स्ट्रिंग सिद्धांत परिदृश्य: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
{{String theory|cTopic=Theory}} | {{String theory|cTopic=Theory}} | ||
[[ स्ट्रिंग सिद्धांत |स्ट्रिंग सिद्धांत]] में, स्ट्रिंग थ्योरी | [[ स्ट्रिंग सिद्धांत |स्ट्रिंग सिद्धांत]] में, स्ट्रिंग थ्योरी परिदृश्य (या वैक्यूम का परिदृश्य) संभावित असत्यवादी वैक्यूम का संग्रह है,<ref name=Ashok>The number of metastable vacua is not known exactly, but commonly quoted estimates are of the order 10<sup>500</sup>. See [[Michael R. Douglas|M. Douglas]], "The statistics of string / M theory vacua", ''JHEP'' '''0305''', 46 (2003). {{arxiv|hep-th/0303194}}; S. Ashok and M. Douglas, "Counting flux vacua", ''JHEP'' '''0401''', 060 (2004).</ref> एक साथ [[संघनन (भौतिकी)]] को नियंत्रित करने वाले मापदंडों के विकल्पों का सामूहिक परिदृश्य सम्मिलित है। | ||
परिदृश्य शब्द [[विकासवादी जीव विज्ञान]] में [[फिटनेस परिदृश्य]] की धारणा से आया है।<ref>{{cite book |first=Jim |last=Baggott |year=2018 |title=क्वांटम स्पेस लूप क्वांटम ग्रेविटी एंड द सर्च फॉर द स्ट्रक्चर ऑफ स्पेस, टाइम एंड द यूनिवर्स|location= |publisher=Oxford University Press |isbn=978-0-19-253681-5 |page=288 |url=https://books.google.com/books?id=HwN6DwAAQBAJ&pg=PA288 }}</ref> यह प्रथम बार [[ली स्मोलिन]] द्वारा अपनी पुस्तक द लाइफ ऑफ द कॉसमॉस (1997) में ब्रह्माण्ड विज्ञान पर प्रारम्भ किया गया था, और प्रथम बार [[ लियोनार्ड सुस्किंड ]] द्वारा स्ट्रिंग सिद्धांत के संदर्भ में इसका उपयोग किया गया था।<ref>L. Smolin, "Did the universe evolve?", ''Classical and Quantum Gravity'' '''9''', 173–191 (1992). L. Smolin, ''[[The Life of the Cosmos]]'' (Oxford, 1997)</ref> | परिदृश्य शब्द [[विकासवादी जीव विज्ञान]] में [[फिटनेस परिदृश्य]] की धारणा से आया है।<ref>{{cite book |first=Jim |last=Baggott |year=2018 |title=क्वांटम स्पेस लूप क्वांटम ग्रेविटी एंड द सर्च फॉर द स्ट्रक्चर ऑफ स्पेस, टाइम एंड द यूनिवर्स|location= |publisher=Oxford University Press |isbn=978-0-19-253681-5 |page=288 |url=https://books.google.com/books?id=HwN6DwAAQBAJ&pg=PA288 }}</ref> यह प्रथम बार [[ली स्मोलिन]] द्वारा अपनी पुस्तक द लाइफ ऑफ द कॉसमॉस (1997) में ब्रह्माण्ड विज्ञान पर प्रारम्भ किया गया था, और प्रथम बार [[ लियोनार्ड सुस्किंड ]] द्वारा स्ट्रिंग सिद्धांत के संदर्भ में इसका उपयोग किया गया था।<ref>L. Smolin, "Did the universe evolve?", ''Classical and Quantum Gravity'' '''9''', 173–191 (1992). L. Smolin, ''[[The Life of the Cosmos]]'' (Oxford, 1997)</ref> | ||
Line 10: | Line 10: | ||
{{main|संघनन (भौतिकी)}} | {{main|संघनन (भौतिकी)}} | ||
स्ट्रिंग थ्योरी में फ्लक्स वैक्यूमकी संख्या को सामान्यतः मोटे तौर पर <math>10^{500}</math> मानी जाती है ,<ref>{{cite journal|title=The landscape and the multiverse: What's the problem?|journal=Synthese|date=2021|last1=Read|first1=James|last2=Le Bihan|first2=Baptiste|volume=199|issue=3–4|pages=7749–7771|doi=10.1007/s11229-021-03137-0|s2cid=234815857|doi-access=free}}</ref> किन्तु हो सकता है <math>10^{272,000}</math><ref>{{cite journal|title=अधिकांश फ्लक्स वैकुआ के साथ एफ-सिद्धांत ज्यामिति|date=2015|last1=Taylor| first1=Washington|last2=Wang|first2=Yi-Nan|doi=10.1007/JHEP12(2015)164|journal=Journal of High Energy Physics|volume=2015|issue=12|pages=164|arxiv=1511.03209 |bibcode=2015JHEP...12..164T|s2cid=41149049}}</ref> या उच्चतर [[ एफ सिद्धांत ]] में पाए जाने वाले विभिन्न होमोलॉजी (गणित) चक्रों पर कैलाबी-यॉ मैनिफोल्ड्स और सामान्यीकृत [[चुंबकीय प्रवाह]] के विकल्पों से बड़ी संख्या में संभावनाएं उत्पन्न होती हैं। | स्ट्रिंग थ्योरी में फ्लक्स वैक्यूमकी संख्या को सामान्यतः मोटे तौर पर <math>10^{500}</math> मानी जाती है,<ref>{{cite journal|title=The landscape and the multiverse: What's the problem?|journal=Synthese|date=2021|last1=Read|first1=James|last2=Le Bihan|first2=Baptiste|volume=199|issue=3–4|pages=7749–7771|doi=10.1007/s11229-021-03137-0|s2cid=234815857|doi-access=free}}</ref> किन्तु हो सकता है <math>10^{272,000}</math><ref>{{cite journal|title=अधिकांश फ्लक्स वैकुआ के साथ एफ-सिद्धांत ज्यामिति|date=2015|last1=Taylor| first1=Washington|last2=Wang|first2=Yi-Nan|doi=10.1007/JHEP12(2015)164|journal=Journal of High Energy Physics|volume=2015|issue=12|pages=164|arxiv=1511.03209 |bibcode=2015JHEP...12..164T|s2cid=41149049}}</ref> या उच्चतर [[ एफ सिद्धांत ]] में पाए जाने वाले विभिन्न होमोलॉजी (गणित) चक्रों पर कैलाबी-यॉ मैनिफोल्ड्स और सामान्यीकृत [[चुंबकीय प्रवाह]] के विकल्पों से बड़ी संख्या में संभावनाएं उत्पन्न होती हैं। | ||
यदि वैक्यूम के स्थान में कोई संरचना नहीं है, तो पर्याप्त रूप से अल्प ब्रह्माण्ड संबंधी स्थिरांक वाले एक का शोध करने की समस्या एनपी पूर्ण है।<ref>{{cite journal|title=परिदृश्य की कम्प्यूटेशनल जटिलता|year=2007|author1=Frederik Denef|last2=Douglas | first2=Michael R.|doi=10.1016/j.aop.2006.07.013|journal=Annals of Physics|volume=322|issue=5|pages=1096–1142|arxiv=hep-th/0602072|bibcode = 2007AnPhy.322.1096D |s2cid=281586}}</ref> यह [[सबसेट योग समस्या]] का संस्करण है। | यदि वैक्यूम के स्थान में कोई संरचना नहीं है, तो पर्याप्त रूप से अल्प ब्रह्माण्ड संबंधी स्थिरांक वाले एक का शोध करने की समस्या एनपी पूर्ण है।<ref>{{cite journal|title=परिदृश्य की कम्प्यूटेशनल जटिलता|year=2007|author1=Frederik Denef|last2=Douglas | first2=Michael R.|doi=10.1016/j.aop.2006.07.013|journal=Annals of Physics|volume=322|issue=5|pages=1096–1142|arxiv=hep-th/0602072|bibcode = 2007AnPhy.322.1096D |s2cid=281586}}</ref> यह [[सबसेट योग समस्या]] का संस्करण है। | ||
Line 50: | Line 50: | ||
आंद्रेई लिंडे, [[सर मार्टिन रीस]] और लियोनार्ड सस्किंड ने ब्रह्माण्ड संबंधी निरंतर समस्या के समाधान के रूप में इसकी वकालत करते हैं। | आंद्रेई लिंडे, [[सर मार्टिन रीस]] और लियोनार्ड सस्किंड ने ब्रह्माण्ड संबंधी निरंतर समस्या के समाधान के रूप में इसकी वकालत करते हैं। | ||
=== | === परिदृश्य से शक्तिहीन स्तर की सुपरसममेट्री === | ||
स्ट्रिंग परिदृश्य विचारों को | स्ट्रिंग परिदृश्य विचारों को शक्तिहीन स्केल सुपरसिमेट्री और लिटिल पदानुक्रम समस्या की धारणा पर प्रारम्भ किया जा सकता है। स्ट्रिंग वेकुआ के लिए जिसमें कम ऊर्जा प्रभावी क्षेत्र सिद्धांत के रूप में एमएसएसएम (न्यूनतम सुपरसिमेट्रिक मानक मॉडल) सम्मिलित है, एसयूएसवाई ब्रेकिंग फ़ील्ड के सभी मान परिदृश्य पर समान रूप से होने की आशा है। इसने डगलस <ref>M. R. Douglas, "Statistical analysis of the supersymmetry breaking scale", {{arxiv|hep-th/0405279}}.</ref> और अन्य को यह प्रस्ताव देने के लिए प्रेरित किया कि SUSY ब्रेकिंग स्केल को परिदृश्य में शक्ति कानून के रूप में वितरित किया जाता है। | ||
स्ट्रिंग | |||
परिदृश्य पर समान रूप से होने की | जहाँ <math>n_F</math> F-ब्रेकिंग फ़ील्ड्स की संख्या है (जटिल संख्या के रूप में वितरित) और परिदृश्य में <math>n_D</math> डी-ब्रेकिंग फ़ील्ड की संख्या है (वास्तविक संख्या के रूप में वितरित)। इसके पश्चात, कोई अग्रवाल, बर्र, डोनॉग्यू, सेकेल (एबीडीएस) मानवीय आवश्यकता को प्रारम्भ कर सकता है<ref>V. Agrawal, S. M. Barr, J. F. Donoghue and | ||
(जटिल संख्या के रूप में वितरित) और <math>n_D</math> डी-ब्रेकिंग फ़ील्ड की संख्या है (वास्तविक संख्या के रूप में वितरित)। | |||
इसके | |||
D. Seckel, "Anthropic considerations in multiple domain theories and the scale of electroweak symmetry breaking", | D. Seckel, "Anthropic considerations in multiple domain theories and the scale of electroweak symmetry breaking", | ||
''Phys. Rev. Lett.'' '''80''', 1822 (1998).{{arxiv|hep-ph/9801253}}</ref> व्युत्पन्न | ''Phys. Rev. Lett.'' '''80''', 1822 (1998).{{arxiv|hep-ph/9801253}}</ref> व्युत्पन्न शक्तिहीन स्तर हमारे मापा मूल्य कुछ कारक के अंदर होता है (ऐसा न हो कि जीवन के लिए आवश्यक नाभिक जैसा कि हम जानते हैं कि यह अस्थिर हो जाता है (परमाणु सिद्धांत))। इन प्रभावों को हल्के पावर-लॉ ड्रा के साथ बड़े सॉफ्ट SUSY ब्रेकिंग शब्दों में जोड़कर, कोई परिदृश्य से अपेक्षित हिग्स बोसोन और सुपरपार्टिकल द्रव्यमान की गणना कर सकता है।<ref>H. Baer, V. Barger, H. Serce and K. Sinha, "Higgs and superparticle mass predictions from the landscape", ''JHEP'' '''03''', 002 (2018), {{arxiv|1712.01399}} .</ref> हिग्स द्रव्यमान संभाव्यता वितरण 125 GeV के निकट चरम पर है जबकि स्पार्टिकल्स (प्रकाश के अपवाद के साथ) वर्तमान एलएचसी शोध सीमा से अत्यधिक आगे हैं। यह दृष्टिकोण कठोर स्वाभाविकता के अनुप्रयोग का उदाहरण है। | ||
इन प्रभावों को हल्के पावर-लॉ ड्रा के साथ बड़े सॉफ्ट SUSY ब्रेकिंग | |||
परिदृश्य से अपेक्षित हिग्स | |||
हिग्स | |||
वर्तमान एलएचसी | |||
==== वैज्ञानिक प्रासंगिकता ==== | ==== वैज्ञानिक प्रासंगिकता ==== |
Revision as of 11:49, 26 June 2023
String theory |
---|
Fundamental objects |
Perturbative theory |
Non-perturbative results |
Phenomenology |
Mathematics |
स्ट्रिंग सिद्धांत में, स्ट्रिंग थ्योरी परिदृश्य (या वैक्यूम का परिदृश्य) संभावित असत्यवादी वैक्यूम का संग्रह है,[1] एक साथ संघनन (भौतिकी) को नियंत्रित करने वाले मापदंडों के विकल्पों का सामूहिक परिदृश्य सम्मिलित है।
परिदृश्य शब्द विकासवादी जीव विज्ञान में फिटनेस परिदृश्य की धारणा से आया है।[2] यह प्रथम बार ली स्मोलिन द्वारा अपनी पुस्तक द लाइफ ऑफ द कॉसमॉस (1997) में ब्रह्माण्ड विज्ञान पर प्रारम्भ किया गया था, और प्रथम बार लियोनार्ड सुस्किंड द्वारा स्ट्रिंग सिद्धांत के संदर्भ में इसका उपयोग किया गया था।[3]
सघन कैलाबी-याउ मैनिफोल्ड्स
स्ट्रिंग थ्योरी में फ्लक्स वैक्यूमकी संख्या को सामान्यतः मोटे तौर पर मानी जाती है,[4] किन्तु हो सकता है [5] या उच्चतर एफ सिद्धांत में पाए जाने वाले विभिन्न होमोलॉजी (गणित) चक्रों पर कैलाबी-यॉ मैनिफोल्ड्स और सामान्यीकृत चुंबकीय प्रवाह के विकल्पों से बड़ी संख्या में संभावनाएं उत्पन्न होती हैं।
यदि वैक्यूम के स्थान में कोई संरचना नहीं है, तो पर्याप्त रूप से अल्प ब्रह्माण्ड संबंधी स्थिरांक वाले एक का शोध करने की समस्या एनपी पूर्ण है।[6] यह सबसेट योग समस्या का संस्करण है।
स्ट्रिंग थ्योरी वैक्यूम स्थिरीकरण का संभावित तंत्र, जिसे अब KKLT तंत्र के रूप में जाना जाता है, 2003 में शमित काचरू, रेनाटा कलोश, एंड्री लिंडे और संदीप त्रिवेदी द्वारा प्रस्तावित किया गया था।[7]
मानवशास्त्रीय सिद्धांत द्वारा फाइन-ट्यूनिंग
ब्रह्माण्ड संबंधी स्थिरांक या हिग्स बॉसन द्रव्यमान जैसे स्थिरांकों की फाइन-ट्यूनिंग सामान्यतः उनके विशेष मूल्यों को यादृच्छिक रूप से लेने के विपरीत स्थिर भौतिक कारणों से होने के लिए माना जाता है। यही है, इन मूल्यों को विशिष्ट रूप से अंतर्निहित भौतिक कानूनों के अनुरूप होना चाहिए।
सैद्धांतिक रूप से अनुमत विन्यासों की संख्या ने विचारो को प्रेरित किया है कि ऐसा नहीं है, और यह कि कई भिन्न-भिन्न वैक्यूम शारीरिक रूप से वैक्यूम किए जाते हैं।[8] मानवशास्त्रीय सिद्धांत प्रस्तावित करता है कि मौलिक स्थिरांक के मान हो सकते हैं जो उनके निकट हैं क्योंकि ऐसे मूल्य जीवन के लिए आवश्यक हैं (और इसलिए स्थिरांक को मापने के लिए बुद्धिमान पर्यवेक्षक)। मानव परिदृश्य इस प्रकार परिदृश्य के उन भागो के संग्रह को संदर्भित करता है जो बुद्धिमान जीवन का समर्थन करने के लिए उपयुक्त हैं।
इस विचार को ठोस भौतिक सिद्धांत में प्रारम्भ करने के लिए यह आवश्यक है मल्टीवर्स को पोस्ट करने के लिए जिसमें मौलिक भौतिक पैरामीटर भिन्न-भिन्न मान ले सकते हैं। यह शाश्वत मुद्रास्फीति के संदर्भ में अनुभव किया गया है।
वेनबर्ग मॉडल
1987 में, स्टीवन वेनबर्ग ने प्रस्तावित किया कि ब्रह्माण्ड संबंधी स्थिरांक का प्रेक्षित मान इतना अल्प था, क्योंकि ब्रह्मांड में अधिक बड़े ब्रह्माण्ड संबंधी स्थिरांक के साथ जीवन का होना असंभव है।[9] वेनबर्ग ने संभाव्य तर्कों के आधार पर ब्रह्माण्ड संबंधी स्थिरांक के परिमाण की भविष्यवाणी करने का प्रयत्न किया। अन्य प्रयत्न कण भौतिकी के मॉडल के समान तर्क को प्रारम्भ करने के लिए बनाया गया है।[10] इस प्रकार के प्रयत्न बायेसियन संभाव्यता के सामान्य विचारों पर आधारित होते हैं, संभाव्यता की व्याख्या ऐसे संदर्भ में करना जहां संभाव्यता वितरण से केवल मॉडल आकार खींचना संभव है, निरंतर संभावना में समस्याग्रस्त है, किन्तु बायेसियन संभावना में नहीं, जो कि निरंतर होने वाली घटनाओं की आवृत्ति के संदर्भ में परिभाषित नहीं है।
ऐसे ढांचे में, संभावना कुछ मूलभूत मापदंडों का अवलोकन करना द्वारा दिया गया है,
जहाँ मौलिक सिद्धांत से, मापदंडों की पूर्व संभावना है और एंथ्रोपिक चयन फ़ंक्शन है, जो ब्रह्मांड में मापदंडों के साथ घटित होने वाले पर्यवेक्षकों की संख्या से निर्धारित होता है।
ये संभाव्य तर्क परिदृश्य का सबसे विवादास्पद पहलू हैं। इन प्रस्तावों की प्रविधी आलोचनाओं ने इंगित किया है, कि
- कार्यक्रम स्ट्रिंग थ्योरी में पूर्ण रूप से अज्ञात है और किसी भी सचेत संभाव्य प्रविधी से परिभाषित या व्याख्या करना असंभव हो सकता है।
- कार्यक्रम पूर्ण रूप से अज्ञात है, क्योंकि जीवन की उत्पत्ति के बारे में अधिक कम जानकारी है। सरलीकृत मानदंड (जैसे कि आकाशगंगाओं की संख्या) का उपयोग पर्यवेक्षकों की संख्या के लिए प्रॉक्सी के रूप में किया जाना चाहिए। इसके अतिरिक्त, अवलोकन योग्य ब्रह्मांड के उन पैरामीटरों के लिए मौलिक रूप से भिन्न मापदंडों के लिए इसकी गणना करना संभव नहीं हो सकता है।
सरलीकृत दृष्टिकोण
मैक्स टेगमार्क एट अल शीघ्र ही में इन आपत्तियों पर विचार किया है और एक्सियन गहरे द्रव्य के लिए सरल मानवशास्त्रीय परिदृश्य प्रस्तावित किया गया है जिसमें वे तर्क देते हैं कि इनमें से प्रथम दो समस्याएं प्रारम्भ नहीं होती हैं।[11] विलेनकिन और सहयोगियों ने किसी दिए गए निर्वात की संभावनाओं को परिभाषित करने के लिए सुसंगत प्रविधी प्रस्तावित की गयी है।[12] कई सरलीकृत दृष्टिकोण वाले लोगों के साथ एक समस्या ने प्रयत्न किया है, कि वे ब्रह्माण्ड संबंधी स्थिरांक की भविष्यवाणी करते हैं जो परिमाण के 10–1000 क्रमों (किसी की मान्यताओं के आधार पर) के कारक द्वारा अधिक बड़ा है और इसलिए विचार देते हैं कि ब्रह्मांडीय त्वरण मनाया जाने की तुलना में अधिक अधिक तीव्र होना चाहिए।[13][14][15]
व्याख्या
कुछ लोग मेटास्टेबल वैक्यूम की बड़ी संख्या पर विवाद करते हैं। मानवशास्त्रीय परिदृश्य का अस्तित्व, अर्थ और वैज्ञानिक प्रासंगिकता, चूंकि, विवादास्पद बनी हुई है।
ब्रह्माण्ड संबंधी निरंतर समस्या
आंद्रेई लिंडे, सर मार्टिन रीस और लियोनार्ड सस्किंड ने ब्रह्माण्ड संबंधी निरंतर समस्या के समाधान के रूप में इसकी वकालत करते हैं।
परिदृश्य से शक्तिहीन स्तर की सुपरसममेट्री
स्ट्रिंग परिदृश्य विचारों को शक्तिहीन स्केल सुपरसिमेट्री और लिटिल पदानुक्रम समस्या की धारणा पर प्रारम्भ किया जा सकता है। स्ट्रिंग वेकुआ के लिए जिसमें कम ऊर्जा प्रभावी क्षेत्र सिद्धांत के रूप में एमएसएसएम (न्यूनतम सुपरसिमेट्रिक मानक मॉडल) सम्मिलित है, एसयूएसवाई ब्रेकिंग फ़ील्ड के सभी मान परिदृश्य पर समान रूप से होने की आशा है। इसने डगलस [16] और अन्य को यह प्रस्ताव देने के लिए प्रेरित किया कि SUSY ब्रेकिंग स्केल को परिदृश्य में शक्ति कानून के रूप में वितरित किया जाता है।
जहाँ F-ब्रेकिंग फ़ील्ड्स की संख्या है (जटिल संख्या के रूप में वितरित) और परिदृश्य में डी-ब्रेकिंग फ़ील्ड की संख्या है (वास्तविक संख्या के रूप में वितरित)। इसके पश्चात, कोई अग्रवाल, बर्र, डोनॉग्यू, सेकेल (एबीडीएस) मानवीय आवश्यकता को प्रारम्भ कर सकता है[17] व्युत्पन्न शक्तिहीन स्तर हमारे मापा मूल्य कुछ कारक के अंदर होता है (ऐसा न हो कि जीवन के लिए आवश्यक नाभिक जैसा कि हम जानते हैं कि यह अस्थिर हो जाता है (परमाणु सिद्धांत))। इन प्रभावों को हल्के पावर-लॉ ड्रा के साथ बड़े सॉफ्ट SUSY ब्रेकिंग शब्दों में जोड़कर, कोई परिदृश्य से अपेक्षित हिग्स बोसोन और सुपरपार्टिकल द्रव्यमान की गणना कर सकता है।[18] हिग्स द्रव्यमान संभाव्यता वितरण 125 GeV के निकट चरम पर है जबकि स्पार्टिकल्स (प्रकाश के अपवाद के साथ) वर्तमान एलएचसी शोध सीमा से अत्यधिक आगे हैं। यह दृष्टिकोण कठोर स्वाभाविकता के अनुप्रयोग का उदाहरण है।
वैज्ञानिक प्रासंगिकता
डेविड ग्रॉस सुझाव देते हैं[citation needed] कि यह विचार स्वाभाविक रूप से अवैज्ञानिक, अचूक या अपरिपक्व है। स्ट्रिंग थ्योरी के मानवशास्त्रीय परिदृश्य पर एक प्रसिद्ध बहस परिदृश्य की खूबियों पर स्मोलिन-सुस्किंड बहस है।
लोकप्रिय स्वागत
ब्रह्मांड विज्ञान में मानवशास्त्रीय सिद्धांत के बारे में कई लोकप्रिय पुस्तकें हैं।[19] दो भौतिकी ब्लॉग, लुबोस मोटल और पीटर वोइट के लेखक मानवशास्त्रीय सिद्धांत के इस प्रयोग के विरोध में हैं।[why?][20]
यह भी देखें
- दलदल (भौतिकी)
- स्ट्रिंग सिद्धांत # अतिरिक्त आयाम
संदर्भ
- ↑ The number of metastable vacua is not known exactly, but commonly quoted estimates are of the order 10500. See M. Douglas, "The statistics of string / M theory vacua", JHEP 0305, 46 (2003). arXiv:hep-th/0303194; S. Ashok and M. Douglas, "Counting flux vacua", JHEP 0401, 060 (2004).
- ↑ Baggott, Jim (2018). क्वांटम स्पेस लूप क्वांटम ग्रेविटी एंड द सर्च फॉर द स्ट्रक्चर ऑफ स्पेस, टाइम एंड द यूनिवर्स. Oxford University Press. p. 288. ISBN 978-0-19-253681-5.
- ↑ L. Smolin, "Did the universe evolve?", Classical and Quantum Gravity 9, 173–191 (1992). L. Smolin, The Life of the Cosmos (Oxford, 1997)
- ↑ Read, James; Le Bihan, Baptiste (2021). "The landscape and the multiverse: What's the problem?". Synthese. 199 (3–4): 7749–7771. doi:10.1007/s11229-021-03137-0. S2CID 234815857.
- ↑ Taylor, Washington; Wang, Yi-Nan (2015). "अधिकांश फ्लक्स वैकुआ के साथ एफ-सिद्धांत ज्यामिति". Journal of High Energy Physics. 2015 (12): 164. arXiv:1511.03209. Bibcode:2015JHEP...12..164T. doi:10.1007/JHEP12(2015)164. S2CID 41149049.
- ↑ Frederik Denef; Douglas, Michael R. (2007). "परिदृश्य की कम्प्यूटेशनल जटिलता". Annals of Physics. 322 (5): 1096–1142. arXiv:hep-th/0602072. Bibcode:2007AnPhy.322.1096D. doi:10.1016/j.aop.2006.07.013. S2CID 281586.
- ↑ Kachru, Shamit; Kallosh, Renata; Linde, Andrei; Trivedi, Sandip P. (2003). "स्ट्रिंग थ्योरी में डी सिटर वेकुआ". Physical Review D. 68 (4): 046005. arXiv:hep-th/0301240. Bibcode:2003PhRvD..68d6005K. doi:10.1103/PhysRevD.68.046005. S2CID 119482182.
- ↑ L. Susskind, "The anthropic landscape of string theory", arXiv:hep-th/0302219.
- ↑ S. Weinberg, "Anthropic bound on the cosmological constant", Phys. Rev. Lett. 59, 2607 (1987).
- ↑ S. M. Carroll, "Is our universe natural?" (2005) arXiv:hep-th/0512148 reviews a number of proposals in preprints dated 2004/5.
- ↑ M. Tegmark, A. Aguirre, M. Rees and F. Wilczek, "Dimensionless constants, cosmology and other dark matters", arXiv:astro-ph/0511774. F. Wilczek, "Enlightenment, knowledge, ignorance, temptation", arXiv:hep-ph/0512187. See also the discussion at [1].
- ↑ See, e.g. Alexander Vilenkin (2007). "A measure of the multiverse". Journal of Physics A: Mathematical and Theoretical. 40 (25): 6777–6785. arXiv:hep-th/0609193. Bibcode:2007JPhA...40.6777V. doi:10.1088/1751-8113/40/25/S22. S2CID 119390736.
- ↑ Abraham Loeb (2006). "ब्रह्माण्ड संबंधी स्थिरांक की मानव उत्पत्ति के लिए एक अवलोकन परीक्षण". Journal of Cosmology and Astroparticle Physics. 0605 (5): 009. arXiv:astro-ph/0604242. Bibcode:2006JCAP...05..009L. doi:10.1088/1475-7516/2006/05/009. S2CID 39340203.
- ↑ Jaume Garriga & Alexander Vilenkin (2006). "लैम्ब्डा और क्यू तबाही के लिए मानवशास्त्रीय भविष्यवाणी". Prog. Theor. Phys. Suppl. 163: 245–57. arXiv:hep-th/0508005. Bibcode:2006PThPS.163..245G. doi:10.1143/PTPS.163.245. S2CID 118936307.
- ↑ Delia Schwartz-Perlov & Alexander Vilenkin (2006). "बूसो-पोल्किंस्की मल्टीवर्स में संभावनाएँ". Journal of Cosmology and Astroparticle Physics. 0606 (6): 010. arXiv:hep-th/0601162. Bibcode:2006JCAP...06..010S. doi:10.1088/1475-7516/2006/06/010. S2CID 119337679.
- ↑ M. R. Douglas, "Statistical analysis of the supersymmetry breaking scale", arXiv:hep-th/0405279.
- ↑ V. Agrawal, S. M. Barr, J. F. Donoghue and D. Seckel, "Anthropic considerations in multiple domain theories and the scale of electroweak symmetry breaking", Phys. Rev. Lett. 80, 1822 (1998).arXiv:hep-ph/9801253
- ↑ H. Baer, V. Barger, H. Serce and K. Sinha, "Higgs and superparticle mass predictions from the landscape", JHEP 03, 002 (2018), arXiv:1712.01399 .
- ↑ L. Susskind, The cosmic landscape: string theory and the illusion of intelligent design (Little, Brown, 2005). M. J. Rees, Just six numbers: the deep forces that shape the universe (Basic Books, 2001). R. Bousso and J. Polchinski, "The string theory landscape", Sci. Am. 291, 60–69 (2004).
- ↑ Motl's blog criticized the anthropic principle and Woit's blog frequently attacks the anthropic string landscape.
बाहरी संबंध
- String landscape; moduli stabilization; flux vacua; flux compactification on arxiv.org.
- Cvetič, Mirjam; García-Etxebarria, Iñaki; Halverson, James (March 2011). "On the computation of non-perturbative effective potentials in the string theory landscape". Fortschritte der Physik. 59 (3–4): 243–283. arXiv:1009.5386. Bibcode:2011ForPh..59..243C. doi:10.1002/prop.201000093. S2CID 46634583.