विजुअल सेंसर नेटवर्क: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
'''विज़ुअल सेंसर नेटवर्क''' या [[स्मार्ट कैमरा]] नेटवर्क या इंटेलिजेंट कैमरा नेटवर्क स्थानिक रूप से वितरित स्मार्ट कैमरा के उपकरणों का नेटवर्क होता है जो की विभिन्न प्रकार के दृष्टिकोणों से किसी दृश्य की छवियों को संसाधित करने में सहायक होते है , तथा डेटा का आदान-प्रदान करने और व्यर्थ करने में सक्षम होते है, जोकी व्यक्तिगत छवियों की तुलना में अधिक उपयोगी होते है।<ref>{{cite journal |last1=Tavli |first1=Bulent |last2=Bicakci |first2=Kemal |last3=Zilan |first3=Ruken |last4=Barcelo-Ordinas |first4=Jose M. |title=विजुअल सेंसर नेटवर्क प्लेटफॉर्म का एक सर्वेक्षण|journal=Multimedia Tools and Applications |date=1 October 2012 |volume=60 |issue=3 |pages=689–726 |doi=10.1007/s11042-011-0840-z |s2cid=254837739 |url=https://link.springer.com/article/10.1007/s11042-011-0840-z |language=en |issn=1573-7721}}</ref><ref>{{cite journal |last1=Williams |first1=Adam |last2=Ganesan |first2=Deepak |last3=Hanson |first3=Allen |title=जगह में बुढ़ापा|journal=Proceedings of the 15th International Conference on Multimedia - MULTIMEDIA '07 |date=2007 |pages=892–901 |doi=10.1145/1291233.1291435 |url=https://dl.acm.org/doi/abs/10.1145/1291233.1291435 |publisher=ACM Press|isbn=9781595937025 |s2cid=16415553 }}</ref><ref>{{cite journal |last1=Song |first1=Bi |last2=Soto |first2=Cristian |last3=Roy-Chowdhury |first3=Amit K. |last4=Farrell |first4=Jay A. |title=गेम थ्योरी का उपयोग कर विकेंद्रीकृत कैमरा नेटवर्क नियंत्रण|journal=2008 Second ACM/IEEE International Conference on Distributed Smart Cameras |date=September 2008 |pages=1–8 |doi=10.1109/ICDSC.2008.4635735 |isbn=978-1-4244-2664-5 |s2cid=10467999 |url=https://ieeexplore.ieee.org/document/4635735 |access-date=15 May 2021}}</ref> अतः विज़ुअल सेंसर नेटवर्क इस प्रकार का [[वायरलेस सेंसर नेटवर्क]] होता है, और इसके अतिरिक्त अधिकांश सिद्धांत जोकी अनुप्रयोग रूप से प्रयोग में लाये जाते है। इस प्रकार नेटवर्क में सामान्यतः स्वयं कैमरे होते हैं जो उपयोग में लाये जाते है , जिनमें कुछ स्थानीय छवि प्रसंस्करण, संचार और संचय क्षमताएं होती हैं, और संभवतः से अधिक केंद्रीय कंप्यूटर होते हैं जिनका उपयोग किया जाता है , जहां अनेक कैमरों से छवि डेटा को आगे संसाधित किया जाता है और [[सेंसर फ्यूजन|सेंसर फ्यूज़्ड]](यह प्रसंस्करण, चूंकि, बस ले सकता है) कैमरों और उनके स्थानीय नियंत्रकों में वितरित को आकार में रखें)।और विज़ुअल सेंसर नेटवर्क उपयोगकर्ता को कुछ उच्च-स्तरीय सेवाएं भी प्रदान करते हैं इस प्रकार से बड़ी मात्रा में डेटा को विशिष्ट प्रश्नों का उपयोग करके रुचि की जानकारी में डिस्टिल का उपयोग किया जाता है ।<ref name="obraczka2002">{{cite book|first=K.|last=Obraczka|author2=Manduchi, R. |author3=Garcia-Luna-Aveces, J. J. |title=विज़ुअल सेंसर नेटवर्क में सूचना प्रवाह का प्रबंधन|url=https://www.soe.ucsc.edu/~manduchi/Papers/178-obraczka.pdf |journal=Proc. 5th Intl. Symposium on Wireless Personal Multimedia Communications|pages=1177–1181|date=October 2002|doi=10.1109/WPMC.2002.1088364|volume=3|isbn=978-0-7803-7442-3|citeseerx=10.1.1.19.1917|s2cid=1300523 }}</ref><ref name="akdere2006">{{cite journal|first=M.|last=Akdere|author2=Centintemel, U. |author3=Crispell, D. |author4=Jannotti, J. |author5=Mao, J. |author6=Taubin, G. |title=Data-Centric Visual Sensor Networks for 3D Sensing|url=http://www.cs.brown.edu/~jj/papers/3d-geo06.pdf |journal=Proc. 2nd Intl. Conf. On Geosensor Networks|date=October 2006}}</ref><ref>Castanedo, F., Patricio, M. A., García, J., and Molina, J. M. 2006. Extending surveillance systems capabilities using BDI cooperative sensor agents. In Proceedings of the 4th ACM international Workshop on Video Surveillance and Sensor Networks (Santa Barbara, California, USA, October 27 – 27, 2006). VSSN '06. ACM Press, New York, NY, 131–138. DOI= http://doi.acm.org/10.1145/1178782.1178802</ref>
'''विज़ुअल सेंसर नेटवर्क''' या [[स्मार्ट कैमरा]] नेटवर्क या इंटेलिजेंट कैमरा नेटवर्क स्थानिक रूप से वितरित स्मार्ट कैमरा के उपकरणों का नेटवर्क होता है जो की विभिन्न प्रकार के दृष्टिकोणों से किसी दृश्य की छवियों को संसाधित करने में सहायक होते है , तथा इस प्रकार डेटा का आदान-प्रदान करने और व्यर्थ करने में सक्षम होते है, जोकी व्यक्तिगत छवियों की तुलना में अधिक उपयोगी होते है।<ref>{{cite journal |last1=Tavli |first1=Bulent |last2=Bicakci |first2=Kemal |last3=Zilan |first3=Ruken |last4=Barcelo-Ordinas |first4=Jose M. |title=विजुअल सेंसर नेटवर्क प्लेटफॉर्म का एक सर्वेक्षण|journal=Multimedia Tools and Applications |date=1 October 2012 |volume=60 |issue=3 |pages=689–726 |doi=10.1007/s11042-011-0840-z |s2cid=254837739 |url=https://link.springer.com/article/10.1007/s11042-011-0840-z |language=en |issn=1573-7721}}</ref><ref>{{cite journal |last1=Williams |first1=Adam |last2=Ganesan |first2=Deepak |last3=Hanson |first3=Allen |title=जगह में बुढ़ापा|journal=Proceedings of the 15th International Conference on Multimedia - MULTIMEDIA '07 |date=2007 |pages=892–901 |doi=10.1145/1291233.1291435 |url=https://dl.acm.org/doi/abs/10.1145/1291233.1291435 |publisher=ACM Press|isbn=9781595937025 |s2cid=16415553 }}</ref><ref>{{cite journal |last1=Song |first1=Bi |last2=Soto |first2=Cristian |last3=Roy-Chowdhury |first3=Amit K. |last4=Farrell |first4=Jay A. |title=गेम थ्योरी का उपयोग कर विकेंद्रीकृत कैमरा नेटवर्क नियंत्रण|journal=2008 Second ACM/IEEE International Conference on Distributed Smart Cameras |date=September 2008 |pages=1–8 |doi=10.1109/ICDSC.2008.4635735 |isbn=978-1-4244-2664-5 |s2cid=10467999 |url=https://ieeexplore.ieee.org/document/4635735 |access-date=15 May 2021}}</ref> अतः विज़ुअल सेंसर नेटवर्क इस प्रकार का [[वायरलेस सेंसर नेटवर्क]] होता है, और इसके अतिरिक्त अधिकांश सिद्धांत जोकी अनुप्रयोग रूप से प्रयोग में लाये जाते है। इस प्रकार नेटवर्क में सामान्यतः स्वयं कैमरे होते हैं जो उपयोग में लाये जाते है , जिनमें कुछ स्थानीय छवि प्रसंस्करण, संचार और संचय क्षमताएं होती हैं, और संभवतः से अधिक केंद्रीय कंप्यूटर होते हैं जिनका उपयोग किया जाता है, जहां अनेक कैमरों से छवि डेटा को आगे संसाधित किया जाता है और [[सेंसर फ्यूजन|सेंसर फ्यूज़्ड]] (यह प्रसंस्करण, चूंकि, केवल कैमरों और उनके स्थानीय नियंत्रकों में वितरित आकार में हो सकता है)। और विज़ुअल सेंसर नेटवर्क उपयोगकर्ता को कुछ उच्च-स्तरीय सेवाएं भी प्रदान करते हैं इस प्रकार से बड़ी मात्रा में डेटा को विशिष्ट प्रश्नों का उपयोग करके रुचि की जानकारी में डिस्टिल का उपयोग किया जाता है ।<ref name="obraczka2002">{{cite book|first=K.|last=Obraczka|author2=Manduchi, R. |author3=Garcia-Luna-Aveces, J. J. |title=विज़ुअल सेंसर नेटवर्क में सूचना प्रवाह का प्रबंधन|url=https://www.soe.ucsc.edu/~manduchi/Papers/178-obraczka.pdf |journal=Proc. 5th Intl. Symposium on Wireless Personal Multimedia Communications|pages=1177–1181|date=October 2002|doi=10.1109/WPMC.2002.1088364|volume=3|isbn=978-0-7803-7442-3|citeseerx=10.1.1.19.1917|s2cid=1300523 }}</ref><ref name="akdere2006">{{cite journal|first=M.|last=Akdere|author2=Centintemel, U. |author3=Crispell, D. |author4=Jannotti, J. |author5=Mao, J. |author6=Taubin, G. |title=Data-Centric Visual Sensor Networks for 3D Sensing|url=http://www.cs.brown.edu/~jj/papers/3d-geo06.pdf |journal=Proc. 2nd Intl. Conf. On Geosensor Networks|date=October 2006}}</ref><ref>Castanedo, F., Patricio, M. A., García, J., and Molina, J. M. 2006. Extending surveillance systems capabilities using BDI cooperative sensor agents. In Proceedings of the 4th ACM international Workshop on Video Surveillance and Sensor Networks (Santa Barbara, California, USA, October 27 – 27, 2006). VSSN '06. ACM Press, New York, NY, 131–138. DOI= http://doi.acm.org/10.1145/1178782.1178802</ref>


'''विज़ुअल [[सेंसर]] नेटवर्क''' और अन्य प्रकार के सेंसर नेटवर्क के बीच प्राथमिक अंतर व्यक्तिगत सेंसर द्वारा प्राप्त की जाने वाली जानकारी की प्रकृति और मात्रा का प्रयोग किया जाता है: अधिकांश सेंसर के विपरीत, कैमरे उनके [[देखने के क्षेत्र|दृश्य क्षेत्र,]] में दिशात्मक होते हैं, और वह बड़ी मात्रा में दृश्य की जानकारी को एकत्रित करते हैं इस प्रकार इसे उपयोग में लाया जाता है और आंशिक रूप से नेटवर्क में अन्य कैमरों से डेटा के स्वतंत्र रूप से संसाधित किया जाता है । किन्तु वैकल्पिक रूप को , हम इस प्रकार प्रस्तुत कर सकते है कि जबकि अधिकांश सेंसर तापमान या दबाव जैसे कुछ मानो को मापते हैं, और दृश्य सेंसर पैटर्न को मापते हैं। इसके प्रकाश में, विज़ुअल सेंसर नेटवर्क में संचार पारंपरिक सेंसर नेटवर्क से अधिक भिन्न होता है।  
'''विज़ुअल [[सेंसर]] नेटवर्क''' और अन्य प्रकार के सेंसर नेटवर्क के बीच प्राथमिक अंतर व्यक्तिगत सेंसर द्वारा प्राप्त की जाने वाली जानकारी की प्रकृति और मात्रा का प्रयोग किया जाता है: अधिकांश सेंसर के विपरीत, कैमरे उनके [[देखने के क्षेत्र|दृश्य क्षेत्र,]] में दिशात्मक होते हैं, और वह बड़ी मात्रा में दृश्य की जानकारी को एकत्रित करते हैं इस प्रकार इसे उपयोग में लाया जाता है और आंशिक रूप से नेटवर्क में अन्य कैमरों से डेटा के स्वतंत्र रूप से संसाधित किया जाता है । किन्तु इसे हम वैकल्पिक रूप मान सकते है , और हम इस प्रकार प्रस्तुत कर सकते है कि जबकि अधिकांश सेंसर तापमान या दबाव जैसे कुछ मानो को मापते हैं, और दृश्य सेंसर पैटर्न को मापते हैं। इसके प्रकाश में, विज़ुअल सेंसर नेटवर्क में संचार पारंपरिक सेंसर नेटवर्क से अधिक भिन्न होता है।  


== अनुप्रयोग ==
== अनुप्रयोग ==
विजुअल सेंसर नेटवर्क क्षेत्र [[निगरानी]], ​​[[ऑप्टिकल मोशन ट्रैकिंग]] और पर्यावरण निगरानी से जुड़े अनुप्रयोगों में सबसे उपयोगी होते हैं। निगरानी अनुप्रयोगों में विशेष उपयोग दृश्य के घने 3डी पुनर्निर्माण और समय की अवधि में डेटा संग्रहीत करने की क्षमता रखता है, जिससे ऑपरेटर घटनाओं को सही प्रकार से देख सकें क्योंकि वह इच्छानुसार किसी भी समय (वर्तमान क्षण सहित) में प्रकट होते हैं। कवर किए गए क्षेत्र में दृष्टिकोण, यहां तक ​​कि उन्हें वास्तविक समय में दृश्य के चारों ओर उड़ने की अनुमति देता है। इस प्रकार वस्तु पहचान और अन्य विधियो का उपयोग करके उच्च-स्तरीय विश्लेषण दृश्य के माध्यम से वस्तुओं (जैसे लोगों या कारों) को बुद्धिमानी से ट्रैक कर सकता है, और यह भी निर्धारित कर सकता है कि वे क्या कर रहे हैं जिससे कुछ गतिविधियों को स्वचालित रूप से संचालक के ध्यान में लाया जा सके। अन्य संभावना दूरसंचार में विज़ुअल सेंसर नेटवर्क का उपयोग है, जहां नेटवर्क स्वचालित रूप से लाइव इवेंट के सर्वश्रेष्ठ दृश्य (संभवतः इच्छानुसार से उत्पन्न भी) का चयन करता है।  
विजुअल सेंसर नेटवर्क क्षेत्र [[निगरानी]], ​​[[ऑप्टिकल मोशन ट्रैकिंग]] और पर्यावरण निगरानी से जुड़े अनुप्रयोगों में सबसे उपयोगी होते हैं। निगरानी अनुप्रयोगों में विशेष उपयोग दृश्य के घने 3डी पुनर्निर्माण और समय की अवधि में डेटा संग्रहीत करने की क्षमता रखता है, जिससे ऑपरेटर घटनाओं को सही प्रकार से देख सकें क्योंकि वह इच्छानुसार किसी भी समय (वर्तमान क्षण सहित) में प्रकट होते हैं। कवर किए गए क्षेत्र में दृष्टिकोण, यहां तक ​​कि उन्हें वास्तविक समय में दृश्य के चारों ओर उड़ने की अनुमति देता है। इस प्रकार वस्तु पहचान और अन्य विधियो का उपयोग करके उच्च-स्तरीय विश्लेषण दृश्य के माध्यम से वस्तुओं (जैसे लोगों या कारों) को बुद्धिमानी से इस प्रकार से ट्रैक कर सकते है, और यह भी निर्धारित कर सकते है कि वे क्या कर रहे हैं जिससे कुछ गतिविधियों को स्वचालित रूप से संचालक के ध्यान में लाया जा सके। अन्य संभावना दूरसंचार में विज़ुअल सेंसर नेटवर्क का उपयोग करते है, जहां नेटवर्क स्वचालित रूप से लाइव इवेंट के सर्वश्रेष्ठ दृश्य (संभवतः इच्छानुसार से उत्पन्न भी) का चयन करता है।  


== यह भी देखें ==
== यह भी देखें ==
Line 24: Line 24:
==बाहरी संबंध ==
==बाहरी संबंध ==
* [http://www.cs.toronto.edu/~faisal/virtual-vision/index.html Virtual Vision for Smart Camera Sensor Networks]  
* [http://www.cs.toronto.edu/~faisal/virtual-vision/index.html Virtual Vision for Smart Camera Sensor Networks]  
* [http://www.cmucam.org/ CMUcam3]  
* [http://www.cmucam.org/ CMUcam3]


[[Category: कंप्यूटर दृष्टि के अनुप्रयोग]] [[Category: वायरलेस सेंसर नेटवर्क]]
[[Category:CS1 English-language sources (en)]]
 
 
 
[[Category: Machine Translated Page]]
[[Category:Created On 08/06/2023]]
[[Category:Created On 08/06/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:कंप्यूटर दृष्टि के अनुप्रयोग]]
[[Category:वायरलेस सेंसर नेटवर्क]]

Latest revision as of 11:13, 1 July 2023

विज़ुअल सेंसर नेटवर्क या स्मार्ट कैमरा नेटवर्क या इंटेलिजेंट कैमरा नेटवर्क स्थानिक रूप से वितरित स्मार्ट कैमरा के उपकरणों का नेटवर्क होता है जो की विभिन्न प्रकार के दृष्टिकोणों से किसी दृश्य की छवियों को संसाधित करने में सहायक होते है , तथा इस प्रकार डेटा का आदान-प्रदान करने और व्यर्थ करने में सक्षम होते है, जोकी व्यक्तिगत छवियों की तुलना में अधिक उपयोगी होते है।[1][2][3] अतः विज़ुअल सेंसर नेटवर्क इस प्रकार का वायरलेस सेंसर नेटवर्क होता है, और इसके अतिरिक्त अधिकांश सिद्धांत जोकी अनुप्रयोग रूप से प्रयोग में लाये जाते है। इस प्रकार नेटवर्क में सामान्यतः स्वयं कैमरे होते हैं जो उपयोग में लाये जाते है , जिनमें कुछ स्थानीय छवि प्रसंस्करण, संचार और संचय क्षमताएं होती हैं, और संभवतः से अधिक केंद्रीय कंप्यूटर होते हैं जिनका उपयोग किया जाता है, जहां अनेक कैमरों से छवि डेटा को आगे संसाधित किया जाता है और सेंसर फ्यूज़्ड (यह प्रसंस्करण, चूंकि, केवल कैमरों और उनके स्थानीय नियंत्रकों में वितरित आकार में हो सकता है)। और विज़ुअल सेंसर नेटवर्क उपयोगकर्ता को कुछ उच्च-स्तरीय सेवाएं भी प्रदान करते हैं इस प्रकार से बड़ी मात्रा में डेटा को विशिष्ट प्रश्नों का उपयोग करके रुचि की जानकारी में डिस्टिल का उपयोग किया जाता है ।[4][5][6]

विज़ुअल सेंसर नेटवर्क और अन्य प्रकार के सेंसर नेटवर्क के बीच प्राथमिक अंतर व्यक्तिगत सेंसर द्वारा प्राप्त की जाने वाली जानकारी की प्रकृति और मात्रा का प्रयोग किया जाता है: अधिकांश सेंसर के विपरीत, कैमरे उनके दृश्य क्षेत्र, में दिशात्मक होते हैं, और वह बड़ी मात्रा में दृश्य की जानकारी को एकत्रित करते हैं इस प्रकार इसे उपयोग में लाया जाता है और आंशिक रूप से नेटवर्क में अन्य कैमरों से डेटा के स्वतंत्र रूप से संसाधित किया जाता है । किन्तु इसे हम वैकल्पिक रूप मान सकते है , और हम इस प्रकार प्रस्तुत कर सकते है कि जबकि अधिकांश सेंसर तापमान या दबाव जैसे कुछ मानो को मापते हैं, और दृश्य सेंसर पैटर्न को मापते हैं। इसके प्रकाश में, विज़ुअल सेंसर नेटवर्क में संचार पारंपरिक सेंसर नेटवर्क से अधिक भिन्न होता है।

अनुप्रयोग

विजुअल सेंसर नेटवर्क क्षेत्र निगरानी, ​​ऑप्टिकल मोशन ट्रैकिंग और पर्यावरण निगरानी से जुड़े अनुप्रयोगों में सबसे उपयोगी होते हैं। निगरानी अनुप्रयोगों में विशेष उपयोग दृश्य के घने 3डी पुनर्निर्माण और समय की अवधि में डेटा संग्रहीत करने की क्षमता रखता है, जिससे ऑपरेटर घटनाओं को सही प्रकार से देख सकें क्योंकि वह इच्छानुसार किसी भी समय (वर्तमान क्षण सहित) में प्रकट होते हैं। कवर किए गए क्षेत्र में दृष्टिकोण, यहां तक ​​कि उन्हें वास्तविक समय में दृश्य के चारों ओर उड़ने की अनुमति देता है। इस प्रकार वस्तु पहचान और अन्य विधियो का उपयोग करके उच्च-स्तरीय विश्लेषण दृश्य के माध्यम से वस्तुओं (जैसे लोगों या कारों) को बुद्धिमानी से इस प्रकार से ट्रैक कर सकते है, और यह भी निर्धारित कर सकते है कि वे क्या कर रहे हैं जिससे कुछ गतिविधियों को स्वचालित रूप से संचालक के ध्यान में लाया जा सके। अन्य संभावना दूरसंचार में विज़ुअल सेंसर नेटवर्क का उपयोग करते है, जहां नेटवर्क स्वचालित रूप से लाइव इवेंट के सर्वश्रेष्ठ दृश्य (संभवतः इच्छानुसार से उत्पन्न भी) का चयन करता है।

यह भी देखें

संदर्भ

  1. Tavli, Bulent; Bicakci, Kemal; Zilan, Ruken; Barcelo-Ordinas, Jose M. (1 October 2012). "विजुअल सेंसर नेटवर्क प्लेटफॉर्म का एक सर्वेक्षण". Multimedia Tools and Applications (in English). 60 (3): 689–726. doi:10.1007/s11042-011-0840-z. ISSN 1573-7721. S2CID 254837739.
  2. Williams, Adam; Ganesan, Deepak; Hanson, Allen (2007). "जगह में बुढ़ापा". Proceedings of the 15th International Conference on Multimedia - MULTIMEDIA '07. ACM Press: 892–901. doi:10.1145/1291233.1291435. ISBN 9781595937025. S2CID 16415553.
  3. Song, Bi; Soto, Cristian; Roy-Chowdhury, Amit K.; Farrell, Jay A. (September 2008). "गेम थ्योरी का उपयोग कर विकेंद्रीकृत कैमरा नेटवर्क नियंत्रण". 2008 Second ACM/IEEE International Conference on Distributed Smart Cameras: 1–8. doi:10.1109/ICDSC.2008.4635735. ISBN 978-1-4244-2664-5. S2CID 10467999. Retrieved 15 May 2021.
  4. Obraczka, K.; Manduchi, R.; Garcia-Luna-Aveces, J. J. (October 2002). विज़ुअल सेंसर नेटवर्क में सूचना प्रवाह का प्रबंधन (PDF). pp. 1177–1181. CiteSeerX 10.1.1.19.1917. doi:10.1109/WPMC.2002.1088364. ISBN 978-0-7803-7442-3. S2CID 1300523. {{cite book}}: |journal= ignored (help)
  5. Akdere, M.; Centintemel, U.; Crispell, D.; Jannotti, J.; Mao, J.; Taubin, G. (October 2006). "Data-Centric Visual Sensor Networks for 3D Sensing" (PDF). Proc. 2nd Intl. Conf. On Geosensor Networks.
  6. Castanedo, F., Patricio, M. A., García, J., and Molina, J. M. 2006. Extending surveillance systems capabilities using BDI cooperative sensor agents. In Proceedings of the 4th ACM international Workshop on Video Surveillance and Sensor Networks (Santa Barbara, California, USA, October 27 – 27, 2006). VSSN '06. ACM Press, New York, NY, 131–138. DOI= http://doi.acm.org/10.1145/1178782.1178802
  1. ^ Cheng Qian, Hairong Qi: Coverage Estimation in the Presence of Occlusions for Visual Sensor Networks. DCOSS 2008: 346–356
  2. ^ Soro S., Heinzelman W.: A Survey of Visual Sensor Networks, Advances in Multimedia, vol. 2009, Article ID 640386, 21 pages, 2009. doi:10.1155/2009/640386
  3. ^ Yang Bai, Hairong Qi: Feature-Based Image Comparison for Semantic Neighbor Selection in Resource-Constrained Visual Sensor Networks. EURASIP Journal on Image and Video Processing, Volume 2010 (2010).


बाहरी संबंध