प्रभावी तरीका: Difference between revisions
(Created page with "{{Short description|Problem-solving procedures with certain characteristics}} तर्कशास्त्र, गणित और कंप्यूटर विज...") |
No edit summary |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Problem-solving procedures with certain characteristics}} | {{Short description|Problem-solving procedures with certain characteristics}} | ||
[[तर्क]] | [[तर्क|तर्कशास्त्र]], गणित और [[कंप्यूटर विज्ञान]] में, विशेष रूप से [[ धातु विज्ञान |धातु विज्ञान]], [[संगणनीयता सिद्धांत]], एक प्रभावी विधि<ref name="metalogic">[[Geoffrey Hunter (logician)|Hunter, Geoffrey]], ''Metalogic: An Introduction to the Metatheory of Standard First-Order Logic'', University of California Press, 1971</ref> या प्रभावी प्रक्रिया है। इसी प्रकार यह किसी विशिष्ट वर्ग से तथा किसी सहज 'प्रभावी' माध्यम से समस्याओं का समाधान करने की प्रक्रिया है।<ref>{{cite journal |last1=Gandy |first1=Robin |title=चर्च की थीसिस और तंत्र के सिद्धांत|date=1980}}</ref> एक प्रभावी विधि को कभी-कभी यांत्रिक विधि या प्रक्रिया भी कहा जाता है।<ref name=alanturingnet>{{cite web|last=Copeland|first=B.J.|title=ट्यूरिंग-चर्च थीसिस|url=http://www.alanturing.net/turing_archive/pages/reference%20articles/The%20Turing-Church%20Thesis.html|work=AlanTuring.net|publisher=Turing Archive for the History of Computing|date=June 2000|access-date=23 March 2013|author-link=Jack Copeland |author2=Copeland, Jack |author3=Proudfoot, Diane}}</ref> | ||
== परिभाषा == | == परिभाषा == | ||
एक प्रभावी विधि की परिभाषा में स्वयं विधि से अधिक | एक प्रभावी विधि की परिभाषा में स्वयं विधि से अधिक सम्मलित है। किसी विधि को प्रभावी कहलाने के लिए, उसे समस्याओं के एक वर्ग के संबंध में विचार किया जाना चाहिए, इस वजह से, एक विधि एक वर्ग की समस्याओं के संबंध में प्रभावी हो सकती है और दूसरे वर्ग के संबंध में प्रभावी नहीं हो सकती है। | ||
एक विधि औपचारिक रूप से समस्याओं के एक वर्ग के लिए प्रभावी कहलाती है जब वह इन मानदंडों को पूरा करती है: | एक विधि औपचारिक रूप से समस्याओं के एक वर्ग के लिए प्रभावी कहलाती है जब वह इन मानदंडों को पूरा करती है: | ||
* इसमें | * इसमें उपयुक्त, परिमित निर्देशों की एक सीमित संख्या होती है। | ||
* जब इसे अपनी | * जब इसे अपनी क्लास से किसी समस्या पर लागू किया जाता है: | ||
** यह | ** यह निरंतर सीमित संख्या में चरणों के पश्चात समाप्त होता है। | ||
** यह | ** यह निरंतर सही उत्तर देता है। | ||
* सिद्धांत रूप में, यह लेखन सामग्री को छोड़कर किसी भी सहायता के बिना मानव द्वारा किया जा सकता है। | * सिद्धांत रूप में, यह लेखन सामग्री को छोड़कर किसी भी सहायता के बिना मानव द्वारा किया जा सकता है। | ||
* इसके निर्देशों | *इसके निर्देशों को सफल होने के लिए मात्र [[कठोरता]] से पालन करने की आवश्यकता है। दूसरे शब्दों में, इसे सफल होने के लिए किसी [[रचनात्मकता]] की आवश्यकता नहीं है।<ref>The Cambridge Dictionary of Philosophy, ''effective procedure''</ref> | ||
वैकल्पिक रूप से, यह भी आवश्यक हो सकता है कि विधि कभी भी परिणाम नहीं लौटाती है जैसे कि यह एक उत्तर था जब विधि को उसकी | वैकल्पिक रूप से, यह भी आवश्यक हो सकता है कि विधि कभी भी परिणाम नहीं लौटाती है जैसे कि यह एक उत्तर था जब विधि को उसकी क्लास के बाहर किसी समस्या पर लागू किया जाता है। इस आवश्यकता को जोड़ने से कक्षाओं का समूह कम हो जाता है जिसके लिए यह एक प्रभावी विधि है। | ||
== | == कलन विधि == | ||
किसी फ़ंक्शन के मानों की गणना करने के लिए एक प्रभावी | इस प्रकार किसी फ़ंक्शन के मानों की गणना करने के लिए एक प्रभावी विधि एक [[ कलन विधि |कलन विधि]] है। जिन कार्यों के लिए एक प्रभावी विधि उपलब्ध है उन्हें कभी-कभी [[संगणनीय समारोह|संगणनीय फ़ंक्शन]] कहा जाता है। | ||
== संगणनीय कार्य == | == संगणनीय कार्य == | ||
प्रभावी गणना की औपचारिक विशेषता देने के लिए कई स्वतंत्र प्रयासों ने विभिन्न प्रकार की प्रस्तावित परिभाषाओं ([[सामान्य पुनरावर्ती | प्रभावी गणना की औपचारिक विशेषता देने के लिए कई स्वतंत्र प्रयासों ने विभिन्न प्रकार की प्रस्तावित परिभाषाओं ([[सामान्य पुनरावर्ती कार्यों]], [[ट्यूरिंग मशीन]], λ-कैलकुलस) को उत्पन्न किया, जो पश्चात में समकक्ष के रूप में दिखाए गए थे। इन परिभाषाओं द्वारा अधिकृत की गई धारणा को पुनरावर्ती या प्रभावी संगणनीयता के रूप में जाना जाता है। | ||
चर्च-ट्यूरिंग थीसिस में कहा गया है कि दो धारणाएं मेल खाती हैं: कोई भी संख्या-सैद्धांतिक कार्य | चर्च-ट्यूरिंग थीसिस में कहा गया है कि दो धारणाएं मेल खाती हैं: प्रभावी रूप से गणना योग्य कोई भी संख्या-सैद्धांतिक कार्य पुनरावर्ती रूप से गणना योग्य है। चूँकि यह गणितीय कथन नहीं है, इसे [[गणितीय प्रमाण]] द्वारा सिद्ध नहीं किया जा सकता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[निर्णायकता (तर्क)]] | * [[निर्णायकता (तर्क)]] | ||
* [[निर्णय समस्या]] | * [[निर्णय समस्या]] | ||
*[[ समारोह की समस्या ]] | *[[ समारोह की समस्या | फ़ंक्शन की समस्या]] | ||
* [[संख्या सिद्धांत में प्रभावी परिणाम]] | * [[संख्या सिद्धांत में प्रभावी परिणाम]] | ||
* [[पुनरावर्ती सेट]] | * [[पुनरावर्ती सेट|पुनरावर्ती समूह]] | ||
*[[अनिर्णीत समस्या]] | *[[अनिर्णीत समस्या]] | ||
Line 37: | Line 35: | ||
{{Metalogic}} | {{Metalogic}} | ||
{{logic-stub}} | {{logic-stub}} | ||
[[Category:All stub articles]] | |||
[[Category:CS1 errors]] | |||
[[Category: | [[Category:Collapse templates]] | ||
[[Category:Created On 31/05/2023]] | [[Category:Created On 31/05/2023]] | ||
[[Category:Logic stubs]] | |||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:मेटालॉजिक]] | |||
[[Category:संगणना का सिद्धांत]] | |||
[[Category:संगणनीयता सिद्धांत]] |
Latest revision as of 09:48, 28 June 2023
तर्कशास्त्र, गणित और कंप्यूटर विज्ञान में, विशेष रूप से धातु विज्ञान, संगणनीयता सिद्धांत, एक प्रभावी विधि[1] या प्रभावी प्रक्रिया है। इसी प्रकार यह किसी विशिष्ट वर्ग से तथा किसी सहज 'प्रभावी' माध्यम से समस्याओं का समाधान करने की प्रक्रिया है।[2] एक प्रभावी विधि को कभी-कभी यांत्रिक विधि या प्रक्रिया भी कहा जाता है।[3]
परिभाषा
एक प्रभावी विधि की परिभाषा में स्वयं विधि से अधिक सम्मलित है। किसी विधि को प्रभावी कहलाने के लिए, उसे समस्याओं के एक वर्ग के संबंध में विचार किया जाना चाहिए, इस वजह से, एक विधि एक वर्ग की समस्याओं के संबंध में प्रभावी हो सकती है और दूसरे वर्ग के संबंध में प्रभावी नहीं हो सकती है।
एक विधि औपचारिक रूप से समस्याओं के एक वर्ग के लिए प्रभावी कहलाती है जब वह इन मानदंडों को पूरा करती है:
- इसमें उपयुक्त, परिमित निर्देशों की एक सीमित संख्या होती है।
- जब इसे अपनी क्लास से किसी समस्या पर लागू किया जाता है:
- यह निरंतर सीमित संख्या में चरणों के पश्चात समाप्त होता है।
- यह निरंतर सही उत्तर देता है।
- सिद्धांत रूप में, यह लेखन सामग्री को छोड़कर किसी भी सहायता के बिना मानव द्वारा किया जा सकता है।
- इसके निर्देशों को सफल होने के लिए मात्र कठोरता से पालन करने की आवश्यकता है। दूसरे शब्दों में, इसे सफल होने के लिए किसी रचनात्मकता की आवश्यकता नहीं है।[4]
वैकल्पिक रूप से, यह भी आवश्यक हो सकता है कि विधि कभी भी परिणाम नहीं लौटाती है जैसे कि यह एक उत्तर था जब विधि को उसकी क्लास के बाहर किसी समस्या पर लागू किया जाता है। इस आवश्यकता को जोड़ने से कक्षाओं का समूह कम हो जाता है जिसके लिए यह एक प्रभावी विधि है।
कलन विधि
इस प्रकार किसी फ़ंक्शन के मानों की गणना करने के लिए एक प्रभावी विधि एक कलन विधि है। जिन कार्यों के लिए एक प्रभावी विधि उपलब्ध है उन्हें कभी-कभी संगणनीय फ़ंक्शन कहा जाता है।
संगणनीय कार्य
प्रभावी गणना की औपचारिक विशेषता देने के लिए कई स्वतंत्र प्रयासों ने विभिन्न प्रकार की प्रस्तावित परिभाषाओं (सामान्य पुनरावर्ती कार्यों, ट्यूरिंग मशीन, λ-कैलकुलस) को उत्पन्न किया, जो पश्चात में समकक्ष के रूप में दिखाए गए थे। इन परिभाषाओं द्वारा अधिकृत की गई धारणा को पुनरावर्ती या प्रभावी संगणनीयता के रूप में जाना जाता है।
चर्च-ट्यूरिंग थीसिस में कहा गया है कि दो धारणाएं मेल खाती हैं: प्रभावी रूप से गणना योग्य कोई भी संख्या-सैद्धांतिक कार्य पुनरावर्ती रूप से गणना योग्य है। चूँकि यह गणितीय कथन नहीं है, इसे गणितीय प्रमाण द्वारा सिद्ध नहीं किया जा सकता है।
यह भी देखें
- निर्णायकता (तर्क)
- निर्णय समस्या
- फ़ंक्शन की समस्या
- संख्या सिद्धांत में प्रभावी परिणाम
- पुनरावर्ती समूह
- अनिर्णीत समस्या
संदर्भ
- ↑ Hunter, Geoffrey, Metalogic: An Introduction to the Metatheory of Standard First-Order Logic, University of California Press, 1971
- ↑ Gandy, Robin (1980). "चर्च की थीसिस और तंत्र के सिद्धांत".
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ Copeland, B.J.; Copeland, Jack; Proudfoot, Diane (June 2000). "ट्यूरिंग-चर्च थीसिस". AlanTuring.net. Turing Archive for the History of Computing. Retrieved 23 March 2013.
- ↑ The Cambridge Dictionary of Philosophy, effective procedure
- S. C. Kleene (1967), Mathematical logic. Reprinted, Dover, 2002, ISBN 0-486-42533-9, pp. 233 ff., esp. p. 231.