यादृच्छिक संख्या तालिका: Difference between revisions
(Created page with "{{Multiple issues| {{more footnotes|date=April 2009}} {{one source|date=March 2011}} {{cleanup rewrite|date=March 2011}} }} यादृच्छिक संख्या त...") |
No edit summary |
||
(18 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
यादृच्छिक संख्या तालिका का उपयोग आँकड़ों में चयनित यादृच्छिकता नमूने जैसे कार्यों के लिए किया गया है। यह मैन्युअल रूप से यादृच्छिक नमूने (पासा, कार्ड, आदि के साथ) चुनने से कहीं अधिक प्रभावी था। आजकल [[अनियमितता]] नंबरों की तालिकाओं को कम्प्यूटेशनल [[ रैंडम संख्या जनरेटर |यादृच्छिक संख्या जनरेटर]] द्वारा बदल दिया गया है। | |||
यदि सावधानी से तैयार किया जाता है, तो फ़िल्टरिंग और परीक्षण प्रक्रियाएँ हार्डवेयर-जनित मूल संख्याओं से किसी भी ध्यान देने योग्य पूर्वाग्रह या विषमता को दूर करती हैं जिससे ऐसी तालिकाएँ आकस्मिक उपयोगकर्ता के लिए उपलब्ध सबसे विश्वसनीय यादृच्छिक संख्याएँ प्रदान करें। | |||
यदि सावधानी से तैयार किया जाता है, तो फ़िल्टरिंग और परीक्षण प्रक्रियाएँ हार्डवेयर-जनित मूल संख्याओं से किसी भी ध्यान देने योग्य पूर्वाग्रह या विषमता को दूर करती हैं | |||
ध्यान दें कि कोई भी प्रकाशित (या अन्यथा सुलभ) यादृच्छिक डेटा तालिका [[क्रिप्टो]]ग्राफ़िक उद्देश्यों के लिए अनुपयुक्त है क्योंकि संख्याओं की पहुंच उन्हें प्रभावी रूप से अनुमानित करती है और इसलिए क्रिप्टोसिस्टम पर उनका प्रभाव भी अनुमानित है। इसके विपरीत, वास्तव में यादृच्छिक संख्याएँ जो केवल इच्छित एनकोडर और डिकोडर के लिए सुलभ हैं, एक-बार पैड के रूप में जानी जाने वाली विधि में समान या कम सार्थक डेटा (एक साधारण अनन्य या संचालन का उपयोग करके) के शाब्दिक रूप से अटूट एन्क्रिप्शन की अनुमति देती हैं। जिसमें अधिकांशतः दुर्गम समस्याएँ होती हैं जो इस पद्धति को सही रूप से प्रयुक्त करने में बाधाएँ हैं। | |||
== इतिहास == | == इतिहास == | ||
यादृच्छिक संख्याओं की तालिकाओं में वांछित गुण होते हैं, चाहे तालिका से कैसे भी चुना गया हो: पंक्ति, स्तंभ, विकर्ण या अनियमित रूप से। इस तरह की पहली तालिका एलएचसी द्वारा प्रकाशित की गई थी। 1927 में टिप्पीट, और तब से ऐसी कई अन्य तालिकाएँ विकसित की गईं। पहली सारणियाँ विभिन्न तरीकों से तैयार की गई थीं- | यादृच्छिक संख्याओं की तालिकाओं में वांछित गुण होते हैं, चाहे तालिका से कैसे भी चुना गया हो: पंक्ति, स्तंभ, विकर्ण या अनियमित रूप से। इस तरह की पहली तालिका एलएचसी द्वारा प्रकाशित की गई थी। 1927 में टिप्पीट, और तब से ऐसी कई अन्य तालिकाएँ विकसित की गईं। पहली सारणियाँ विभिन्न तरीकों से तैयार की गई थीं- (एल.एच.सी. टिप्पीट द्वारा) ने जनगणना रजिस्टरों से यादृच्छिक रूप से अपनी संख्याएँ लीं, दूसरी (आरए फिशर और [[फ्रांसिस येट्स]] द्वारा) लघुगणक तालिकाओं से यादृच्छिक रूप से ली गई संख्याओं का उपयोग किया, और 1939 में 100,000 अंक एम.जी. द्वारा प्रकाशित किए गए थे। केंडल और बी. बबिंगटन स्मिथ ने मानव ऑपरेटर के साथ मिलकर विशेष मशीन द्वारा निर्मित किया। 1940 के दशक के मध्य में, [[RAND Corporation|रैंड कॉर्पोरेशन]] ने [[मोंटे कार्लो विधि]] पद्धति के उपयोग के लिए यादृच्छिक संख्याओं की बड़ी तालिका विकसित करने की तैयारी की, और [[हार्डवेयर यादृच्छिक संख्या जनरेटर]] का उपयोग करके 100,000 सामान्य विचलन के साथ मिलियन यादृच्छिक अंक उत्पन्न किए। रैंड टेबल में [[कंप्यूटर]] से जुड़े [[रूले]]ट व्हील के इलेक्ट्रॉनिक सिमुलेशन का उपयोग किया गया था, जिसके परिणाम तालिका बनाने के लिए उपयोग किए जाने से पहले सावधानी से फ़िल्टर किए गए और परीक्षण किए गए थे। यादृच्छिक संख्या देने में रैंड तालिका महत्वपूर्ण सफलता थी क्योंकि इतनी बड़ी और सावधानी से तैयार की गई तालिका पहले कभी उपलब्ध नहीं थी (पहले प्रकाशित सबसे बड़ी तालिका आकार में दस गुना छोटी थी), और क्योंकि यह [[आईबीएम]] [[छिद्रित कार्ड]] पर भी उपलब्ध थी, जो कंप्यूटर में इसके उपयोग की अनुमति है। 1950 के दशक में, [[ERNIE|एर्नी]] नाम के हार्डवेयर यादृच्छिक नंबर जनरेटर का उपयोग ब्रिटिश प्रीमियम बॉन्ड नंबर निकालने के लिए किया गया था। | ||
[[सांख्यिकीय यादृच्छिकता]] के लिए यादृच्छिक संख्याओं का पहला परीक्षण एम.जी. द्वारा विकसित किया गया था। 1930 के दशक के अंत में केंडल और | [[सांख्यिकीय यादृच्छिकता]] के लिए यादृच्छिक संख्याओं का पहला परीक्षण एम.जी. द्वारा विकसित किया गया था। 1930 के दशक के अंत में केंडल और बी. बबिंगटन स्मिथ, और दिए गए क्रम में कुछ प्रकार की संभावित अपेक्षाओं की तलाश पर आधारित था। सबसे सरल परीक्षण यह सुनिश्चित करने के लिए देखा गया कि 1s, 2s, 3s, आदि की लगभग समान संख्याएँ उपस्थित थीं; अधिक जटिल परीक्षण निरंतर 0 के बीच अंकों की संख्या की तलाश करते हैं और उनकी अपेक्षित संभावनाओं के साथ कुल गणना की तुलना करते हैं। इन वर्षों में अधिक जटिल परीक्षण विकसित किए गए। केंडल और स्मिथ ने '[[स्थानीय यादृच्छिकता]]' की धारणा भी बनाई, जिससे यादृच्छिक संख्याओं का सेट विभाजित हो जाएगा और खंडों में परीक्षण किया जाएगा। उनके 100,000 नंबरों के सेट में, उदाहरण के लिए, हजारों में से दो बाकी की तुलना में कुछ सीमा तक स्थानीय रूप से यादृच्छिक थे, किंतु पूरे के रूप में सेट अपने परीक्षण पास करेगा। केंडल और स्मिथ ने अपने पाठकों को सलाह दी कि वे परिणाम के रूप में स्वयं उन हजारों का उपयोग न करें। | ||
प्रकाशित तालिकाओं में अभी भी आला उपयोग हैं, विशेष रूप से प्रायोगिक संगीत टुकड़ों के प्रदर्शन में जो उनके लिए कॉल करते हैं, जैसे कि [[ला मोंटे यंग]] द्वारा विजन (1959) और कविता (1960)।<ref>{{cite web|title=एक सीधी रेखा के बाद|url=http://www.users.waitrose.com/~chobbs/smithyoung.html|accessdate=29 August 2012}}</ref> | प्रकाशित तालिकाओं में अभी भी आला उपयोग हैं, विशेष रूप से प्रायोगिक संगीत टुकड़ों के प्रदर्शन में जो उनके लिए कॉल करते हैं, जैसे कि [[ला मोंटे यंग]] द्वारा विजन (1959) और कविता (1960)।<ref>{{cite web|title=एक सीधी रेखा के बाद|url=http://www.users.waitrose.com/~chobbs/smithyoung.html|accessdate=29 August 2012}}</ref> | ||
== यह भी देखें == | |||
* 100,000 सामान्य विचलन के साथ लाख यादृच्छिक अंक | |||
== यह भी देखें == | |||
* 100,000 सामान्य विचलन के साथ | |||
* [[किश ग्रिड]] | * [[किश ग्रिड]] | ||
==संदर्भ== | ==संदर्भ== | ||
{{Reflist}} | {{Reflist}} | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
* [http://www.rand.org/pubs/monograph_reports/MR1418/ Data from ''A Million Random Digits With 100,000 Normal Deviates''] by the RAND Corporation | * [http://www.rand.org/pubs/monograph_reports/MR1418/ Data from ''A Million Random Digits With 100,000 Normal Deviates''] by the RAND Corporation | ||
[[Category:Created On 01/06/2023]] | [[Category:Created On 01/06/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:यादृच्छिक संख्या पीढ़ी]] |
Latest revision as of 09:46, 28 June 2023
यादृच्छिक संख्या तालिका का उपयोग आँकड़ों में चयनित यादृच्छिकता नमूने जैसे कार्यों के लिए किया गया है। यह मैन्युअल रूप से यादृच्छिक नमूने (पासा, कार्ड, आदि के साथ) चुनने से कहीं अधिक प्रभावी था। आजकल अनियमितता नंबरों की तालिकाओं को कम्प्यूटेशनल यादृच्छिक संख्या जनरेटर द्वारा बदल दिया गया है।
यदि सावधानी से तैयार किया जाता है, तो फ़िल्टरिंग और परीक्षण प्रक्रियाएँ हार्डवेयर-जनित मूल संख्याओं से किसी भी ध्यान देने योग्य पूर्वाग्रह या विषमता को दूर करती हैं जिससे ऐसी तालिकाएँ आकस्मिक उपयोगकर्ता के लिए उपलब्ध सबसे विश्वसनीय यादृच्छिक संख्याएँ प्रदान करें।
ध्यान दें कि कोई भी प्रकाशित (या अन्यथा सुलभ) यादृच्छिक डेटा तालिका क्रिप्टोग्राफ़िक उद्देश्यों के लिए अनुपयुक्त है क्योंकि संख्याओं की पहुंच उन्हें प्रभावी रूप से अनुमानित करती है और इसलिए क्रिप्टोसिस्टम पर उनका प्रभाव भी अनुमानित है। इसके विपरीत, वास्तव में यादृच्छिक संख्याएँ जो केवल इच्छित एनकोडर और डिकोडर के लिए सुलभ हैं, एक-बार पैड के रूप में जानी जाने वाली विधि में समान या कम सार्थक डेटा (एक साधारण अनन्य या संचालन का उपयोग करके) के शाब्दिक रूप से अटूट एन्क्रिप्शन की अनुमति देती हैं। जिसमें अधिकांशतः दुर्गम समस्याएँ होती हैं जो इस पद्धति को सही रूप से प्रयुक्त करने में बाधाएँ हैं।
इतिहास
यादृच्छिक संख्याओं की तालिकाओं में वांछित गुण होते हैं, चाहे तालिका से कैसे भी चुना गया हो: पंक्ति, स्तंभ, विकर्ण या अनियमित रूप से। इस तरह की पहली तालिका एलएचसी द्वारा प्रकाशित की गई थी। 1927 में टिप्पीट, और तब से ऐसी कई अन्य तालिकाएँ विकसित की गईं। पहली सारणियाँ विभिन्न तरीकों से तैयार की गई थीं- (एल.एच.सी. टिप्पीट द्वारा) ने जनगणना रजिस्टरों से यादृच्छिक रूप से अपनी संख्याएँ लीं, दूसरी (आरए फिशर और फ्रांसिस येट्स द्वारा) लघुगणक तालिकाओं से यादृच्छिक रूप से ली गई संख्याओं का उपयोग किया, और 1939 में 100,000 अंक एम.जी. द्वारा प्रकाशित किए गए थे। केंडल और बी. बबिंगटन स्मिथ ने मानव ऑपरेटर के साथ मिलकर विशेष मशीन द्वारा निर्मित किया। 1940 के दशक के मध्य में, रैंड कॉर्पोरेशन ने मोंटे कार्लो विधि पद्धति के उपयोग के लिए यादृच्छिक संख्याओं की बड़ी तालिका विकसित करने की तैयारी की, और हार्डवेयर यादृच्छिक संख्या जनरेटर का उपयोग करके 100,000 सामान्य विचलन के साथ मिलियन यादृच्छिक अंक उत्पन्न किए। रैंड टेबल में कंप्यूटर से जुड़े रूलेट व्हील के इलेक्ट्रॉनिक सिमुलेशन का उपयोग किया गया था, जिसके परिणाम तालिका बनाने के लिए उपयोग किए जाने से पहले सावधानी से फ़िल्टर किए गए और परीक्षण किए गए थे। यादृच्छिक संख्या देने में रैंड तालिका महत्वपूर्ण सफलता थी क्योंकि इतनी बड़ी और सावधानी से तैयार की गई तालिका पहले कभी उपलब्ध नहीं थी (पहले प्रकाशित सबसे बड़ी तालिका आकार में दस गुना छोटी थी), और क्योंकि यह आईबीएम छिद्रित कार्ड पर भी उपलब्ध थी, जो कंप्यूटर में इसके उपयोग की अनुमति है। 1950 के दशक में, एर्नी नाम के हार्डवेयर यादृच्छिक नंबर जनरेटर का उपयोग ब्रिटिश प्रीमियम बॉन्ड नंबर निकालने के लिए किया गया था।
सांख्यिकीय यादृच्छिकता के लिए यादृच्छिक संख्याओं का पहला परीक्षण एम.जी. द्वारा विकसित किया गया था। 1930 के दशक के अंत में केंडल और बी. बबिंगटन स्मिथ, और दिए गए क्रम में कुछ प्रकार की संभावित अपेक्षाओं की तलाश पर आधारित था। सबसे सरल परीक्षण यह सुनिश्चित करने के लिए देखा गया कि 1s, 2s, 3s, आदि की लगभग समान संख्याएँ उपस्थित थीं; अधिक जटिल परीक्षण निरंतर 0 के बीच अंकों की संख्या की तलाश करते हैं और उनकी अपेक्षित संभावनाओं के साथ कुल गणना की तुलना करते हैं। इन वर्षों में अधिक जटिल परीक्षण विकसित किए गए। केंडल और स्मिथ ने 'स्थानीय यादृच्छिकता' की धारणा भी बनाई, जिससे यादृच्छिक संख्याओं का सेट विभाजित हो जाएगा और खंडों में परीक्षण किया जाएगा। उनके 100,000 नंबरों के सेट में, उदाहरण के लिए, हजारों में से दो बाकी की तुलना में कुछ सीमा तक स्थानीय रूप से यादृच्छिक थे, किंतु पूरे के रूप में सेट अपने परीक्षण पास करेगा। केंडल और स्मिथ ने अपने पाठकों को सलाह दी कि वे परिणाम के रूप में स्वयं उन हजारों का उपयोग न करें।
प्रकाशित तालिकाओं में अभी भी आला उपयोग हैं, विशेष रूप से प्रायोगिक संगीत टुकड़ों के प्रदर्शन में जो उनके लिए कॉल करते हैं, जैसे कि ला मोंटे यंग द्वारा विजन (1959) और कविता (1960)।[1]
यह भी देखें
- 100,000 सामान्य विचलन के साथ लाख यादृच्छिक अंक
- किश ग्रिड
संदर्भ
- ↑ "एक सीधी रेखा के बाद". Retrieved 29 August 2012.
बाहरी संबंध
- Data from A Million Random Digits With 100,000 Normal Deviates by the RAND Corporation