक सामान्य [[वॉन न्यूमैन वास्तुकला]] के विपरीत, जहां प्रोग्राम निष्पादन सामान्य मेमोरी, [[ पता स्थान ]] में संग्रहीत निर्देशों की एक स्क्रिप्ट का पालन करता है और [[ CPU ]] के [[ कार्यक्रम गणक ]] (पीसी) के नियंत्रण में अनुक्रमित होता है, सिस्टोलिक सरणी के भीतर अलग-अलग नोड्स आने से शुरू हो जाते हैं नया डेटा और हमेशा डेटा को बिल्कुल उसी तरह प्रोसेस करें। प्रत्येक नोड के भीतर वास्तविक प्रसंस्करण हार्ड वायर्ड या ब्लॉक [[माइक्रोकोड]]ेड हो सकता है, इस स्थिति में सामान्य नोड व्यक्तित्व को प्रोग्राम करने योग्य ब्लॉक किया जा सकता है।
अधिक सामान्य [[वॉन न्यूमैन वास्तुकला|वॉन न्यूमैन स्थापत्य]] के विपरीत, जहां प्रोग्राम निष्पादन सामान्य मेमोरी [[ पता स्थान |पता और स्थान]] में संग्रहीत निर्देशों की आलेख का पालन करता है और [[ CPU |सीपीयू]] के [[ कार्यक्रम गणक |प्रोग्राम गणक]] (पीसी) के नियंत्रण में अनुक्रमित होता है सिस्टोलिक शृंखला के अंदर भिन्न-भिन्न बिंदुओ नवीन आगमन से प्रवर्तित होते हैं और सदैव डेटा को ठीक उसी तरह प्रोसेस करते हैं। प्रत्येक बिंदु के अंदर वास्तविक प्रसंस्करण हार्ड वायर्ड या ब्लॉक [[माइक्रोकोड]] हो सकता है इस स्थिति में सामान्य बिंदु व्यक्तित्व को प्रोग्राम करने योग्य रोक किया जा सकता है।


डेटा [[काउंटर (डिजिटल)]] एस द्वारा संचालित डेटा-स्ट्रीम के साथ सिस्टोलिक सरणी प्रतिमान, वॉन न्यूमैन आर्किटेक्चर का समकक्ष है, जिसमें एक प्रोग्राम काउंटर द्वारा संचालित निर्देश-धारा है। क्योंकि एक सिस्टोलिक ऐरे आमतौर पर कई डेटा स्ट्रीम भेजता और प्राप्त करता है, और इन डेटा स्ट्रीम को उत्पन्न करने के लिए कई डेटा काउंटरों की आवश्यकता होती है, यह [[डेटा समानता]] का समर्थन करता है।
डेटा [[काउंटर (डिजिटल)|गणना (डिजिटल)]] के माध्यम से संचालित डेटा-प्रवाह के साथ सिस्टोलिक शृंखला प्रतिमान वॉन न्यूमैन स्थापत्य का समकक्ष है जिसमें प्रोग्राम गणना के माध्यम से संचालित निर्देश-धारा है। क्योंकि सिस्टोलिक शृंखला सामान्यतः अनेक डेटा प्रवाह भेजता और प्राप्त करता है और इन डेटा प्रवाह को उत्पन्न करने के लिए अनेक डेटा गणना की आवश्यकता होती है, यह [[डेटा समानता]] का समर्थन करता है।


== लक्ष्य और लाभ ==
== लक्ष्य और लाभ ==
सिस्टोलिक सरणियों का एक प्रमुख लाभ यह है कि सभी ऑपरेंड डेटा और आंशिक परिणाम प्रोसेसर सरणी के भीतर (पासिंग) संग्रहीत होते हैं। वॉन न्यूमैन या [[ हार्वर्ड वास्तुकला ]] अनुक्रमिक मशीनों के मामले में प्रत्येक ऑपरेशन के दौरान बाहरी बसों, मुख्य मेमोरी या आंतरिक कैश तक पहुंचने की कोई आवश्यकता नहीं है। Amdahl's Law द्वारा निर्धारित समानांतर कंप्यूटिंग प्रदर्शन पर अनुक्रमिक सीमाएँ भी उसी तरह से लागू नहीं होती हैं, क्योंकि डेटा निर्भरता को प्रोग्रामेबल नोड (कंप्यूटर साइंस) इंटरकनेक्ट द्वारा नियंत्रित किया जाता है और अत्यधिक समानांतर डेटा प्रवाह के प्रबंधन में कोई अनुक्रमिक चरण नहीं होते हैं।
सिस्टोलिक सारणियों का प्रमुख लाभ यह है कि सभी संकार्य डेटा और आंशिक परिणाम प्रोसेसर शृंखला के अंदर (प्रासंगिक ) संग्रहीत होते हैं। वॉन न्यूमैन या [[ हार्वर्ड वास्तुकला |हार्वर्ड स्थापत्य]] अनुक्रमिक यंत्रों के स्थितियोंमें प्रत्येक संचालन के समय बाहरी समूहों मुख्य मेमोरी या आंतरिक कैश तक पहुंचने की कोई आवश्यकता नहीं है। अमदाहल सिद्धांत के माध्यम से निर्धारित समानांतर कंप्यूटिंग प्रदर्शन पर अनुक्रमिक सीमाएँ भी उसी तरह से प्रयुक्त नहीं होती हैं क्योंकि डेटा निर्भरता को प्रोग्राम योग्य बिंदु (कंप्यूटर विज्ञान) अन्तर्संबद्ध के माध्यम से नियंत्रित किया जाता है और अत्यधिक समानांतर डेटा प्रवाह के प्रबंधन में कोई अनुक्रमिक चरण नहीं होते हैं।


सिस्टोलिक सरणियाँ इसलिए कृत्रिम बुद्धिमत्ता, इमेज प्रोसेसिंग, पैटर्न पहचान, कंप्यूटर दृष्टि और अन्य कार्यों में बहुत अच्छी हैं जो जानवरों के दिमाग विशेष रूप से अच्छी तरह से करते हैं। सामान्य तौर पर वेवफ्रंट प्रोसेसर भी हार्डवेयर में सेल्फ कॉन्फिगरिंग न्यूरल नेट को लागू करके मशीन लर्निंग में बहुत अच्छा हो सकता है।
सिस्टोलिक सारणियाँ इसलिए कृत्रिम सूचना, छवि संसाधन , प्रतिरूप मान्यता, कंप्यूटर दृष्टि और अन्य कार्य जो पशु मस्तिष्क विशेष रूप से अच्छी तरह से करते हैं। सामान्यतः तरंगाग्र प्रोसेसर भी हार्डवेयर में स्व विन्यास तंत्रिका संबंधी नेट को प्रयुक्त करके यंत्र अधिगम में बहुत अच्छा हो सकता है। इसलिए सिस्टोलिक सरणी निश्चित रूप से एसआईएसडी नहीं है।


== वर्गीकरण विवाद ==
== वर्गीकरण विवाद ==
जबकि सिस्टोलिक सरणियों को आधिकारिक तौर पर एकाधिक निर्देश, एकल डेटा के रूप में वर्गीकृत किया जाता है, उनका वर्गीकरण कुछ हद तक समस्याग्रस्त है। क्योंकि इनपुट आमतौर पर एक वेक्टर होता है
जबकि सिस्टोलिक सारणियों को आधिकारिक तौर पर एकाधिक निर्देश एकल डेटा (एमआईएसडी) के रूप में वर्गीकृत किया जाता है, उनका वर्गीकरण कुछ सीमा तक समस्याग्रस्त होता है। क्योंकि इनपुट सामान्यतः सदिश होता है, इसलिए सिस्टोलिक शृंखला निश्चित रूप से एकल निर्देश एकल डेटा (एसआईएसडी) नहीं है। चूंकि इन [[इनपुट (कंप्यूटर विज्ञान)]] मानो को विलय कर दिया जाता है और परिणाम (एस) में जोड़ दिया जाता है और वे अपनी स्वतंत्रता को बनाए नहीं रखते हैं क्योंकि वे एसआईएसडी सदिश संसाधन इकाई में होते हैं, [[सरणी डेटा संरचना|शृंखला डेटा संरचना]] को इस तरह वर्गीकृत नहीं किया जा सकता है। परिणाम स्वरुप शृंखला को एमआईएमडी के रूप में वर्गीकृत नहीं किया जा सकता है, क्योंकि एमआईएसडी को छोटे एसआईएसडी और एसआईएमडी यंत्रों के संग्रह के रूप में देखा जा सकता है।
स्वतंत्र मूल्यों की, सिस्टोलिक सरणी निश्चित रूप से एकल निर्देश, एकल डेटा नहीं है। चूंकि इन [[इनपुट (कंप्यूटर विज्ञान)]] मूल्यों को विलय कर दिया जाता है और परिणाम (नों) में जोड़ दिया जाता है और वे अपनी स्वतंत्रता को बनाए नहीं रखते हैं क्योंकि वे एक एकल निर्देश, कई डेटा वेक्टर प्रोसेसिंग यूनिट में होते हैं, [[सरणी डेटा संरचना]] को इस तरह वर्गीकृत नहीं किया जा सकता है। नतीजतन, सरणी को एकाधिक निर्देश, एकाधिक डेटा के रूप में वर्गीकृत नहीं किया जा सकता है, क्योंकि MIMD को छोटे SISD और एकल निर्देश, एकाधिक डेटा मशीनों के संग्रह के रूप में देखा जा सकता है।


अंत में, क्योंकि डेटा [[झुंड]] रूपांतरित हो जाता है क्योंकि यह नोड (कंप्यूटर विज्ञान) से नोड तक सरणी से गुजरता है, एक ही डेटा पर कई नोड काम नहीं कर रहे हैं, जो MISD वर्गीकरण को एक [[मिथ्या नाम]] बनाता है। एक सिस्टोलिक सरणी को MISD के रूप में योग्य नहीं होने का दूसरा कारण वही है जो इसे SISD श्रेणी से अयोग्य घोषित करता है: इनपुट डेटा आमतौर पर एक वेक्टर होता है न कि एकल डेटा मान, हालांकि कोई यह तर्क दे सकता है कि कोई भी इनपुट वेक्टर है डेटा का एक आइटम।
अंत में क्योंकि डेटा [[झुंड|समूह]] रूपांतरित हो जाता है क्योंकि यह बिंदु (कंप्यूटर विज्ञान) से बिंदु तक शृंखला से निकलता है ही डेटा पर अनेक बिंदु काम नहीं कर रहे हैं, जो एमआईएसडी वर्गीकरण को [[मिथ्या नाम|अनुपयुक्त नाम]] बनाता है। सिस्टोलिक शृंखला को एमआईएसडी के रूप में योग्य नहीं होने का दूसरा कारण वही है जो इसे एसआईएसडी श्रेणी से अयोग्य घोषित करता है: इनपुट डेटा सामान्यतः सदिश होता है न कि एकल डेटा मान, चूंकि कोई यह तर्क दे सकता है कि कोई भी इनपुट सदिश डेटा एकल मद है।


उपरोक्त सभी के बावजूद, सिस्टोलिक सरणियों को अक्सर समानांतर कंप्यूटिंग और इंजीनियरिंग कक्षाओं में पाठ्य पुस्तकों में MISD आर्किटेक्चर के उत्कृष्ट उदाहरण के रूप में प्रस्तुत किया जाता है। अगर सरणी को [[परमाणु संचालन]] के रूप में बाहर से देखा जाता है तो इसे शायद एसएफएमयूडीएमईआर = एकल फ़ंक्शन, एकाधिक डेटा, मर्ज किए गए परिणाम के रूप में वर्गीकृत किया जाना चाहिए।
उपरोक्त सभी के अतिरिक्त, सिस्टोलिक सारणियों को अधिकांशतः समानांतर कंप्यूटिंग और इंजीनियरिंग कक्षाओं में पाठ्य पुस्तकों में एमआईएसडी स्थापत्य के उत्कृष्ट उदाहरण के रूप में प्रस्तुत किया जाता है। यदि शृंखला को [[परमाणु संचालन|आणविक संचालन]] के रूप में बाहर से देखा जाता है तो इसे संभवतः एसएफएमयूडीएमईआर = एकल फ़ंक्शन, एकाधिक डेटा विलीन किए गए परिणाम के रूप में वर्गीकृत किया जाना चाहिए।


सिस्टोलिक सरणियाँ एक पूर्व-निर्धारित कम्प्यूटेशनल फ़्लो ग्राफ़ का उपयोग करती हैं जो उनके नोड्स को जोड़ता है। कहन प्रक्रिया नेटवर्क एक समान प्रवाह ग्राफ का उपयोग करते हैं, लेकिन सिस्टोलिक सरणी में लॉक-स्टेप में काम करने वाले नोड्स द्वारा प्रतिष्ठित होते हैं: कान नेटवर्क में, फीफो कतारें होती हैं
सिस्टोलिक सारणियाँ पूर्व-निर्धारित संगणनात्मक प्रवाह लेखाचित्र का उपयोग करती हैं जो उनके बिंदुओं को जोड़ता है। कान प्रक्रिया नेटवर्क समान प्रवाह लेखाचित्र का उपयोग करते हैं, किन्तु सिस्टोलिक शृंखला में अवरोध-चरण में काम करने वाले बिंदुओं के माध्यम से प्रतिष्ठित होते हैं: कान नेटवर्क में प्रत्येक बिंदु के बीच एफआईएफओ पंक्तियां होती हैं।
प्रत्येक नोड के बीच।


== विस्तृत विवरण ==
== विस्तृत विवरण ==
एक सिस्टोलिक सरणी डेटा प्रोसेसिंग इकाइयों की मैट्रिक्स जैसी पंक्तियों से बनी होती है जिन्हें सेल कहा जाता है। डेटा प्रोसेसिंग यूनिट (डीपीयू) [[सेंट्रल प्रोसेसिंग यूनिट]] (सीपीयू) के समान हैं, (प्रोग्राम काउंटर की सामान्य कमी को छोड़कर,<ref>The Paracel GeneMatcher series of systolic array processors do have a [[program counter]]. More complicated algorithms are implemented as a series of simple steps, with shifts specified in the instructions.</ref> चूंकि ऑपरेशन [[परिवहन ट्रिगर वास्तुकला]] है | ट्रांसपोर्ट-ट्रिगर, यानी डेटा ऑब्जेक्ट के आने से)। प्रत्येक सेल प्रसंस्करण के तुरंत बाद अपने पड़ोसियों के साथ सूचना साझा करता है। सिस्टोलिक सरणी अक्सर आयताकार होती है जहां डेटा पड़ोसी डेटा प्रोसेसिंग इकाइयों के बीच सरणी में प्रवाहित होता है, अक्सर अलग-अलग दिशाओं में अलग-अलग डेटा प्रवाहित होता है। सरणी के बंदरगाहों में प्रवेश करने और छोड़ने वाली डेटा धाराएं ऑटो-अनुक्रमण स्मृति इकाइयों, एएसएम द्वारा उत्पन्न होती हैं। प्रत्येक ASM में एक डेटा काउंटर (डिजिटल) शामिल होता है। [[ अंतः स्थापित प्रणाली ]] में एक डेटा स्ट्रीम इनपुट और/या बाहरी स्रोत से आउटपुट भी हो सकता है।
एक सिस्टोलिक शृंखला डेटा संसाधन इकाइयों की आव्यूह जैसी पंक्तियों से बनी होती है जिन्हें सेल कहा जाता है। डेटा संसाधन इकाई (डीपीयू) [[सेंट्रल प्रोसेसिंग यूनिट|सेंट्रल संसाधन इकाई]] (सीपीयू) के समान हैं, (प्रोग्राम गणना की सामान्य कमी को छोड़कर,<ref>The Paracel GeneMatcher series of systolic array processors do have a [[program counter]]. More complicated algorithms are implemented as a series of simple steps, with shifts specified in the instructions.</ref> चूंकि अभिगमन - प्रवर्तित अथार्त डेटा लक्ष्य के आने से संचालन [[परिवहन ट्रिगर वास्तुकला|अभिगमन प्रवर्तित स्थापत्य]] होता है)। प्रत्येक सेल प्रसंस्करण के तत्काल बाद अपने सहयोगियों के साथ सूचना साझा करता है। सिस्टोलिक शृंखला अधिकांशतः आयताकार होती है जहां डेटा सहयोगी डीपीयूएस के बीच शृंखला में प्रवाहित होता है अधिकांशतः भिन्न-भिन्न दिशाओं में भिन्न-भिन्न डेटा प्रवाहित होता है। शृंखला के पोर्ट में प्रवेश करने और निकासी वाली डेटा धाराएं स्वत-अनुक्रमण मेमोरी इकाइयों एएसएम के माध्यम से उत्पन्न होती हैं। प्रत्येक एएसएम में डेटा गणना (डिजिटल) सम्मिलित होता है। [[ अंतः स्थापित प्रणाली |अंतः स्थापित]] प्रणाली में डेटा प्रवाह इनपुट और/या बाहरी स्रोत से आउटपुट भी हो सकता है।


मैट्रिक्स गुणन के लिए सिस्टोलिक [[ कलन विधि ]] का एक उदाहरण तैयार किया जा सकता है। एक [[मैट्रिक्स (गणित)]] को सरणी के शीर्ष से एक समय में एक पंक्ति में खिलाया जाता है और सरणी के नीचे पारित किया जाता है, अन्य मैट्रिक्स को सरणी के बाईं ओर से एक कॉलम में खिलाया जाता है और बाईं ओर से गुजरता है सही। डमी मान तब तक पास किए जाते हैं जब तक कि प्रत्येक प्रोसेसर ने एक पूरी पंक्ति और एक पूरा कॉलम नहीं देखा हो। इस बिंदु पर, गुणन का परिणाम सरणी में संग्रहीत किया जाता है और अब एक समय में एक पंक्ति या एक स्तंभ का उत्पादन किया जा सकता है, नीचे या सरणी के पार।<ref>[http://web.cecs.pdx.edu/~mperkows/temp/May22/0020.Matrix-multiplication-systolic.pdf Systolic Array Matrix Multiplication]</ref>
आव्यूह गुणन के लिए सिस्टोलिक [[ कलन विधि |कलन विधि]] का उदाहरण रूपांकित किया जा सकता है। [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] को शृंखला के शीर्ष से समय में पंक्ति में सिंचित किया जाता है और शृंखला के नीचे पारित किया जाता है अन्य आव्यूह को शृंखला के बाईं ओर से स्तम्भ में सिंचित किया जाता है और बाईं से दाएं जाता है। कृत्रिम मान तब तक पारित किए जाते हैं जब तक कि प्रत्येक प्रोसेसर ने पूरी पंक्ति और पूरा स्तम्भ नहीं देखा हो। इस बिंदु पर गुणन का परिणाम शृंखला में संग्रहीत किया जाता है और अब समय में पंक्ति या स्तंभ को नीचे या सरणी के पार प्रवाहित किया जा सकता है।<ref>[http://web.cecs.pdx.edu/~mperkows/temp/May22/0020.Matrix-multiplication-systolic.pdf Systolic Array Matrix Multiplication]</ref>  
सिस्टोलिक सरणियाँ डेटा प्रोसेसिंग इकाइयों की सरणियाँ होती हैं जो एक जाल जैसी टोपोलॉजी में निकटतम पड़ोसी DPUs की एक छोटी संख्या से जुड़ी होती हैं। DPU उन डेटा पर संचालन का एक क्रम करते हैं जो उनके बीच प्रवाहित होते हैं। क्योंकि बीजगणितीय एल्गोरिदम द्वारा पारंपरिक सिस्टोलिक सरणी संश्लेषण विधियों का अभ्यास किया गया है, केवल रैखिक पाइपों के साथ केवल समान सरणी प्राप्त की जा सकती है, ताकि सभी डीपीयू में आर्किटेक्चर समान हों। परिणाम यह है कि शास्त्रीय सिस्टोलिक सरणियों पर केवल नियमित डेटा निर्भरता वाले अनुप्रयोगों को लागू किया जा सकता है। सिंगल इंस्ट्रक्शन की तरह, मल्टीपल डेटा मशीन, क्लॉक्ड सिस्टोलिक एरे प्रत्येक प्रोसेसर के साथ वैकल्पिक गणना करने वाले लॉक-स्टेप में गणना करते हैं। चरणों का संचार करें। लेकिन DPUs के बीच अतुल्यकालिक हैंडशेक के साथ सिस्टोलिक सरणियों को वेवफ्रंट सरणियाँ कहा जाता है।
 
एक प्रसिद्ध सिस्टोलिक ऐरे कार्नेगी मेलॉन यूनिवर्सिटी का [[iWarp]] प्रोसेसर है, जिसे इंटेल द्वारा निर्मित किया गया है। एक iWarp सिस्टम में दोनों दिशाओं में जाने वाली डेटा बसों से जुड़ा एक रैखिक सरणी प्रोसेसर होता है।
सिस्टोलिक सारणियाँ डेटा संसाधन इकाइयों की सारणियाँ होती हैं जो जाल जैसी सांस्थिति में निकटतम सहयोगी डेटा संसाधन इकाइयों की छोटी संख्या से जुड़ी होती हैं। डीपीयू उन डेटा पर संचालन का क्रम करते हैं जो उनके बीच प्रवाहित होते हैं। क्योंकि बीजगणितीय एल्गोरिदम के माध्यम से पारंपरिक सिस्टोलिक शृंखला संश्लेषण विधियों का अभ्यास किया गया है केवल रैखिक पाइपों के साथ केवल समान शृंखला प्राप्त की जा सकती है जिससेसभी डीपीयू में स्थापत्य समान हों। परिणाम यह है कि मौलिक सिस्टोलिक सारणियों पर केवल नियमित डेटा निर्भरता वाले अनुप्रयोगों को प्रयुक्त किया जा सकता है। एसआईएमडी यंत्र की तरह, कालबद्ध सिस्टोलिक सरणियाँ "अवरोध-चरण" में गणना करती हैं, जिसमें प्रत्येक प्रोसेसर वैकल्पिक कंप्यूट संचार चरणों का उपक्रम करता है। किन्तु डीपीयूएस के बीच अतुल्यकालिक अभिवादन के साथ सिस्टोलिक सारणियों को तरंगाग्र सारणियाँ कहा जाता है। प्रसिद्ध सिस्टोलिक शृंखला कार्नेगी मेलॉन यूनिवर्सिटी का [[iWarp|आईवार्प]] प्रोसेसर है, जिसे इंटेल के माध्यम से निर्मित किया गया है। आईवार्प प्रणाली में दोनों दिशाओं में जाने वाली डेटा समूहों से जुड़ा रैखिक शृंखला प्रोसेसर होता है।  


== इतिहास ==
== इतिहास ==
सिस्टोलिक सरणियों (वेवफ्रंट प्रोसेसर के रूप में भी जाना जाता है), को पहली बार एच.टी. कुंग और चार्ल्स ई. लीजर्सन द्वारा वर्णित किया गया था, जिन्होंने 1979 में सिस्टोलिक सरणी का वर्णन करने वाला पहला पेपर प्रकाशित किया था। हालांकि, इसी तरह की तकनीक का उपयोग करने वाली पहली मशीन कोलोसस कंप्यूटर थी। 1944.
सिस्टोलिक सारणियों (तरंगाग्र प्रोसेसर के रूप में भी जाना जाता है), को प्रथम बार एच.टी. कुंग और चार्ल्स ई. लीजर्सन के माध्यम से वर्णित किया गया था, जिन्होंने 1979 में सिस्टोलिक शृंखला का वर्णन करने वाला पहला पेपर प्रकाशित किया था। चूंकि इसी तरह की विधि का उपयोग करने वाली प्रथम यंत्र 1944 मे कोलोसस मार्क (कंप्यूटर) थी।  
 
== आवेदन उदाहरण ==
{{Expand section|date=May 2016}}


== एप्लीकेशन उदाहरण ==
बहुपद मूल्यांकन
बहुपद मूल्यांकन


Line 51: Line 46:
y = ( \ldots ( ( (a_n \cdot x + a_{n-1}) \cdot x + a_{n-2}) \cdot x + a_{n-3}) \cdot x + \ldots + a_1) \cdot x + a_0.
y = ( \ldots ( ( (a_n \cdot x + a_{n-1}) \cdot x + a_{n-2}) \cdot x + a_{n-3}) \cdot x + \ldots + a_1) \cdot x + a_0.
</math>
</math>
एक रैखिक सिस्टोलिक सरणी जिसमें प्रोसेसर जोड़े में व्यवस्थित होते हैं: एक इसके इनपुट को गुणा करता है <math>x</math> और परिणाम को दाईं ओर पास करता है, अगला जोड़ता है <math>a_j</math> और परिणाम को दाईं ओर पास करता है।
एक रैखिक सिस्टोलिक शृंखला जिसमें प्रोसेसर जोड़े में व्यवस्थित होते हैं: इसके इनपुट को <math>x</math> से गुणा करता है और परिणाम को दाईं ओर पारित करता है, दूसरा <math>a_j</math> योग करता है और परिणाम को दाईं ओर पारित करता है।


== फायदे और नुकसान ==
== लाभ और हानि ==
{{Unreferenced section|date=December 2016}}
कुशल
पेशेवरों
* सामान्य प्रयोजन के प्रोसेसर की अपेक्षामें तेज़
* सामान्य प्रयोजन के प्रोसेसर की तुलना में तेज़
* मापनीय
* मापनीय
दोष
दोष
* महँगा, पैमाने की कम मितव्ययता के कारण
* मापदंड की कम अर्थव्यवस्था के कारण बहुमूल्य है
* अत्यधिक विशिष्ट, कस्टम हार्डवेयर की आवश्यकता होती है और अक्सर एप्लिकेशन विशिष्ट होती है।
* अत्यधिक विशिष्ट प्रचलन हार्डवेयर की आवश्यकता होती है और अधिकांशतः एप्लिकेशन विशिष्ट होती है।
* व्यापक रूप से लागू नहीं किया गया
* व्यापक रूप से प्रयुक्त नहीं किया गया था
* कार्यक्रमों और एल्गोरिदम का सीमित कोड आधार। (सभी एल्गोरिदम को सिस्टोलिक सरणियों के रूप में लागू नहीं किया जा सकता है। ऐसे एल्गोरिदम को सिस्टोलिक सरणी पर मैप करने के लिए अक्सर ट्रिक्स की आवश्यकता होती है।)
* कार्यक्रमों और एल्गोरिदम का सीमित कोड आधार। (सभी एल्गोरिदम को सिस्टोलिक सारणियों के रूप में प्रयुक्त नहीं किया जा सकता है। ऐसे एल्गोरिदम को सिस्टोलिक शृंखला पर रेखांकित करने के लिए अधिकांशतः उपयों की आवश्यकता होती है।)


== कार्यान्वयन ==
== कार्यान्वयन ==
* [[सिस्को]] पीएक्सएफ नेटवर्क प्रोसेसर आंतरिक रूप से सिस्टोलिक सरणी के रूप में व्यवस्थित है।<ref>{{cite web|title=सिस्को 10000 सीरीज राउटर परफॉर्मेंस रूटिंग इंजन इंस्टालेशन|url=https://www.cisco.com/en/US/products/hw/routers/ps133/prod_installation_guide09186a0080525aba.html#wp48065|access-date=3 August 2020}}</ref>
* [[सिस्को]] पीएक्सएफ नेटवर्क प्रोसेसर आंतरिक रूप से सिस्टोलिक शृंखला के रूप में व्यवस्थित है।<ref>{{cite web|title=सिस्को 10000 सीरीज राउटर परफॉर्मेंस रूटिंग इंजन इंस्टालेशन|url=https://www.cisco.com/en/US/products/hw/routers/ps133/prod_installation_guide09186a0080525aba.html#wp48065|access-date=3 August 2020}}</ref>
* Google की [[Tensor Processing Unit]] भी एक सिस्टोलिक सरणी के आसपास डिज़ाइन की गई है।
* गूगल की [[Tensor Processing Unit|टेन्सर प्रोसेसिंग यूनिट]] भी सिस्टोलिक शृंखला के आसपास रेखांकित की गई है।
* पैरासेल FDF4T टेस्टफाइंडर टेक्स्ट सर्च सिस्टम<ref name="FDF4">{{cite web|title=पैरासेल के बारे में|url=http://brandprosgroup.com/pages/first/websites/paracel/data/html/about_paracel2.html|website=brandprosgroup.com|publisher=Paracel|access-date=4 May 2018}}</ref>
* पैरासेल एफडीएफ4टी संदेश खोजक संदेश जाँच प्रणाली <ref name="FDF4">{{cite web|title=पैरासेल के बारे में|url=http://brandprosgroup.com/pages/first/websites/paracel/data/html/about_paracel2.html|website=brandprosgroup.com|publisher=Paracel|access-date=4 May 2018}}</ref>
* Paracel FDF4G GeneMatcher जैविक (डीएनए और प्रोटीन) खोज प्रणाली
* पैरासेल एफडीएफ4जी आनुवंशिकता मिलान जैविक (डीएनए और प्रोटीन) खोज प्रणाली  
* [[Amazon Web Services]] पर Inferentia चिप<ref>{{cite web|title=उच्च प्रदर्शन और लागत प्रभावी मशीन सीखने के अनुमान के लिए Amazon SageMaker में Inf1 उदाहरणों की उपलब्धता की घोषणा करना|url=https://aws.amazon.com/blogs/aws/amazon-ecs-now-supports-ec2-inf1-instances/|access-date=15 August 2020}}</ref>
* [[Amazon Web Services|अमेज़न वेब सर्विसेज]] पर अनुमान चिप<ref>{{cite web|title=उच्च प्रदर्शन और लागत प्रभावी मशीन सीखने के अनुमान के लिए Amazon SageMaker में Inf1 उदाहरणों की उपलब्धता की घोषणा करना|url=https://aws.amazon.com/blogs/aws/amazon-ecs-now-supports-ec2-inf1-instances/|access-date=15 August 2020}}</ref>
*[[MIT Eyeriss]] दृढ़ तंत्रिका नेटवर्क के लिए एक सिस्टोलिक सरणी त्वरक है।<ref>{{Cite web|title=आईरिस प्रोजेक्ट|url=http://eyeriss.mit.edu/|access-date=2021-02-21|website=eyeriss.mit.edu}}</ref><ref>{{Cite journal|last1=Chen|first1=Yu-Hsin|last2=Emer|first2=Joel|last3=Sze|first3=Vivienne|author3-link=Vivienne Sze|date=2016-10-12|title=Eyeriss: a spatial architecture for energy-efficient dataflow for convolutional neural networks|url=https://dl.acm.org/doi/10.1145/3007787.3001177|journal=ACM SIGARCH Computer Architecture News|language=en|volume=44|issue=3|pages=367–379|doi=10.1145/3007787.3001177|s2cid=3291270 |issn=0163-5964}}</ref>
*[[MIT Eyeriss|एमआईटी आईरिस]] दृढ़ तंत्रिका नेटवर्क के लिए सिस्टोलिक शृंखला त्वरक है।<ref>{{Cite web|title=आईरिस प्रोजेक्ट|url=http://eyeriss.mit.edu/|access-date=2021-02-21|website=eyeriss.mit.edu}}</ref><ref>{{Cite journal|last1=Chen|first1=Yu-Hsin|last2=Emer|first2=Joel|last3=Sze|first3=Vivienne|author3-link=Vivienne Sze|date=2016-10-12|title=Eyeriss: a spatial architecture for energy-efficient dataflow for convolutional neural networks|url=https://dl.acm.org/doi/10.1145/3007787.3001177|journal=ACM SIGARCH Computer Architecture News|language=en|volume=44|issue=3|pages=367–379|doi=10.1145/3007787.3001177|s2cid=3291270 |issn=0163-5964}}</ref>
 
 
== यह भी देखें ==
== यह भी देखें ==
* एकाधिक निर्देश, एकल डेटा - एकाधिक निर्देश एकल डेटा, उदाहरण: सिस्टोलिक सरणी
* एमआईएसडी - एकाधिक निर्देश एकल डेटा, उदाहरण- सिस्टोलिक सरणी
* iWarp - सिस्टोलिक [[ऐ]]रे कंप्यूटर, VLSI, Intel/CMU
* आईवार्प - सिस्टोलिक शृंखला कंप्यूटर, वीएलएसआई, इंटेल/सीएमयू
* WARP (सिस्टोलिक ऐरे) - सिस्टोलिक ऐरे कंप्यूटर, GE/CMU
* वार्प (सिस्टोलिक शृंखला) - सिस्टोलिक शृंखला कंप्यूटर, जीयू/सीएमयू
* टेन्सर प्रोसेसिंग यूनिट - एआई त्वरक [[एएसआईसी]]
* प्रदिश संसाधन इकाई - एआई त्वरक [[एएसआईसी]]


==टिप्पणियाँ==
==टिप्पणियाँ==
<references/>
<references/>


==संदर्भ==
==संदर्भ==
{{More footnotes|date=April 2011}}
* H. T. Kung, C. E. Leiserson: Algorithms for VLSI processor arrays; in: C. Mead, L. Conway (eds.): Introduction to VLSI Systems; Addison-Wesley, 1979
* H. T. Kung, C. E. Leiserson: Algorithms for VLSI processor arrays; in: C. Mead, L. Conway (eds.): Introduction to VLSI Systems; Addison-Wesley, 1979
* S. Y. Kung: VLSI Array Processors; Prentice-Hall, Inc., 1988
* S. Y. Kung: VLSI Array Processors; Prentice-Hall, Inc., 1988
* N. Petkov: Systolic Parallel Processing; North Holland Publishing Co, 1992
* N. Petkov: Systolic Parallel Processing; North Holland Publishing Co, 1992
==बाहरी संबंध==
==बाहरी संबंध==
* [http://www.iti.fh-flensburg.de/lang/papers/isa/index.htm ''Instruction Systolic Array (ISA)'']
* [http://www.iti.fh-flensburg.de/lang/papers/isa/index.htm ''Instruction Systolic Array (ISA)'']
* [http://ieeexplore.ieee.org/iel5/92/4292150/04292156.pdf 'A VLSI Architecture for Image Registration in Real Time' (Based on systolic array), Vol. 15, September 2007]
* [http://ieeexplore.ieee.org/iel5/92/4292150/04292156.pdf 'A VLSI Architecture for Image Registration in Real Time' (Based on systolic array), Vol. 15, September 2007]


{{DEFAULTSORT:Systolic Array}}[[Category: समानांतर कंप्यूटिंग]] [[Category: पुन: कॉन्फ़िगर करने योग्य कंप्यूटिंग]]
{{DEFAULTSORT:Systolic Array}}
 
 


[[Category: Machine Translated Page]]
[[Category:All articles with bare URLs for citations]]
[[Category:Created On 31/05/2023]]
[[Category:Articles with PDF format bare URLs for citations]]
[[Category:Articles with bare URLs for citations from March 2022]]
[[Category:CS1 English-language sources (en)]]
[[Category:Created On 31/05/2023|Systolic Array]]
[[Category:Lua-based templates|Systolic Array]]
[[Category:Machine Translated Page|Systolic Array]]
[[Category:Pages with script errors|Systolic Array]]
[[Category:Templates Vigyan Ready|Systolic Array]]
[[Category:Templates that add a tracking category|Systolic Array]]
[[Category:Templates that generate short descriptions|Systolic Array]]
[[Category:Templates using TemplateData|Systolic Array]]
[[Category:पुन|Systolic Array]]
[[Category:समानांतर कंप्यूटिंग|Systolic Array]]

Latest revision as of 09:26, 28 June 2023

समांतर कंप्यूटिंग कंप्यूटर स्थापत्य में सिस्टोलिक शृंखला दृढ़ता युग्मित डाटा संसाधन इकाई (डीपीयू) का सजातीय नेटवर्क(असतत गणित) है जिसे सेल या बिंदु (कंप्यूटर विज्ञान) कहा जाता है। प्रत्येक बिंदु या डीपीयू स्वतंत्र रूप से अपने प्रतिप्रवाह निकटतम से प्राप्त डेटा के कार्य के रूप में आंशिक परिणाम की गणना करता है, परिणाम को अपने अंदर संग्रहीत करता है और इसे अनुप्रवाह पारित करता है। सिस्टोलिक सारणियों का प्रथम बार उपयोग कोलोसस में किया गया था, जो द्वितीय विश्व युद्ध के समय जर्मन लॉरेंज सिफर सिफर को समाप्त के लिए प्रयुक्त किया जाने वाला प्रारंभिक कंप्यूटर था।[1] कोलोसस की वर्गीकृत प्रकृति के कारण, वे स्वतंत्र रूप से एचटी कुंग और चार्ल्स लीजरसन के माध्यम से आविष्कार या फिर से खोजे गए थे, जिन्होंने बैंडेड आव्युहों के लिए अनेक घने रैखिक बीजगणित गणनाओं (आव्यूह परिणाम, रैखिक समीकरणों की प्रणाली को हल करना एलयू अपघटन आदि) के लिए सारणियों का वर्णन किया था। प्रारंभिक अनुप्रयोगों में पूर्णांकों और बहुपदों के अधिकतम सामान्य विभाजकों की गणना करना सम्मिलित है।[2] उन्हें कभी-कभी फ्लिन की वर्गीकरण के अनुसार एकाधिक-निर्देश एकल-डेटा (एमआईएसडी) स्थापत्य के रूप में वर्गीकृत किया जाता है किन्तु यह वर्गीकरण संशयात्मक है क्योंकि फ्लिन की चार श्रेणियों में से किसी से सिस्टोलिक शृंखला को भिन्न करने के लिए दृढ़ तर्क दिया जा सकता है। एसआईएसडी एसआईएमडी, एमआईएसडी, एमआईएमडी, जैसा कि इस आलेख में बाद में विचार की गई है।

समानांतर इनपुट डेटा यंत्रस्थ माइक्रोप्रोसेसर बिंदुओ के नेटवर्क के माध्यम से प्रवाहित होता है जो व्युत्पन्न परिणाम में इनपुट डेटा को संयोजित, संसाधित, विलय एल्गोरिथ्म या प्रथक एल्गोरिथ्म करता है। क्योंकि सिस्टोलिक शृंखला के माध्यम से डेटा का तरंग जैसा प्रसार मानव संचार प्रणाली की नाडी जैसा दिखता है, सिस्टोलिक नाम चिकित्सा शब्दावली से लिया गया था। यह नाम हृदय के माध्यम से रक्त के नियमित स्पंदित के सादृश्य के रूप में सिस्टोल से लिया गया है।

अनुप्रयोग

बड़े मापदंड पर समानांतर कंप्यूटिंग एकीकरण, संवलन, सहसंबंध, आव्यूह गुणन या डेटा पृथक्करण कार्यों को करने के लिए सिस्टोलिक सारणियों को अधिकांशतः विशिष्ट संचालन जैसे "गुणा और संचय" के लिए हार्ड-वायर्ड होती हैं। उनका उपयोग गतिशील प्रोग्रामिंग एल्गोरिदम के लिए भी किया जाता है, जिसका उपयोग डीएनए और प्रोटीन अनुक्रम विश्लेषण में किया जाता है।

स्थापत्य

एक सिस्टोलिक शृंखला में सामान्यतः प्राथमिक कंप्यूटिंग बिंदु (कंप्यूटर विज्ञान) के बड़े मोनोलिथ प्रणाली नेटवर्क (असतत गणित) होते हैं, जिन्हें किसी विशिष्ट एप्लीकेशन के लिए हार्डवेयर्ड या सॉफ़्टवेयर समनुरूप किया जा सकता है। बिंदुओ सामान्यतः निश्चित और समान होते हैं जबकि यह अन्तर्संबद्ध प्रोग्राम करने योग्य होता है। इसके विपरीत अधिक सामान्य तरंग अग्र प्रोसेसर परिष्कृत और व्यक्तिगत रूप से प्रोग्राम करने योग्य बिंदुओ को नियोजित करते हैं जो शृंखला आकार और रचना मापदंडों के आधार पर मोनोलिथिक हो सकते हैं या नहीं भी हो सकते हैं। अन्य अंतर यह है कि सिस्टोलिक सारणियाँ समकालिक डेटा स्थानान्तरण पर निर्भर करती हैं, जबकि तरंगाग्र अतुल्यकालिक रूप से काम करने की प्रवृत्ति रखते हैं।

अधिक सामान्य वॉन न्यूमैन स्थापत्य के विपरीत, जहां प्रोग्राम निष्पादन सामान्य मेमोरी पता और स्थान में संग्रहीत निर्देशों की आलेख का पालन करता है और सीपीयू के प्रोग्राम गणक (पीसी) के नियंत्रण में अनुक्रमित होता है सिस्टोलिक शृंखला के अंदर भिन्न-भिन्न बिंदुओ नवीन आगमन से प्रवर्तित होते हैं और सदैव डेटा को ठीक उसी तरह प्रोसेस करते हैं। प्रत्येक बिंदु के अंदर वास्तविक प्रसंस्करण हार्ड वायर्ड या ब्लॉक माइक्रोकोड हो सकता है इस स्थिति में सामान्य बिंदु व्यक्तित्व को प्रोग्राम करने योग्य रोक किया जा सकता है।

डेटा गणना (डिजिटल) के माध्यम से संचालित डेटा-प्रवाह के साथ सिस्टोलिक शृंखला प्रतिमान वॉन न्यूमैन स्थापत्य का समकक्ष है जिसमें प्रोग्राम गणना के माध्यम से संचालित निर्देश-धारा है। क्योंकि सिस्टोलिक शृंखला सामान्यतः अनेक डेटा प्रवाह भेजता और प्राप्त करता है और इन डेटा प्रवाह को उत्पन्न करने के लिए अनेक डेटा गणना की आवश्यकता होती है, यह डेटा समानता का समर्थन करता है।

लक्ष्य और लाभ

सिस्टोलिक सारणियों का प्रमुख लाभ यह है कि सभी संकार्य डेटा और आंशिक परिणाम प्रोसेसर शृंखला के अंदर (प्रासंगिक ) संग्रहीत होते हैं। वॉन न्यूमैन या हार्वर्ड स्थापत्य अनुक्रमिक यंत्रों के स्थितियोंमें प्रत्येक संचालन के समय बाहरी समूहों मुख्य मेमोरी या आंतरिक कैश तक पहुंचने की कोई आवश्यकता नहीं है। अमदाहल सिद्धांत के माध्यम से निर्धारित समानांतर कंप्यूटिंग प्रदर्शन पर अनुक्रमिक सीमाएँ भी उसी तरह से प्रयुक्त नहीं होती हैं क्योंकि डेटा निर्भरता को प्रोग्राम योग्य बिंदु (कंप्यूटर विज्ञान) अन्तर्संबद्ध के माध्यम से नियंत्रित किया जाता है और अत्यधिक समानांतर डेटा प्रवाह के प्रबंधन में कोई अनुक्रमिक चरण नहीं होते हैं।

सिस्टोलिक सारणियाँ इसलिए कृत्रिम सूचना, छवि संसाधन , प्रतिरूप मान्यता, कंप्यूटर दृष्टि और अन्य कार्य जो पशु मस्तिष्क विशेष रूप से अच्छी तरह से करते हैं। सामान्यतः तरंगाग्र प्रोसेसर भी हार्डवेयर में स्व विन्यास तंत्रिका संबंधी नेट को प्रयुक्त करके यंत्र अधिगम में बहुत अच्छा हो सकता है। इसलिए सिस्टोलिक सरणी निश्चित रूप से एसआईएसडी नहीं है।

वर्गीकरण विवाद

जबकि सिस्टोलिक सारणियों को आधिकारिक तौर पर एकाधिक निर्देश एकल डेटा (एमआईएसडी) के रूप में वर्गीकृत किया जाता है, उनका वर्गीकरण कुछ सीमा तक समस्याग्रस्त होता है। क्योंकि इनपुट सामान्यतः सदिश होता है, इसलिए सिस्टोलिक शृंखला निश्चित रूप से एकल निर्देश एकल डेटा (एसआईएसडी) नहीं है। चूंकि इन इनपुट (कंप्यूटर विज्ञान) मानो को विलय कर दिया जाता है और परिणाम (एस) में जोड़ दिया जाता है और वे अपनी स्वतंत्रता को बनाए नहीं रखते हैं क्योंकि वे एसआईएसडी सदिश संसाधन इकाई में होते हैं, शृंखला डेटा संरचना को इस तरह वर्गीकृत नहीं किया जा सकता है। परिणाम स्वरुप शृंखला को एमआईएमडी के रूप में वर्गीकृत नहीं किया जा सकता है, क्योंकि एमआईएसडी को छोटे एसआईएसडी और एसआईएमडी यंत्रों के संग्रह के रूप में देखा जा सकता है।

अंत में क्योंकि डेटा समूह रूपांतरित हो जाता है क्योंकि यह बिंदु (कंप्यूटर विज्ञान) से बिंदु तक शृंखला से निकलता है ही डेटा पर अनेक बिंदु काम नहीं कर रहे हैं, जो एमआईएसडी वर्गीकरण को अनुपयुक्त नाम बनाता है। सिस्टोलिक शृंखला को एमआईएसडी के रूप में योग्य नहीं होने का दूसरा कारण वही है जो इसे एसआईएसडी श्रेणी से अयोग्य घोषित करता है: इनपुट डेटा सामान्यतः सदिश होता है न कि एकल डेटा मान, चूंकि कोई यह तर्क दे सकता है कि कोई भी इनपुट सदिश डेटा एकल मद है।

उपरोक्त सभी के अतिरिक्त, सिस्टोलिक सारणियों को अधिकांशतः समानांतर कंप्यूटिंग और इंजीनियरिंग कक्षाओं में पाठ्य पुस्तकों में एमआईएसडी स्थापत्य के उत्कृष्ट उदाहरण के रूप में प्रस्तुत किया जाता है। यदि शृंखला को आणविक संचालन के रूप में बाहर से देखा जाता है तो इसे संभवतः एसएफएमयूडीएमईआर = एकल फ़ंक्शन, एकाधिक डेटा विलीन किए गए परिणाम के रूप में वर्गीकृत किया जाना चाहिए।

सिस्टोलिक सारणियाँ पूर्व-निर्धारित संगणनात्मक प्रवाह लेखाचित्र का उपयोग करती हैं जो उनके बिंदुओं को जोड़ता है। कान प्रक्रिया नेटवर्क समान प्रवाह लेखाचित्र का उपयोग करते हैं, किन्तु सिस्टोलिक शृंखला में अवरोध-चरण में काम करने वाले बिंदुओं के माध्यम से प्रतिष्ठित होते हैं: कान नेटवर्क में प्रत्येक बिंदु के बीच एफआईएफओ पंक्तियां होती हैं।

विस्तृत विवरण

एक सिस्टोलिक शृंखला डेटा संसाधन इकाइयों की आव्यूह जैसी पंक्तियों से बनी होती है जिन्हें सेल कहा जाता है। डेटा संसाधन इकाई (डीपीयू) सेंट्रल संसाधन इकाई (सीपीयू) के समान हैं, (प्रोग्राम गणना की सामान्य कमी को छोड़कर,[3] चूंकि अभिगमन - प्रवर्तित अथार्त डेटा लक्ष्य के आने से संचालन अभिगमन प्रवर्तित स्थापत्य होता है)। प्रत्येक सेल प्रसंस्करण के तत्काल बाद अपने सहयोगियों के साथ सूचना साझा करता है। सिस्टोलिक शृंखला अधिकांशतः आयताकार होती है जहां डेटा सहयोगी डीपीयूएस के बीच शृंखला में प्रवाहित होता है अधिकांशतः भिन्न-भिन्न दिशाओं में भिन्न-भिन्न डेटा प्रवाहित होता है। शृंखला के पोर्ट में प्रवेश करने और निकासी वाली डेटा धाराएं स्वत-अनुक्रमण मेमोरी इकाइयों एएसएम के माध्यम से उत्पन्न होती हैं। प्रत्येक एएसएम में डेटा गणना (डिजिटल) सम्मिलित होता है। अंतः स्थापित प्रणाली में डेटा प्रवाह इनपुट और/या बाहरी स्रोत से आउटपुट भी हो सकता है।

आव्यूह गुणन के लिए सिस्टोलिक कलन विधि का उदाहरण रूपांकित किया जा सकता है। आव्यूह (गणित) को शृंखला के शीर्ष से समय में पंक्ति में सिंचित किया जाता है और शृंखला के नीचे पारित किया जाता है अन्य आव्यूह को शृंखला के बाईं ओर से स्तम्भ में सिंचित किया जाता है और बाईं से दाएं जाता है। कृत्रिम मान तब तक पारित किए जाते हैं जब तक कि प्रत्येक प्रोसेसर ने पूरी पंक्ति और पूरा स्तम्भ नहीं देखा हो। इस बिंदु पर गुणन का परिणाम शृंखला में संग्रहीत किया जाता है और अब समय में पंक्ति या स्तंभ को नीचे या सरणी के पार प्रवाहित किया जा सकता है।[4]

सिस्टोलिक सारणियाँ डेटा संसाधन इकाइयों की सारणियाँ होती हैं जो जाल जैसी सांस्थिति में निकटतम सहयोगी डेटा संसाधन इकाइयों की छोटी संख्या से जुड़ी होती हैं। डीपीयू उन डेटा पर संचालन का क्रम करते हैं जो उनके बीच प्रवाहित होते हैं। क्योंकि बीजगणितीय एल्गोरिदम के माध्यम से पारंपरिक सिस्टोलिक शृंखला संश्लेषण विधियों का अभ्यास किया गया है केवल रैखिक पाइपों के साथ केवल समान शृंखला प्राप्त की जा सकती है जिससेसभी डीपीयू में स्थापत्य समान हों। परिणाम यह है कि मौलिक सिस्टोलिक सारणियों पर केवल नियमित डेटा निर्भरता वाले अनुप्रयोगों को प्रयुक्त किया जा सकता है। एसआईएमडी यंत्र की तरह, कालबद्ध सिस्टोलिक सरणियाँ "अवरोध-चरण" में गणना करती हैं, जिसमें प्रत्येक प्रोसेसर वैकल्पिक कंप्यूट संचार चरणों का उपक्रम करता है। किन्तु डीपीयूएस के बीच अतुल्यकालिक अभिवादन के साथ सिस्टोलिक सारणियों को तरंगाग्र सारणियाँ कहा जाता है। प्रसिद्ध सिस्टोलिक शृंखला कार्नेगी मेलॉन यूनिवर्सिटी का आईवार्प प्रोसेसर है, जिसे इंटेल के माध्यम से निर्मित किया गया है। आईवार्प प्रणाली में दोनों दिशाओं में जाने वाली डेटा समूहों से जुड़ा रैखिक शृंखला प्रोसेसर होता है।

इतिहास

सिस्टोलिक सारणियों (तरंगाग्र प्रोसेसर के रूप में भी जाना जाता है), को प्रथम बार एच.टी. कुंग और चार्ल्स ई. लीजर्सन के माध्यम से वर्णित किया गया था, जिन्होंने 1979 में सिस्टोलिक शृंखला का वर्णन करने वाला पहला पेपर प्रकाशित किया था। चूंकि इसी तरह की विधि का उपयोग करने वाली प्रथम यंत्र 1944 मे कोलोसस मार्क (कंप्यूटर) थी।

एप्लीकेशन उदाहरण

बहुपद मूल्यांकन

बहुपद के मूल्यांकन के लिए हॉर्नर का नियम है:

एक रैखिक सिस्टोलिक शृंखला जिसमें प्रोसेसर जोड़े में व्यवस्थित होते हैं: इसके इनपुट को से गुणा करता है और परिणाम को दाईं ओर पारित करता है, दूसरा योग करता है और परिणाम को दाईं ओर पारित करता है।

लाभ और हानि

कुशल

  • सामान्य प्रयोजन के प्रोसेसर की अपेक्षामें तेज़
  • मापनीय

दोष

  • मापदंड की कम अर्थव्यवस्था के कारण बहुमूल्य है
  • अत्यधिक विशिष्ट प्रचलन हार्डवेयर की आवश्यकता होती है और अधिकांशतः एप्लिकेशन विशिष्ट होती है।
  • व्यापक रूप से प्रयुक्त नहीं किया गया था
  • कार्यक्रमों और एल्गोरिदम का सीमित कोड आधार। (सभी एल्गोरिदम को सिस्टोलिक सारणियों के रूप में प्रयुक्त नहीं किया जा सकता है। ऐसे एल्गोरिदम को सिस्टोलिक शृंखला पर रेखांकित करने के लिए अधिकांशतः उपयों की आवश्यकता होती है।)

कार्यान्वयन

  • सिस्को पीएक्सएफ नेटवर्क प्रोसेसर आंतरिक रूप से सिस्टोलिक शृंखला के रूप में व्यवस्थित है।[5]
  • गूगल की टेन्सर प्रोसेसिंग यूनिट भी सिस्टोलिक शृंखला के आसपास रेखांकित की गई है।
  • पैरासेल एफडीएफ4टी संदेश खोजक संदेश जाँच प्रणाली [6]
  • पैरासेल एफडीएफ4जी आनुवंशिकता मिलान जैविक (डीएनए और प्रोटीन) खोज प्रणाली
  • अमेज़न वेब सर्विसेज पर अनुमान चिप[7]
  • एमआईटी आईरिस दृढ़ तंत्रिका नेटवर्क के लिए सिस्टोलिक शृंखला त्वरक है।[8][9]

यह भी देखें

  • एमआईएसडी - एकाधिक निर्देश एकल डेटा, उदाहरण- सिस्टोलिक सरणी
  • आईवार्प - सिस्टोलिक शृंखला कंप्यूटर, वीएलएसआई, इंटेल/सीएमयू
  • वार्प (सिस्टोलिक शृंखला) - सिस्टोलिक शृंखला कंप्यूटर, जीयू/सीएमयू
  • प्रदिश संसाधन इकाई - एआई त्वरक एएसआईसी

टिप्पणियाँ

  1. Colossus - The Greatest Secret in the History of Computing on YouTube
  2. http://www.eecs.harvard.edu/~htk/publication/1984-ieeetoc-brent-kung.pdf[bare URL PDF]
  3. The Paracel GeneMatcher series of systolic array processors do have a program counter. More complicated algorithms are implemented as a series of simple steps, with shifts specified in the instructions.
  4. Systolic Array Matrix Multiplication
  5. "सिस्को 10000 सीरीज राउटर परफॉर्मेंस रूटिंग इंजन इंस्टालेशन". Retrieved 3 August 2020.
  6. "पैरासेल के बारे में". brandprosgroup.com. Paracel. Retrieved 4 May 2018.
  7. "उच्च प्रदर्शन और लागत प्रभावी मशीन सीखने के अनुमान के लिए Amazon SageMaker में Inf1 उदाहरणों की उपलब्धता की घोषणा करना". Retrieved 15 August 2020.
  8. "आईरिस प्रोजेक्ट". eyeriss.mit.edu. Retrieved 2021-02-21.
  9. Chen, Yu-Hsin; Emer, Joel; Sze, Vivienne (2016-10-12). "Eyeriss: a spatial architecture for energy-efficient dataflow for convolutional neural networks". ACM SIGARCH Computer Architecture News (in English). 44 (3): 367–379. doi:10.1145/3007787.3001177. ISSN 0163-5964. S2CID 3291270.

संदर्भ

  • H. T. Kung, C. E. Leiserson: Algorithms for VLSI processor arrays; in: C. Mead, L. Conway (eds.): Introduction to VLSI Systems; Addison-Wesley, 1979
  • S. Y. Kung: VLSI Array Processors; Prentice-Hall, Inc., 1988
  • N. Petkov: Systolic Parallel Processing; North Holland Publishing Co, 1992

बाहरी संबंध