पावर गेटिंग: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Power-saving technique for circuits}} | {{Short description|Power-saving technique for circuits}} | ||
पावर गेटिंग | पावर गेटिंग ऐसी तकनीक है जिसका उपयोग एकीकृत परिपथ डिजाइन में विद्युत् की व्यय को कम करने के लिए किया जाता है, जो परिपथ के उन ब्लॉकों में [[विद्युत प्रवाह]] को बंद कर देता है जो उपयोग में नहीं हैं। स्टैंड-बाय या लीकेज पावर को कम करने के अतिरिक्त, पावर गेटिंग में Iddq परीक्षण को सक्षम करने का लाभ मिलता है। | ||
== | == अवलोकन == | ||
पावर गेटिंग [[ घड़ी गेटिंग ]] | पावर गेटिंग [[ घड़ी गेटिंग |घड़ी गेटिंग]] की तुलना में डिज़ाइन आर्किटेक्चर को अधिक प्रभावित करती है। इससे समय विलंब बढ़ जाता है, क्योंकि पावर गेटेड मोड में सुरक्षित रूप से प्रवेश करना और बाहर निकलना होता है। लो पावर मोड में लीकेज पावर सेविंग की मात्रा और लो पावर मोड में प्रवेश करने और बाहर निकलने के लिए ऊर्जा अपव्यय के लिए डिजाइनिंग के मध्य आर्किटेक्चरल ट्रेड-ऑफ उपस्थित हैं। ब्लॉक को शट डाउन करना या तो सॉफ्टवेयर या हार्डवेयर द्वारा पूर्ण किया जा सकता है। ड्राइवर सॉफ्टवेयर पावर डाउन ऑपरेशंस को शेड्यूल कर सकता है। हार्डवेयर टाइमर का उपयोग किया जा सकता है। समर्पित विद्युत् प्रबंधन नियंत्रक अन्य विकल्प है। | ||
बाहरी रूप से स्विच की गई | दीर्घकालिक लीकेज विद्युत् की कमी को प्राप्त करने के लिए बाहरी रूप से स्विच की गई विद्युत् की आपूर्ति पावर गेटिंग का अधिक मूलभूत रूप है। समय के छोटे अंतराल के लिए ब्लॉक को बंद करने के लिए, आंतरिक पावर गेटिंग अधिक उपयुक्त है। [[सीएमओएस]] स्विच जो सर्किट्री को शक्ति प्रदान करते हैं, पावर गेटिंग नियंत्रकों द्वारा नियंत्रित होते हैं। पावर गेटेड ब्लॉक के आउटपुट धीरे-धीरे डिस्चार्ज होते हैं। इसलिए आउटपुट वोल्टेज स्तर थ्रेशोल्ड वोल्टेज स्तर में अधिक समय व्यतीत करता है। इससे बड़ा शॉर्ट परिपथ प्रवाह हो सकती है। | ||
पावर गेटिंग स्टैंडबाय या स्लीप मोड में डिज़ाइन के कुछ | पावर गेटिंग स्टैंडबाय या स्लीप मोड में डिज़ाइन के कुछ भागों को विद्युत् की आपूर्ति बंद करने के लिए हेडर स्विच के रूप में कम लीकेज वाले [[एनएमओएस ट्रांजिस्टर|पीएमओएस ट्रांजिस्टर]] का उपयोग करता है। एनएमओएस फ़ूटर स्विच का उपयोग स्लीप ट्रांजिस्टर के रूप में भी किया जा सकता है। स्लीप ट्रांजिस्टर डालने से चिप का पावर नेटवर्क विद्युत् की आपूर्ति से जुड़े स्थायी पावर नेटवर्क और वर्चुअल पावर नेटवर्क में विभाजित हो जाता है जो सेल द्वारा चलाया जाता है और इसे बंद किया जा सकता है। | ||
सामान्यतः, उच्च थ्रेसहोल्ड वोल्टेज (V<sub>th</sub>) स्लीप ट्रांजिस्टर का उपयोग पावर गेटिंग के लिए तकनीक में किया जाता है जिसे कभी-कभी मल्टी-थ्रेशोल्ड सीमोंस (MTCMOS) के रूप में जाना जाता है। स्लीप ट्रांजिस्टर का आकार एक महत्वपूर्ण डिज़ाइन पैरामीटर है। | |||
पावर-गेटिंग डिज़ाइन की सफलता के लिए | इस जटिल विद्युत नेटवर्क की गुणवत्ता पावर-गेटिंग डिज़ाइन की सफलता के लिए महत्वपूर्ण है। सबसे महत्वपूर्ण मापदंडों में से दो आईआर-ड्रॉप, सिलिकॉन क्षेत्र और रूटिंग संसाधनों में दंड हैं। पावर गेटिंग को सेल- या क्लस्टर-आधारित दृष्टिकोण या वितरित मोटे ग्रेन वाले दृष्टिकोण का उपयोग करके कार्यान्वित किया जा सकता है। | ||
== पैरामीटर == | == पैरामीटर == | ||
पावर गेटिंग कार्यान्वयन में टाइमिंग क्लोजर कार्यान्वयन के लिए अतिरिक्त विचार हैं। इस पद्धति के सफल कार्यान्वयन के लिए निम्नलिखित मापदंडों पर विचार करने और उनके मूल्यों को ध्यान से | पावर गेटिंग कार्यान्वयन में टाइमिंग क्लोजर कार्यान्वयन के लिए अतिरिक्त विचार हैं। इस पद्धति के सफल कार्यान्वयन के लिए निम्नलिखित मापदंडों पर विचार करने और उनके मूल्यों को ध्यान से चयन करने की आवश्यकता है।<ref name="EETimes"/><ref name="Iyer_2008"/> | ||
# पावर गेट का आकार: किसी भी समय स्विचिंग | # '''पावर गेट का आकार:''' किसी भी समय स्विचिंग धारा की मात्रा को संभालने के लिए पावर गेट के आकार का चयन किया जाना चाहिए। गेट इतना बड़ा होना चाहिए कि गेट के कारण कोई मापने योग्य वोल्टेज (आईआर) ड्रॉप न हो। सामान्य नियम के रूप में, गेट का आकार स्विचिंग कैपेसिटेंस का लगभग 3 गुना चयन किया जाता है। डिजाइनर हेडर (पी-एमओएस) या फुटर (एन-एमओएस) गेट के मध्य भी चयन कर सकते हैं। समान स्विचिंग धारा के लिए सामान्यतः फुटर गेट का क्षेत्रफल छोटा होता है। गतिशील पावर विश्लेषण उपकरण स्विचिंग धारा को त्रुटिहीन रूप से माप सकते हैं और पावर गेट के आकार का अनुमान भी लगा सकते हैं। | ||
# गेट कंट्रोल [[कई दर]]: पावर गेटिंग में, यह | # '''गेट कंट्रोल [[कई दर|स्लीव दर]]:''' पावर गेटिंग में, यह महत्वपूर्ण पैरामीटर है जो पावर गेटिंग दक्षता निर्धारित करता है। जब स्लीव दर बड़ी होती है, तो परिपथ को स्विच ऑफ और स्विच-ऑन करने में अधिक समय लगता है और इसलिए पावर गेटिंग दक्षता प्रभावित हो सकती है। गेट कंट्रोल सिग्नल को बफर करके स्लीव दर को नियंत्रित किया जाता है। | ||
# साथ स्विचिंग कैपेसिटेंस: यह महत्वपूर्ण बाधा | # '''एक साथ स्विचिंग कैपेसिटेंस:''' यह महत्वपूर्ण बाधा परिपथ की मात्रा को संदर्भित करती है जिसे पावर नेटवर्क अखंडता को प्रभावित किए बिना स्विच किया जा सकता है। यदि परिपथ की बड़ी मात्रा को स्विच किया जाता है, तो परिणामी रश धारा पावर नेटवर्क की अखंडता से निराकरण कर सकता है। इसे रोकने के लिए परिपथ को चरणों में स्विच करने की आवश्यकता है। | ||
# पावर गेट | # '''पावर गेट लीकेज:''' चूंकि पावर गेट सक्रिय ट्रांजिस्टर से बने होते हैं, इसलिए विद्युत् की बचत को अधिकतम करने के लिए लीकेज में कमी महत्वपूर्ण विचार है। | ||
== | == विधि == | ||
=== फाइन-ग्रेन पावर गेटिंग === | === फाइन-ग्रेन पावर गेटिंग === | ||
बंद होने वाले प्रत्येक सेल में | बंद होने वाले प्रत्येक सेल में स्लीप ट्रांजिस्टर जोड़ना से बड़े क्षेत्र का दोष लगता है, और सेल के प्रत्येक क्लस्टर की शक्ति को व्यक्तिगत रूप से गेट करने से अंतर-क्लस्टर वोल्टेज भिन्नता द्वारा उत्पन्न समय संबंधी समस्याएं होती हैं जिनका समाधान करना कठिन होता है। फाइन-ग्रेन पावर गेटिंग मानक सेल लॉजिक के भाग के रूप में स्विचिंग ट्रांजिस्टर को समाहित करता है। स्विचिंग ट्रांजिस्टर या तो लाइब्रेरी आईपी विक्रेता या मानक सेल डिजाइनर द्वारा डिजाइन किए जाते हैं। सामान्यतः ये सेल डिज़ाइन सामान्य मानक सेल नियमों के अनुरूप होते हैं और कार्यान्वयन के लिए ईडीए उपकरण द्वारा सरलता से नियंत्रित किए जा सकते हैं। | ||
गेट कंट्रोल के आकार को सबसे | गेट कंट्रोल के आकार को सबसे व्यर्थ स्थिति को ध्यान में रखते हुए डिजाइन किया गया है, जिसके लिए प्रत्येक घड़ी चक्र के समय परिपथ को स्विच करने की आवश्यकता होगी, जिसके परिणामस्वरूप बड़ा क्षेत्र प्रभाव होगा। वर्तमान में कुछ डिजाइन उद्देशित रूप से फाइन-ग्रेन पावर गेटिंग को प्रारम्भ करते हैं, किंतु केवल कम V<sub>th</sub> सेल के लिए यदि प्रौद्योगिकी एकाधिक V<sub>th</sub> लाइब्रेरी की अनुमति देती है तो डिज़ाइन में V<sub>th</sub> उपकरणों का उपयोग न्यूनतम (20%) होता है, जिससे क्षेत्र के प्रभाव को कम किया जा सके। निम्न V<sub>th</sub> सेल पर पावर गेट्स का उपयोग करते समय आउटपुट को भिन्न किया जाना चाहिए यदि अगला चरण उच्च V<sub>th</sub> सेल है। अन्यथा जब पावर गेटिंग के कारण आउटपुट अज्ञात स्थिति में चला जाता है तो यह निकटतम उच्च V<sub>th</sub> सेल में लीकेज का कारण बन सकता है। | ||
नियंत्रण संकेतों के लिए बफर डिस्ट्रीब्यूशन ट्री होने से गेट कंट्रोल स्लीव | नियंत्रण संकेतों के लिए बफर डिस्ट्रीब्यूशन ट्री होने से गेट कंट्रोल स्लीव दर की कमी को प्राप्त किया जाता है। बफ़र्स को उच्च V<sub>th</sub> सेल के साथ डिज़ाइन किए गए सदैव ऑन बफ़र्स (गेट कंट्रोल सिग्नल के बिना बफ़र्स) के सेट से चयन किया जाना चाहिए। जब सेल दूसरे के सापेक्ष स्विच ऑफ होता है, तो स्विच-ऑन और स्विच-ऑफ के समय रश धारा को कम करता है। | ||
सामान्यतः गेटिंग ट्रांजिस्टर को उच्च V<sub>th</sub> के रूप में डिज़ाइन किया जाता है। मोटे-ग्रेन वाली पावर उन पावर गेटिंग सेल को अनुकूलित करके अधिक नम्यता प्रदान करता है जहां कम स्विचिंग गतिविधि होती है। लीकेज का अनुकूलन मोटे ग्रेन के स्तर पर किया जाना चाहिए, उच्च लीकेज वाले सेल को उच्च लीकेज वाले सेल से परिवर्तित करना होगा। फाइन-ग्रेन पावर गेटिंग सुरुचिपूर्ण कार्यप्रणाली है जिसके परिणामस्वरूप लीकेज में 10 गुना तक कमी आती है। यदि विद्युत् कमी की आवश्यकता एकाधिक V<sub>th</sub> अनुकूलन से संतुष्ट नहीं होती है तो इस प्रकार की विद्युत् कमी इसे आकर्षक तकनीक बनाती है। । | |||
=== मोटे अनाज | === मोटे अनाज विद्युत् गेटिंग === | ||
मोटे दाने वाले दृष्टिकोण ग्रिड शैली के स्लीप ट्रांजिस्टर को | मोटे दाने वाले दृष्टिकोण ग्रिड शैली के स्लीप ट्रांजिस्टर को प्रारम्भ करते हैं जो साझा वर्चुअल पावर नेटवर्क के माध्यम से स्थानीय रूप से कोशिकाओं को चलाते हैं। यह दृष्टिकोण पीवीटी भिन्नता के प्रति कम संवेदनशील है, कम आईआर-ड्रॉप भिन्नता का परिचय देता है, और सेल- या क्लस्टर-आधारित कार्यान्वयन की तुलना में छोटा क्षेत्र ओवरहेड लगाता है। मोटे-अनाज पावर गेटिंग में, पावर-गेटिंग ट्रांजिस्टर मानक सेल के बजाय विद्युत् वितरण नेटवर्क का हिस्सा होता है। | ||
मोटे अनाज की संरचना को | मोटे अनाज की संरचना को प्रारम्भ करने के दो तरीके हैं: | ||
# रिंग-आधारित: पावर गेट्स को मॉड्यूल के परिधि के चारों ओर रखा जाता है जिसे रिंग के रूप में बंद किया जा रहा है। कोनों के चारों ओर | # रिंग-आधारित: पावर गेट्स को मॉड्यूल के परिधि के चारों ओर रखा जाता है जिसे रिंग के रूप में बंद किया जा रहा है। कोनों के चारों ओर विद्युत् संकेतों को चालू करने के लिए विशेष कोने वाले सेल का उपयोग किया जाता है। | ||
# कॉलम-आधारित: मॉड्यूल के भीतर पावर गेट्स को कॉलम के रूप में -दूसरे से अलग किए गए सेल के साथ डाला जाता है। वैश्विक शक्ति धातु की उच्च परतें हैं, जबकि स्विच की गई शक्ति निचली परतों में है। | # कॉलम-आधारित: मॉड्यूल के भीतर पावर गेट्स को कॉलम के रूप में -दूसरे से अलग किए गए सेल के साथ डाला जाता है। वैश्विक शक्ति धातु की उच्च परतें हैं, जबकि स्विच की गई शक्ति निचली परतों में है। | ||
गेट का आकार किसी भी समय मॉड्यूल के समग्र स्विचिंग करंट पर निर्भर करता है। चूंकि किसी भी समय | गेट का आकार किसी भी समय मॉड्यूल के समग्र स्विचिंग करंट पर निर्भर करता है। चूंकि किसी भी समय परिपथ का केवल अंश स्विच करता है, ठीक अनाज स्विच की तुलना में पावर गेट आकार छोटे होते हैं। सबसे व्यर्थ स्थिति वाले वैक्टर का उपयोग कर गतिशील शक्ति सिमुलेशन मॉड्यूल के लिए सबसे व्यर्थ स्थिति स्विचिंग निर्धारित कर सकता है और इसलिए आकार। आईआर ड्रॉप को भी विश्लेषण में शामिल किया जा सकता है। साथ स्विचिंग कैपेसिटेंस मोटे-अनाज पावर गेटिंग कार्यान्वयन में प्रमुख विचार है। साथ स्विचिंग को सीमित करने के लिए, गेट कंट्रोल बफ़र्स डेज़ी जंजीर हो सकते हैं, और विशेष काउंटरों का उपयोग चुनिंदा रूप से स्विच के ब्लॉक को चालू करने के लिए किया जा सकता है। | ||
=== आइसोलेशन सेल === | === आइसोलेशन सेल === | ||
आइसोलेशन सेल का उपयोग शॉर्ट | आइसोलेशन सेल का उपयोग शॉर्ट परिपथ करंट को रोकने के लिए किया जाता है। जैसा कि नाम से पता चलता है, ये कोशिकाएं पावर गेटेड ब्लॉक को नॉर्मल-ऑन ब्लॉक से अलग करती हैं। अलगाव कोशिकाओं को विशेष रूप से कम शॉर्ट परिपथ करंट के लिए डिज़ाइन किया गया है जब इनपुट थ्रेशोल्ड वोल्टेज स्तर पर होता है। अलगाव नियंत्रण संकेत पावर गेटिंग नियंत्रक द्वारा प्रदान किए जाते हैं। डिज़ाइन की अखंडता को बनाए रखने के लिए स्विच करने योग्य मॉड्यूल के संकेतों का अलगाव आवश्यक है। सामान्यतः साधारण OR या AND तर्क आउटपुट आइसोलेशन डिवाइस के रूप में कार्य कर सकता है। मॉड्यूल बंद होने से पहले राज्य को संरक्षित करने के लिए कई राज्य प्रतिधारण योजनाएं व्यवहार में उपलब्ध हैं। मॉड्यूल को बंद करने से पहले रजिस्टर वैल्यू को मेमोरी में स्कैन करना सबसे सरल तकनीक है। जब मॉड्यूल जागता है, तो मान मेमोरी से वापस स्कैन किए जाते हैं। | ||
=== प्रतिधारण रजिस्टर === | === प्रतिधारण रजिस्टर === | ||
जब पावर गेटिंग का उपयोग किया जाता है, तो सिस्टम को किसी प्रकार की स्थिति बनाए रखने की आवश्यकता होती है, जैसे कि डेटा को रैम में स्कैन करना, फिर सिस्टम को फिर से सक्रिय करने पर इसे वापस स्कैन करना। महत्वपूर्ण अनुप्रयोगों के लिए, मेमोरी स्टेट्स को सेल के भीतर बनाए रखा जाना चाहिए, ऐसी स्थिति जिसमें बिट्स को टेबल में स्टोर करने के लिए अवधारण फ्लॉप की आवश्यकता होती है। इससे जागने के | जब पावर गेटिंग का उपयोग किया जाता है, तो सिस्टम को किसी प्रकार की स्थिति बनाए रखने की आवश्यकता होती है, जैसे कि डेटा को रैम में स्कैन करना, फिर सिस्टम को फिर से सक्रिय करने पर इसे वापस स्कैन करना। महत्वपूर्ण अनुप्रयोगों के लिए, मेमोरी स्टेट्स को सेल के भीतर बनाए रखा जाना चाहिए, ऐसी स्थिति जिसमें बिट्स को टेबल में स्टोर करने के लिए अवधारण फ्लॉप की आवश्यकता होती है। इससे जागने के समय बिट्स को बहुत जल्दी बहाल करना संभव हो जाता है। प्रतिधारण रजिस्टर विशेष कम रिसाव वाले फ्लिप-फ्लॉप हैं जिनका उपयोग पावर गेटेड ब्लॉक के मुख्य रजिस्टरों के डेटा को रखने के लिए किया जाता है। इस प्रकार पावर डाउन मोड के समय ब्लॉक की आंतरिक स्थिति को बनाए रखा जा सकता है और जब ब्लॉक पुनः सक्रिय हो जाता है तो इसे वापस लोड किया जा सकता है। अवधारण रजिस्टर सदैव संचालित होते हैं। प्रतिधारण रणनीति डिजाइन पर निर्भर है। पावर गेटिंग कंट्रोलर रिटेंशन मैकेनिज्म को नियंत्रित करता है जैसे कि पावर गेटिंग ब्लॉक की वर्तमान सामग्री को कब सहेजना है और कब इसे वापस लाना है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 23:37, 22 June 2023
पावर गेटिंग ऐसी तकनीक है जिसका उपयोग एकीकृत परिपथ डिजाइन में विद्युत् की व्यय को कम करने के लिए किया जाता है, जो परिपथ के उन ब्लॉकों में विद्युत प्रवाह को बंद कर देता है जो उपयोग में नहीं हैं। स्टैंड-बाय या लीकेज पावर को कम करने के अतिरिक्त, पावर गेटिंग में Iddq परीक्षण को सक्षम करने का लाभ मिलता है।
अवलोकन
पावर गेटिंग घड़ी गेटिंग की तुलना में डिज़ाइन आर्किटेक्चर को अधिक प्रभावित करती है। इससे समय विलंब बढ़ जाता है, क्योंकि पावर गेटेड मोड में सुरक्षित रूप से प्रवेश करना और बाहर निकलना होता है। लो पावर मोड में लीकेज पावर सेविंग की मात्रा और लो पावर मोड में प्रवेश करने और बाहर निकलने के लिए ऊर्जा अपव्यय के लिए डिजाइनिंग के मध्य आर्किटेक्चरल ट्रेड-ऑफ उपस्थित हैं। ब्लॉक को शट डाउन करना या तो सॉफ्टवेयर या हार्डवेयर द्वारा पूर्ण किया जा सकता है। ड्राइवर सॉफ्टवेयर पावर डाउन ऑपरेशंस को शेड्यूल कर सकता है। हार्डवेयर टाइमर का उपयोग किया जा सकता है। समर्पित विद्युत् प्रबंधन नियंत्रक अन्य विकल्प है।
दीर्घकालिक लीकेज विद्युत् की कमी को प्राप्त करने के लिए बाहरी रूप से स्विच की गई विद्युत् की आपूर्ति पावर गेटिंग का अधिक मूलभूत रूप है। समय के छोटे अंतराल के लिए ब्लॉक को बंद करने के लिए, आंतरिक पावर गेटिंग अधिक उपयुक्त है। सीएमओएस स्विच जो सर्किट्री को शक्ति प्रदान करते हैं, पावर गेटिंग नियंत्रकों द्वारा नियंत्रित होते हैं। पावर गेटेड ब्लॉक के आउटपुट धीरे-धीरे डिस्चार्ज होते हैं। इसलिए आउटपुट वोल्टेज स्तर थ्रेशोल्ड वोल्टेज स्तर में अधिक समय व्यतीत करता है। इससे बड़ा शॉर्ट परिपथ प्रवाह हो सकती है।
पावर गेटिंग स्टैंडबाय या स्लीप मोड में डिज़ाइन के कुछ भागों को विद्युत् की आपूर्ति बंद करने के लिए हेडर स्विच के रूप में कम लीकेज वाले पीएमओएस ट्रांजिस्टर का उपयोग करता है। एनएमओएस फ़ूटर स्विच का उपयोग स्लीप ट्रांजिस्टर के रूप में भी किया जा सकता है। स्लीप ट्रांजिस्टर डालने से चिप का पावर नेटवर्क विद्युत् की आपूर्ति से जुड़े स्थायी पावर नेटवर्क और वर्चुअल पावर नेटवर्क में विभाजित हो जाता है जो सेल द्वारा चलाया जाता है और इसे बंद किया जा सकता है।
सामान्यतः, उच्च थ्रेसहोल्ड वोल्टेज (Vth) स्लीप ट्रांजिस्टर का उपयोग पावर गेटिंग के लिए तकनीक में किया जाता है जिसे कभी-कभी मल्टी-थ्रेशोल्ड सीमोंस (MTCMOS) के रूप में जाना जाता है। स्लीप ट्रांजिस्टर का आकार एक महत्वपूर्ण डिज़ाइन पैरामीटर है।
इस जटिल विद्युत नेटवर्क की गुणवत्ता पावर-गेटिंग डिज़ाइन की सफलता के लिए महत्वपूर्ण है। सबसे महत्वपूर्ण मापदंडों में से दो आईआर-ड्रॉप, सिलिकॉन क्षेत्र और रूटिंग संसाधनों में दंड हैं। पावर गेटिंग को सेल- या क्लस्टर-आधारित दृष्टिकोण या वितरित मोटे ग्रेन वाले दृष्टिकोण का उपयोग करके कार्यान्वित किया जा सकता है।
पैरामीटर
पावर गेटिंग कार्यान्वयन में टाइमिंग क्लोजर कार्यान्वयन के लिए अतिरिक्त विचार हैं। इस पद्धति के सफल कार्यान्वयन के लिए निम्नलिखित मापदंडों पर विचार करने और उनके मूल्यों को ध्यान से चयन करने की आवश्यकता है।[1][2]
- पावर गेट का आकार: किसी भी समय स्विचिंग धारा की मात्रा को संभालने के लिए पावर गेट के आकार का चयन किया जाना चाहिए। गेट इतना बड़ा होना चाहिए कि गेट के कारण कोई मापने योग्य वोल्टेज (आईआर) ड्रॉप न हो। सामान्य नियम के रूप में, गेट का आकार स्विचिंग कैपेसिटेंस का लगभग 3 गुना चयन किया जाता है। डिजाइनर हेडर (पी-एमओएस) या फुटर (एन-एमओएस) गेट के मध्य भी चयन कर सकते हैं। समान स्विचिंग धारा के लिए सामान्यतः फुटर गेट का क्षेत्रफल छोटा होता है। गतिशील पावर विश्लेषण उपकरण स्विचिंग धारा को त्रुटिहीन रूप से माप सकते हैं और पावर गेट के आकार का अनुमान भी लगा सकते हैं।
- गेट कंट्रोल स्लीव दर: पावर गेटिंग में, यह महत्वपूर्ण पैरामीटर है जो पावर गेटिंग दक्षता निर्धारित करता है। जब स्लीव दर बड़ी होती है, तो परिपथ को स्विच ऑफ और स्विच-ऑन करने में अधिक समय लगता है और इसलिए पावर गेटिंग दक्षता प्रभावित हो सकती है। गेट कंट्रोल सिग्नल को बफर करके स्लीव दर को नियंत्रित किया जाता है।
- एक साथ स्विचिंग कैपेसिटेंस: यह महत्वपूर्ण बाधा परिपथ की मात्रा को संदर्भित करती है जिसे पावर नेटवर्क अखंडता को प्रभावित किए बिना स्विच किया जा सकता है। यदि परिपथ की बड़ी मात्रा को स्विच किया जाता है, तो परिणामी रश धारा पावर नेटवर्क की अखंडता से निराकरण कर सकता है। इसे रोकने के लिए परिपथ को चरणों में स्विच करने की आवश्यकता है।
- पावर गेट लीकेज: चूंकि पावर गेट सक्रिय ट्रांजिस्टर से बने होते हैं, इसलिए विद्युत् की बचत को अधिकतम करने के लिए लीकेज में कमी महत्वपूर्ण विचार है।
विधि
फाइन-ग्रेन पावर गेटिंग
बंद होने वाले प्रत्येक सेल में स्लीप ट्रांजिस्टर जोड़ना से बड़े क्षेत्र का दोष लगता है, और सेल के प्रत्येक क्लस्टर की शक्ति को व्यक्तिगत रूप से गेट करने से अंतर-क्लस्टर वोल्टेज भिन्नता द्वारा उत्पन्न समय संबंधी समस्याएं होती हैं जिनका समाधान करना कठिन होता है। फाइन-ग्रेन पावर गेटिंग मानक सेल लॉजिक के भाग के रूप में स्विचिंग ट्रांजिस्टर को समाहित करता है। स्विचिंग ट्रांजिस्टर या तो लाइब्रेरी आईपी विक्रेता या मानक सेल डिजाइनर द्वारा डिजाइन किए जाते हैं। सामान्यतः ये सेल डिज़ाइन सामान्य मानक सेल नियमों के अनुरूप होते हैं और कार्यान्वयन के लिए ईडीए उपकरण द्वारा सरलता से नियंत्रित किए जा सकते हैं।
गेट कंट्रोल के आकार को सबसे व्यर्थ स्थिति को ध्यान में रखते हुए डिजाइन किया गया है, जिसके लिए प्रत्येक घड़ी चक्र के समय परिपथ को स्विच करने की आवश्यकता होगी, जिसके परिणामस्वरूप बड़ा क्षेत्र प्रभाव होगा। वर्तमान में कुछ डिजाइन उद्देशित रूप से फाइन-ग्रेन पावर गेटिंग को प्रारम्भ करते हैं, किंतु केवल कम Vth सेल के लिए यदि प्रौद्योगिकी एकाधिक Vth लाइब्रेरी की अनुमति देती है तो डिज़ाइन में Vth उपकरणों का उपयोग न्यूनतम (20%) होता है, जिससे क्षेत्र के प्रभाव को कम किया जा सके। निम्न Vth सेल पर पावर गेट्स का उपयोग करते समय आउटपुट को भिन्न किया जाना चाहिए यदि अगला चरण उच्च Vth सेल है। अन्यथा जब पावर गेटिंग के कारण आउटपुट अज्ञात स्थिति में चला जाता है तो यह निकटतम उच्च Vth सेल में लीकेज का कारण बन सकता है।
नियंत्रण संकेतों के लिए बफर डिस्ट्रीब्यूशन ट्री होने से गेट कंट्रोल स्लीव दर की कमी को प्राप्त किया जाता है। बफ़र्स को उच्च Vth सेल के साथ डिज़ाइन किए गए सदैव ऑन बफ़र्स (गेट कंट्रोल सिग्नल के बिना बफ़र्स) के सेट से चयन किया जाना चाहिए। जब सेल दूसरे के सापेक्ष स्विच ऑफ होता है, तो स्विच-ऑन और स्विच-ऑफ के समय रश धारा को कम करता है।
सामान्यतः गेटिंग ट्रांजिस्टर को उच्च Vth के रूप में डिज़ाइन किया जाता है। मोटे-ग्रेन वाली पावर उन पावर गेटिंग सेल को अनुकूलित करके अधिक नम्यता प्रदान करता है जहां कम स्विचिंग गतिविधि होती है। लीकेज का अनुकूलन मोटे ग्रेन के स्तर पर किया जाना चाहिए, उच्च लीकेज वाले सेल को उच्च लीकेज वाले सेल से परिवर्तित करना होगा। फाइन-ग्रेन पावर गेटिंग सुरुचिपूर्ण कार्यप्रणाली है जिसके परिणामस्वरूप लीकेज में 10 गुना तक कमी आती है। यदि विद्युत् कमी की आवश्यकता एकाधिक Vth अनुकूलन से संतुष्ट नहीं होती है तो इस प्रकार की विद्युत् कमी इसे आकर्षक तकनीक बनाती है। ।
मोटे अनाज विद्युत् गेटिंग
मोटे दाने वाले दृष्टिकोण ग्रिड शैली के स्लीप ट्रांजिस्टर को प्रारम्भ करते हैं जो साझा वर्चुअल पावर नेटवर्क के माध्यम से स्थानीय रूप से कोशिकाओं को चलाते हैं। यह दृष्टिकोण पीवीटी भिन्नता के प्रति कम संवेदनशील है, कम आईआर-ड्रॉप भिन्नता का परिचय देता है, और सेल- या क्लस्टर-आधारित कार्यान्वयन की तुलना में छोटा क्षेत्र ओवरहेड लगाता है। मोटे-अनाज पावर गेटिंग में, पावर-गेटिंग ट्रांजिस्टर मानक सेल के बजाय विद्युत् वितरण नेटवर्क का हिस्सा होता है।
मोटे अनाज की संरचना को प्रारम्भ करने के दो तरीके हैं:
- रिंग-आधारित: पावर गेट्स को मॉड्यूल के परिधि के चारों ओर रखा जाता है जिसे रिंग के रूप में बंद किया जा रहा है। कोनों के चारों ओर विद्युत् संकेतों को चालू करने के लिए विशेष कोने वाले सेल का उपयोग किया जाता है।
- कॉलम-आधारित: मॉड्यूल के भीतर पावर गेट्स को कॉलम के रूप में -दूसरे से अलग किए गए सेल के साथ डाला जाता है। वैश्विक शक्ति धातु की उच्च परतें हैं, जबकि स्विच की गई शक्ति निचली परतों में है।
गेट का आकार किसी भी समय मॉड्यूल के समग्र स्विचिंग करंट पर निर्भर करता है। चूंकि किसी भी समय परिपथ का केवल अंश स्विच करता है, ठीक अनाज स्विच की तुलना में पावर गेट आकार छोटे होते हैं। सबसे व्यर्थ स्थिति वाले वैक्टर का उपयोग कर गतिशील शक्ति सिमुलेशन मॉड्यूल के लिए सबसे व्यर्थ स्थिति स्विचिंग निर्धारित कर सकता है और इसलिए आकार। आईआर ड्रॉप को भी विश्लेषण में शामिल किया जा सकता है। साथ स्विचिंग कैपेसिटेंस मोटे-अनाज पावर गेटिंग कार्यान्वयन में प्रमुख विचार है। साथ स्विचिंग को सीमित करने के लिए, गेट कंट्रोल बफ़र्स डेज़ी जंजीर हो सकते हैं, और विशेष काउंटरों का उपयोग चुनिंदा रूप से स्विच के ब्लॉक को चालू करने के लिए किया जा सकता है।
आइसोलेशन सेल
आइसोलेशन सेल का उपयोग शॉर्ट परिपथ करंट को रोकने के लिए किया जाता है। जैसा कि नाम से पता चलता है, ये कोशिकाएं पावर गेटेड ब्लॉक को नॉर्मल-ऑन ब्लॉक से अलग करती हैं। अलगाव कोशिकाओं को विशेष रूप से कम शॉर्ट परिपथ करंट के लिए डिज़ाइन किया गया है जब इनपुट थ्रेशोल्ड वोल्टेज स्तर पर होता है। अलगाव नियंत्रण संकेत पावर गेटिंग नियंत्रक द्वारा प्रदान किए जाते हैं। डिज़ाइन की अखंडता को बनाए रखने के लिए स्विच करने योग्य मॉड्यूल के संकेतों का अलगाव आवश्यक है। सामान्यतः साधारण OR या AND तर्क आउटपुट आइसोलेशन डिवाइस के रूप में कार्य कर सकता है। मॉड्यूल बंद होने से पहले राज्य को संरक्षित करने के लिए कई राज्य प्रतिधारण योजनाएं व्यवहार में उपलब्ध हैं। मॉड्यूल को बंद करने से पहले रजिस्टर वैल्यू को मेमोरी में स्कैन करना सबसे सरल तकनीक है। जब मॉड्यूल जागता है, तो मान मेमोरी से वापस स्कैन किए जाते हैं।
प्रतिधारण रजिस्टर
जब पावर गेटिंग का उपयोग किया जाता है, तो सिस्टम को किसी प्रकार की स्थिति बनाए रखने की आवश्यकता होती है, जैसे कि डेटा को रैम में स्कैन करना, फिर सिस्टम को फिर से सक्रिय करने पर इसे वापस स्कैन करना। महत्वपूर्ण अनुप्रयोगों के लिए, मेमोरी स्टेट्स को सेल के भीतर बनाए रखा जाना चाहिए, ऐसी स्थिति जिसमें बिट्स को टेबल में स्टोर करने के लिए अवधारण फ्लॉप की आवश्यकता होती है। इससे जागने के समय बिट्स को बहुत जल्दी बहाल करना संभव हो जाता है। प्रतिधारण रजिस्टर विशेष कम रिसाव वाले फ्लिप-फ्लॉप हैं जिनका उपयोग पावर गेटेड ब्लॉक के मुख्य रजिस्टरों के डेटा को रखने के लिए किया जाता है। इस प्रकार पावर डाउन मोड के समय ब्लॉक की आंतरिक स्थिति को बनाए रखा जा सकता है और जब ब्लॉक पुनः सक्रिय हो जाता है तो इसे वापस लोड किया जा सकता है। अवधारण रजिस्टर सदैव संचालित होते हैं। प्रतिधारण रणनीति डिजाइन पर निर्भर है। पावर गेटिंग कंट्रोलर रिटेंशन मैकेनिज्म को नियंत्रित करता है जैसे कि पावर गेटिंग ब्लॉक की वर्तमान सामग्री को कब सहेजना है और कब इसे वापस लाना है।
यह भी देखें
संदर्भ
- ↑ "Practical Power Network Synthesis For Power-Gating Designs". 2008-11-01.
- ↑ Iyer, Anand (2008-11-01), Demystify power gating and stop leakage cold, Cadence Design Systems, Inc.
- Chiou, De-Shiuan; Chen, Shih-Hsin; Yeh, Chingwei (2006). "Timing driven power gating". Proceedings of the 43rd Annual Conference on Design Automation. ACM Special Interest Group on Design Automation: 121–124.
- "Power gating".