आंशिक तरंग विश्लेषण: Difference between revisions
No edit summary |
|||
(6 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Technique in quantum mechanics for solving scattering problems}} | {{short description|Technique in quantum mechanics for solving scattering problems}} | ||
'''आंशिक-तरंग विश्लेषण''', [[क्वांटम यांत्रिकी]] के संदर्भ में, प्रत्येक तरंग को उसके घटक कोणीय संवेग कोणीय-संवेग घटकों में विघटित करके और सीमा स्थितियों का उपयोग करके हल करके [[बिखरने|अवकीर्ण]] की समस्याओं को हल करने की एक तकनीक को संदर्भित करता है। | '''आंशिक-तरंग विश्लेषण''', [[क्वांटम यांत्रिकी]] के संदर्भ में, प्रत्येक तरंग को उसके घटक कोणीय संवेग कोणीय-संवेग घटकों में विघटित करके और सीमा स्थितियों का उपयोग करके हल करके [[बिखरने|अवकीर्ण]] की समस्याओं को हल करने की एक तकनीक को संदर्भित करता है। | ||
Line 7: | Line 6: | ||
: <math>\left[-\frac{\hbar^2}{2m} \nabla^2 + V(r)\right] \Psi(\mathbf r) = E\Psi(\mathbf r).</math> | : <math>\left[-\frac{\hbar^2}{2m} \nabla^2 + V(r)\right] \Psi(\mathbf r) = E\Psi(\mathbf r).</math> | ||
हम निम्नलिखित [[ansatz]] बनाते हैं: | हम निम्नलिखित [[ansatz|अंसत्ज]] बनाते हैं: | ||
: <math>\Psi(\mathbf r) = \Psi_0(\mathbf r) + \Psi_\text{s}(\mathbf r),</math> | : <math>\Psi(\mathbf r) = \Psi_0(\mathbf r) + \Psi_\text{s}(\mathbf r),</math> | ||
जहां <math>\Psi_0(\mathbf r) \propto \exp(ikz)</math> आने वाली समतल तरंग है, और <math>\Psi_\text{s}(\mathbf r)</math> मूल तरंग फलन को विक्षोभकारी करने वाला अवकीर्ण क्षेत्र है | जहां <math>\Psi_0(\mathbf r) \propto \exp(ikz)</math> आने वाली समतल तरंग है, और <math>\Psi_\text{s}(\mathbf r)</math> मूल तरंग फलन को विक्षोभकारी करने वाला अवकीर्ण क्षेत्र होता है | ||
यह अनंतस्पर्शी रूप है <math>\Psi_\text{s}(\mathbf r)</math> यह रुचिकर है, क्योंकि प्रकीर्णन केंद्र (जैसे एक परमाणु नाभिक) के पास अवलोकन अधिकतर संभव नहीं होते हैं, और कणों का पता लगाना मूल से बहुत दूर होता है। अधिक दूरी पर, कणों को मुक्त कणों की तरह व्यवहार करना चाहिए, और <math>\Psi_\text{s}(\mathbf r)</math> इसलिए मुक्त श्रोडिंगर समीकरण का विलयन, होना चाहिए। इससे पता चलता है कि भौतिक रूप से अर्थहीन हिस्से को छोड़कर, इसका समतल तरंग के समान रूप होना चाहिए। इसलिए हम [[विमान-तरंग विस्तार|समतल-तरंग विस्तार]] की जांच करते हैं: | यह अनंतस्पर्शी रूप है <math>\Psi_\text{s}(\mathbf r)</math> यह रुचिकर है, क्योंकि प्रकीर्णन केंद्र (जैसे एक परमाणु नाभिक) के पास अवलोकन अधिकतर संभव नहीं होते हैं, और कणों का पता लगाना मूल से बहुत दूर होता है। अधिक दूरी पर, कणों को मुक्त कणों की तरह व्यवहार करना चाहिए, और <math>\Psi_\text{s}(\mathbf r)</math> इसलिए मुक्त श्रोडिंगर समीकरण का विलयन, होना चाहिए। इससे पता चलता है कि भौतिक रूप से अर्थहीन हिस्से को छोड़कर, इसका समतल तरंग के समान रूप होना चाहिए। इसलिए हम [[विमान-तरंग विस्तार|समतल-तरंग विस्तार]] की जांच करते हैं: | ||
Line 18: | Line 17: | ||
: <math>j_\ell(kr) \to \frac 1 {2ikr} \big(\exp[i(kr-\ell\pi/2)] - \exp[-i(kr-\ell\pi/2)]\big).</math> | : <math>j_\ell(kr) \to \frac 1 {2ikr} \big(\exp[i(kr-\ell\pi/2)] - \exp[-i(kr-\ell\pi/2)]\big).</math> | ||
यह एक बर्हिगामी और आगमिक गोलाकार तरंग से मेल खाती है।अवकीर्ण हुई तरंग फलन के लिए, केवल बर्हिगामी भागों की अपेक्षा की जाती है। इसलिए हम उम्मीद करते हैं <math>\Psi_\text{s}(\mathbf r) \propto \exp(ikr) / r</math> बड़ी दूरी पर और अवकीर्णहुई तरंग के स्पर्शोन्मुख रूप को सेट | यह एक बर्हिगामी और आगमिक गोलाकार तरंग से मेल खाती है।अवकीर्ण हुई तरंग फलन के लिए, केवल बर्हिगामी भागों की अपेक्षा की जाती है। इसलिए हम उम्मीद करते हैं <math>\Psi_\text{s}(\mathbf r) \propto \exp(ikr) / r</math> बड़ी दूरी पर और अवकीर्णहुई तरंग के स्पर्शोन्मुख रूप को सेट करते है: | ||
: <math>\Psi_\text{s}(\mathbf r) \to f(\theta, k) \frac{\exp(ikr)}{r},</math> | : <math>\Psi_\text{s}(\mathbf r) \to f(\theta, k) \frac{\exp(ikr)}{r},</math> | ||
जहां <math>f(\theta, k)</math> मानों से प्रकीर्णन आयाम, जो इस स्थिति में केवल ऊंचाई कोण पर निर्भर है <math>\theta</math> और | जहां <math>f(\theta, k)</math> मानों से प्रकीर्णन आयाम, जो इस स्थिति में केवल ऊंचाई कोण पर निर्भर है <math>\theta</math> और ऊर्जा होती है। | ||
अंत में, यह संपूर्ण तरंग फलन के लिए निम्नलिखित स्पर्शोन्मुख अभिव्यक्ति देता है: | अंत में, यह संपूर्ण तरंग फलन के लिए निम्नलिखित स्पर्शोन्मुख अभिव्यक्ति देता है: | ||
Line 28: | Line 27: | ||
== आंशिक तरंग विस्तार == | == आंशिक तरंग विस्तार == | ||
गोलाकार सममितीय विभव स्थिति में <math>V(\mathbf r) = V(r)</math>, प्रकीर्णन तरंग फ़ंक्शन को | गोलाकार सममितीय विभव स्थिति में <math>V(\mathbf r) = V(r)</math>, प्रकीर्णन तरंग फ़ंक्शन को गोलाकार हार्मोनिक्स में विस्तारित किया जा सकता है, जो अज़ीमुथल समरूपता (<math>\phi</math> पर कोई निर्भरता नहीं) के कारण [[लीजेंड्रे बहुपद]] में कम हो जाता है : | ||
: <math>\Psi(\mathbf r) = \sum_{\ell=0}^{\infty} \frac{u_\ell(r)}{r} P_\ell(\cos\theta).</math> | : <math>\Psi(\mathbf r) = \sum_{\ell=0}^{\infty} \frac{u_\ell(r)}{r} P_\ell(\cos\theta).</math> | ||
Line 37: | Line 36: | ||
: <math>j_\ell(kr) = \frac{1}{2} \left(h_\ell^{(1)}(kr) + h_\ell^{(2)}(kr)\right).</math> | : <math>j_\ell(kr) = \frac{1}{2} \left(h_\ell^{(1)}(kr) + h_\ell^{(2)}(kr)\right).</math> | ||
इसका भौतिक महत्व है: {{math|''h<sub>ℓ</sub>''<sup>(2)</sup>}} असम्बद्ध रूप से (अर्थात बड़े {{mvar|r}} के लिए) {{math|''i''<sup>−(''ℓ''+1)</sup>''e<sup>ikr</sup>''/(''kr'')}} के रूप में व्यवहार करता है और इस प्रकार बर्हिगामी तरंग होता है, जबकि {{math|''h<sub>ℓ</sub>''<sup>(1)</sup>}} असम्बद्ध रूप से {{math|''i''<sup>''ℓ''+1</sup>''e<sup>−ikr</sup>''/(''kr'')}} के रूप में व्यवहार करता है और इस प्रकार यह एक आने वाली तरंग है। आने वाली तरंग प्रकीर्णन से अप्रभावित रहती है, जबकि बाहर जाने वाली तरंग को आंशिक-तरंग [[ एस मैट्रिक्स |एस | इसका भौतिक महत्व है: {{math|''h<sub>ℓ</sub>''<sup>(2)</sup>}} असम्बद्ध रूप से (अर्थात बड़े {{mvar|r}} के लिए) {{math|''i''<sup>−(''ℓ''+1)</sup>''e<sup>ikr</sup>''/(''kr'')}} के रूप में व्यवहार करता है और इस प्रकार बर्हिगामी तरंग होता है, जबकि {{math|''h<sub>ℓ</sub>''<sup>(1)</sup>}} असम्बद्ध रूप से {{math|''i''<sup>''ℓ''+1</sup>''e<sup>−ikr</sup>''/(''kr'')}} के रूप में व्यवहार करता है और इस प्रकार यह एक आने वाली तरंग है। आने वाली तरंग प्रकीर्णन से अप्रभावित रहती है, जबकि बाहर जाने वाली तरंग को आंशिक-तरंग [[ एस मैट्रिक्स |एस आव्यूह]] तत्व {{math|''S<sub>ℓ</sub>''}} नामक कारक द्वारा संशोधित किया जाता है: <math>\frac{u_\ell(r)}{r} \stackrel{r \to \infty}{\longrightarrow} \frac{i^\ell k}{\sqrt{2 \pi}} \left(h_\ell^{(1)}(k r) + S_\ell h_\ell^{(2)}(k r)\right),</math> | ||
जहां {{math|''u<sub>ℓ</sub>''(''r'')/''r''}} वास्तविक तरंग फलन का रेडियल घटक होता है। [[बिखरने का चरण बदलाव|प्रकीर्णन चरण बदलाव]] {{math|''δ<sub>ℓ</sub>''}} को {{math|''S<sub>ℓ</sub>''}} के चरण के आधे के रूप में परिभाषित किया गया है: | जहां {{math|''u<sub>ℓ</sub>''(''r'')/''r''}} वास्तविक तरंग फलन का रेडियल घटक होता है। [[बिखरने का चरण बदलाव|प्रकीर्णन चरण बदलाव]] {{math|''δ<sub>ℓ</sub>''}} को {{math|''S<sub>ℓ</sub>''}} के चरण के आधे के रूप में परिभाषित किया गया है: | ||
Line 70: | Line 69: | ||
* [https://web.archive.org/web/20120425231714/http://homepages.rpi.edu/~napolj/Talks/PWALunch9Sep03.pdf Partial Wave Analysis for Dummies] | * [https://web.archive.org/web/20120425231714/http://homepages.rpi.edu/~napolj/Talks/PWALunch9Sep03.pdf Partial Wave Analysis for Dummies] | ||
* [http://quantummechanics.ucsd.edu/ph130a/130_notes/node228.html Partial Wave Analysis of Scattering] | * [http://quantummechanics.ucsd.edu/ph130a/130_notes/node228.html Partial Wave Analysis of Scattering] | ||
Line 76: | Line 75: | ||
{{quantum-stub}} | {{quantum-stub}} | ||
[[Category:All stub articles]] | |||
[[Category: | |||
[[Category:Created On 24/05/2023]] | [[Category:Created On 24/05/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Quantum physics stubs]] | |||
[[Category:Scattering stubs]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:क्वांटम यांत्रिकी]] | |||
[[Category:बिखराव सिद्धांत]] |
Latest revision as of 13:57, 30 June 2023
आंशिक-तरंग विश्लेषण, क्वांटम यांत्रिकी के संदर्भ में, प्रत्येक तरंग को उसके घटक कोणीय संवेग कोणीय-संवेग घटकों में विघटित करके और सीमा स्थितियों का उपयोग करके हल करके अवकीर्ण की समस्याओं को हल करने की एक तकनीक को संदर्भित करता है।
प्रारंभिक प्रकीर्णन सिद्धांत
निम्नलिखित विवरण प्राथमिक प्रकीर्णन सिद्धांत को प्रस्तुत करने के विहित विधि का अनुसरण करता है। कणों की एक स्थिर गोलाकार रूप से सममित क्षमता से अवकीर्ण हो जाती है जो कम दूरी की होती है, जिससे की बड़ी दूरी के लिए , कण मुक्त कणों की तरह व्यवहार करते हैं। सिद्धांत रूप में, किसी भी कण का वर्णन एक तरंग पैकेट द्वारा किया जाना चाहिए, लेकिन हम इसके अतिरिक्त समतल तरंग के प्रकीर्णन का वर्णन करते हैं z अक्ष के साथ यात्रा करते हुए तरंग पैकेट को समतल तरंगों के संदर्भ में विस्तारित किया जा सकता है, और यह गणितीय रूप से सरल है। क्योंकि प्रकीर्णन क्षमता के साथ ki की परस्पर क्रिया के समय की तुलना में किरणपुंज को लंबे समय तक चालू रखा जाता है, इसलिए एक स्थिर स्थिति मान ली जाती है। इसका मतलब है कि तरंग फलन के लिए स्थिर श्रोडिंगर समीकरण कण किरणपुंजपुंज का प्रतिनिधित्व करने वाले को हल किया जाना चाहिए:
हम निम्नलिखित अंसत्ज बनाते हैं:
जहां आने वाली समतल तरंग है, और मूल तरंग फलन को विक्षोभकारी करने वाला अवकीर्ण क्षेत्र होता है
यह अनंतस्पर्शी रूप है यह रुचिकर है, क्योंकि प्रकीर्णन केंद्र (जैसे एक परमाणु नाभिक) के पास अवलोकन अधिकतर संभव नहीं होते हैं, और कणों का पता लगाना मूल से बहुत दूर होता है। अधिक दूरी पर, कणों को मुक्त कणों की तरह व्यवहार करना चाहिए, और इसलिए मुक्त श्रोडिंगर समीकरण का विलयन, होना चाहिए। इससे पता चलता है कि भौतिक रूप से अर्थहीन हिस्से को छोड़कर, इसका समतल तरंग के समान रूप होना चाहिए। इसलिए हम समतल-तरंग विस्तार की जांच करते हैं:
गोलाकार बेसेल फलन समान रूप से व्यवहार करता है
यह एक बर्हिगामी और आगमिक गोलाकार तरंग से मेल खाती है।अवकीर्ण हुई तरंग फलन के लिए, केवल बर्हिगामी भागों की अपेक्षा की जाती है। इसलिए हम उम्मीद करते हैं बड़ी दूरी पर और अवकीर्णहुई तरंग के स्पर्शोन्मुख रूप को सेट करते है:
जहां मानों से प्रकीर्णन आयाम, जो इस स्थिति में केवल ऊंचाई कोण पर निर्भर है और ऊर्जा होती है।
अंत में, यह संपूर्ण तरंग फलन के लिए निम्नलिखित स्पर्शोन्मुख अभिव्यक्ति देता है:
आंशिक तरंग विस्तार
गोलाकार सममितीय विभव स्थिति में , प्रकीर्णन तरंग फ़ंक्शन को गोलाकार हार्मोनिक्स में विस्तारित किया जा सकता है, जो अज़ीमुथल समरूपता ( पर कोई निर्भरता नहीं) के कारण लीजेंड्रे बहुपद में कम हो जाता है :
मानक प्रकीर्णन समस्या में, आने वाली किरणपुंज को तरंग संख्या k की समतल तरंग का रूप लेने के लिए माना जाता है, जिसे गोलाकार बेसेल फलन और लीजेंड्रे बहुपद के संदर्भ में समतल-तरंग विस्तार का उपयोग करके आंशिक तरंगों में विघटित किया जा सकता है:
यहाँ हमने एक गोलीय समन्वय प्रणाली मानी है जिसमें z अक्ष किरणपुंज दिशा के साथ संरेखित है। इस तरंग फलन के रेडियल भाग में केवल गोलाकार बेसेल फलन होता है, जिसे दो गोलाकार हैंकेल फलन के योग के रूप में फिर से लिखा जा सकता है:
इसका भौतिक महत्व है: hℓ(2) असम्बद्ध रूप से (अर्थात बड़े r के लिए) i−(ℓ+1)eikr/(kr) के रूप में व्यवहार करता है और इस प्रकार बर्हिगामी तरंग होता है, जबकि hℓ(1) असम्बद्ध रूप से iℓ+1e−ikr/(kr) के रूप में व्यवहार करता है और इस प्रकार यह एक आने वाली तरंग है। आने वाली तरंग प्रकीर्णन से अप्रभावित रहती है, जबकि बाहर जाने वाली तरंग को आंशिक-तरंग एस आव्यूह तत्व Sℓ नामक कारक द्वारा संशोधित किया जाता है:
जहां uℓ(r)/r वास्तविक तरंग फलन का रेडियल घटक होता है। प्रकीर्णन चरण बदलाव δℓ को Sℓ के चरण के आधे के रूप में परिभाषित किया गया है:
यदि प्रवाह नष्ट नहीं हुआ है, तो |Sℓ| = 1, और इस प्रकार चरण परिवर्तन वास्तविक है। यह सामान्यतः स्थिति है, जब तक कि क्षमता में एक काल्पनिक अवशोषक घटक नहीं होता है, जिसे अधिकांशतः अन्य प्रतिक्रिया चैनलों के कारण नुकसान का अनुकरण करने के लिए घटनात्मक मॉडल में उपयोग किया जाता है।
इसलिए, पूर्ण स्पर्शोन्मुख तरंग फलन है
ψin घटाने पर अनंतस्पर्शी बहिर्गामी तरंग फलन प्राप्त होता है:
गोलाकार हेंकेल फलन के स्पर्शोन्मुख व्यवहार का उपयोग करके, कोई प्राप्त कर सकता है
अवकीर्ण के आयाम के बाद सेचूंकि प्रकीर्णन आयाम f(θ, k) से परिभाषित किया गया है
यह इस प्रकार है कि
और इस प्रकार विभेदी परिक्षेत्र द्वारा दिया गया है
यह किसी भी कम दूरी अन्तःक्रिया के लिए काम करता है। लंबी दूरी की अंतःक्रियाओं (जैसे कूलॉम अंतःक्रिया) के लिए, ℓ से अधिक का योग अभिसरण नहीं हो सकता है। ऐसी समस्याओं के लिए सामान्य दृष्टिकोण में कूलॉम अन्योन्यक्रिया को कम दूरी अन्योन्यक्रिया से अलग करने में सम्मलित होते है, क्योंकि कूलम्ब समस्या को कूलम्ब फलन के संदर्भ में ठीक से हल किया जा सकता है, जो इस समस्या में हैंकेल फलन की भूमिका निभाते हैं।
संदर्भ
- Griffiths, J. D. (1995). Introduction to Quantum Mechanics. Pearson Prentice Hall. ISBN 0-13-111892-7.
बाहरी संबंध