असमानता (गणित): Difference between revisions
(Edit text) |
(edit text) |
||
Line 103: | Line 103: | ||
=== ऑर्डर किए गए फ़ील्ड === | === ऑर्डर किए गए फ़ील्ड === | ||
{{Main|Ordered field}} | {{Main|Ordered field}} | ||
यदि (f, +, ×) एक फ़ील्ड है और f पर कुल ऑर्डर है, तो (f, +, ×, ≤) को 'ऑर्डर किए गए फ़ील्ड' कहा जाता है यदि और केवल अगर: | |||
* | * a≤b का अर्थ है a+c ≤ b+ c; | ||
* 0 ≤ | * 0 ≤ a और 0 ≤ b का तात्पर्य 0 × a × b है। | ||
दोनों ( | दोनों (Q, +, ×, ≤) और (R, +, ×, ≤) आदेशित क्षेत्र हैं, लेकिन (C, +, ×, ≤) को एक क्रमबद्ध क्षेत्र बनाने के लिए परिभाषित नहीं किया जा सकता है।<ref>{{Cite web|url=http://www.math.ubc.ca/~feldman/m320/fields.pdf|title=Fields|last=Feldman|first=Joel|date=2014|website=math.ubc.ca|access-date=2019-12-03}}</ref>क्योंकि −1, i का वर्ग है और इसलिए धनात्मक होगा। | ||
एक आदेशित क्षेत्र होने के अलावा, 'आर' में कम से कम-ऊँचा-बाध्य संपत्ति भी है।वास्तव में, 'आर' को उस गुणवत्ता के साथ एकमात्र आदेशित क्षेत्र के रूप में परिभाषित किया जा सकता है।<ref>{{cite book |last1=Stewart |first1=Ian |title=Why Beauty Is Truth: The History of Symmetry |date=2007 |publisher=Hachette UK |isbn=978-0-4650-0875-9 |page=106 |url=https://books.google.com/books?id=1ek3DgAAQBAJ&pg=PT106}}</ref> | एक आदेशित क्षेत्र होने के अलावा, 'आर' में कम से कम-ऊँचा-बाध्य संपत्ति भी है।वास्तव में, 'आर' को उस गुणवत्ता के साथ एकमात्र आदेशित क्षेत्र के रूप में परिभाषित किया जा सकता है।<ref>{{cite book |last1=Stewart |first1=Ian |title=Why Beauty Is Truth: The History of Symmetry |date=2007 |publisher=Hachette UK |isbn=978-0-4650-0875-9 |page=106 |url=https://books.google.com/books?id=1ek3DgAAQBAJ&pg=PT106}}</ref> |
Revision as of 21:28, 7 July 2022
This article includes a list of general references, but it lacks sufficient corresponding inline citations. (May 2017) (Learn how and when to remove this template message) |
गणित में, असमानता एक ऐसा संबंध है जो दो संख्याओं या अन्य गणितीय अभिव्यक्तियों के बीच एक गैर-समान तुलना करता है।[1]इसका उपयोग अक्सर उनके आकार से संख्या रेखा पर दो संख्याओं की तुलना करने के लिए किया जाता है।विभिन्न प्रकार की असमानताओं का प्रतिनिधित्व करने के लिए कई अलग -अलग सूचनाएं हैं:
- संकेतन a < b का अर्थ है कि a, b से छोटा है।
- संकेतन a > b का अर्थ है कि a, b से बड़ा है।
या तो मामले में, ए बी के बराबर नहीं है।इन संबंधों को 'सख्त असमानताओं' के रूप में जाना जाता है,[1] का अर्थ है कि ए सख्ती से कम या कड़ाई से बी से अधिक है।समतुल्यता को बाहर रखा गया है।
सख्त असमानताओं के विपरीत, दो प्रकार के असमानता संबंध हैं जो सख्त नहीं हैं:
- संकेतन a ≤ b या a ⩽ b का अर्थ है कि a 'b से कम या बराबर' b (या, समतुल्य, अधिकांश b पर, या b से अधिक नहीं) है।
- संकेतन a ⩾ b या a ⩾ b का अर्थ है कि a 'b से अधिक या बराबर' b (या, समतुल्य, कम से कम b, या b से कम नहीं) से अधिक है।
'से अधिक नहीं' संबंध भी एक a ≯ b द्वारा प्रतिनिधित्व किया जा सकता है, एक स्लैश द्वारा द्विभाजित से अधिक के लिए प्रतीक, नहीं। से कम नहीं 'के लिए भी यही सच है।
संकेतन a ≠ B का मतलब है कि a, b के बराबर नहीं है। इस असमानता को कभी-कभी सख्त असमानता का एक रूप माना जाता है।[2]यह नहीं कहता है कि एक दूसरे से अधिक है, इसके लिए a और b को ऑर्डर किए गए सेट के सदस्य होने की भी आवश्यकता नहीं है।
इंजीनियरिंग विज्ञान में, नोटेशन का कम औपचारिक उपयोग यह बताना है कि आमतौर पर परिमाण के कई आदेशों द्वारा एक मात्रा दूसरे से बहुत अधिक है।[3]
- संकेतन a ≪ b का मतलब है कि a, b से बहुत कम है।[4]
- संकेतन a ≫ b का मतलब है कि a, b से बहुत अधिक है।[5]
- इसका तात्पर्य यह है कि अनुमान की सटीकता पर कम प्रभाव के साथ कम मूल्य की उपेक्षा की जा सकती है (जैसे कि भौतिकी में अल्ट्रारिलेटिविस्टिक सीमा का मामला)।
उपरोक्त सभी मामलों में, एक-दूसरे को प्रतिबिम्बित करने वाले कोई भी दो प्रतीक सममित होते हैं, a < b, b > a समकक्ष हैं, आदि।
संख्या रेखा पर गुण
असमानताएं निम्नलिखित गुणों द्वारा नियंत्रित होती हैं।इन सभी गुणों को भी पकड़ लिया जाता है यदि सभी गैर-सख्त असमानताओं (≤ और) को उनकी संगत सख्त असमानताओं (<और>) द्वारा प्रतिस्थापित किया जाता है और-एक फ़ंक्शन को लागू करने के मामले में-मोनोटोनिक फ़ंक्शन सख्ती से मोनोटोनिक कार्यों तक सीमित होते हैं।
कॉनवर्स
संबंध ⩽ और ⩾ एक -दूसरे के रूप में हैं, जिसका अर्थ है कि किसी भी वास्तविक संख्या के लिए a और b ,
- a ≤ b और b ≥ a समतुल्य हैं।
ट्रांजिटिविटी
असमानता की सकर्मक संपत्ति बताती है कि किसी भी वास्तविक संख्या के लिए a, b, c[6], यदि a ≤ b और b ≤ c, तो a ≤ c। यदि कोई भी परिसर एक सख्त असमानता है, तो निष्कर्ष एक सख्त असमानता है:
- यदि a ≤ b और b <c, तो a <c।
- यदि a <b और b ≤ c, तो a <c।
जोड़ और घटाव
सामान्य स्थिरांक c को एक असमानता के दोनों पक्षों में जोड़ा या घटाया जा सके।[2] तो, किसी भी वास्तविक संख्या के लिए a, b, c:
- यदि एक a ≤ b, तो a + c ≤ b + c और a - c ≤ b - c।
दूसरे शब्दों में, असमानता संबंध इसके अलावा (या घटाव) के तहत संरक्षित है और वास्तविक संख्याएं इसके अलावा एक आदेशित समूह हैं।
गुणा और विभाजन
गुणन और विभाजन से निपटने वाले गुण बताते हैं कि किसी भी वास्तविक संख्या के लिए, a, b और गैर-शून्य c:
- यदि a ≤ b और C> 0 है, तो ac≤bc और a/c ≤ b/c।
- यदि a ≤ b और C <0 है, तो ac ≥ bc और a/c ≥ b/c।
दूसरे शब्दों में, असमानता संबंध को सकारात्मक स्थिरांक के साथ गुणा और विभाजन के तहत संरक्षित किया जाता है, लेकिन जब एक लेकिन जब एक नकारात्मक स्थिरांक शामिल होता है तो इसे उलट दिया जाता है।।आम तौर पर, यह एक आदेशित क्षेत्र के लिए लागू होता है।अधिक जानकारी के लिए, आदेशित किए गए फ़ील्ड देखें।
योज्य व्युत्क्रम
योज्य व्युत्क्रम की विशेषता बताती है कि किसी भी वास्तविक संख्या a और b के लिए:
- यदि एक a≤ b, तो −a ≥ −b।
गुणक व्युत्क्रम
यदि दोनों संख्याएँ धनात्मक हैं, तो गुणात्मक व्युत्क्रमों के बीच असमानता का संबंध मूल संख्याओं के बीच के विपरीत है।विशेष रूप से, किसी भी गैर-शून्य वास्तविक संख्याओं के लिए a और b जो दोनों धनात्मक (या दोनों नकारात्मक) हैं:
- यदि a≤b, तो 1/a ≥ 1/b।
a और b के संकेतों के सभी मामलों को श्रृंखलित संकेतन में भी निम्नानुसार लिखा जा सकता है,
- यदि 0 <a ≤ b, तो 1 /a ≥ 1/b > 0।
- यदि a ≤ b <0, तो 0> 1/a ≥ 1/b।
- यदि a <0 <b, तो 1/a <0 < 1/b।
दोनों पक्षों को एक फ़ंक्शन लागू करना
एकदिष्ट फलन की परिभाषा के अनुसार,[7]असमानता के संबंध को तोड़े बिना एक असमानता के दोनों किनारों पर लागू किया जा सकता है (बशर्ते कि दोनों अभिव्यक्ति उस फ़ंक्शन के डोमेन में हों)।हालांकि, एक असमानता के दोनों किनारों पर एकदिष्ट फलन से घटते कार्य को लागू करने का मतलब है कि असमानता संबंध उलट हो जाएगा।योज्य व्युत्क्रम के लिए नियम, और धनात्मक संख्या के लिए गुणक उलटा, दोनों एक एकदिष्ट फलन के रूप से घटते कार्य को लागू करने के उदाहरण हैं।
यदि असमानता सख्त है (ए <बी, ए> बी) और कार्य कड़ाई से एकदिष्ट है, तो असमानता सख्त बनी हुई है।यदि इनमें से केवल एक स्थितियां सख्त हैं, तो परिणामी असमानता गैर-सख्ती है।वास्तव में, योज्य और गुणक व्युत्क्रमों के नियम दोनों एक सख्ती से एकदिष्ट रूप से घटने वाले फलन को लागू करने के उदाहरण हैं।
इस नियम के कुछ उदाहरण हैं:
- एक असमानता के दोनों किनारों को एक घात n> 0 (= −n <0) के लिए उठाना, जब a और b धनात्मक वास्तविक संख्याएं हैं:
- 0 ≤ a ≤ b ⇔ 0 ≤ an ≤ bn।
- 0 ≤ a ≤ b ⇔ a−n ≥ b−n≥ 0।
- एक असमानता के दोनों किनारों पर प्राकृतिक लघुगणक लेना, जब a और b धनात्मक वास्तविक संख्याएं हैं:
- 0 <a ≤ b ⇔ ln (a) ≤ ln (b)।
- 0 <a <b ⇔ ln (a) <ln (b)।
- (यह सच है क्योंकि प्राकृतिक लघुगणक एक सतर्कता से बढ़ता कार्य है।)
औपचारिक परिभाषाएँ और सामान्यीकरण
A (गैर-सख्ती) आंशिक आदेश एक द्विआधारी संबंध है, जो एक सेट P पर है, जो रिफ्लेक्टिव (स्वबोधक), एंटीसिमेट्रिक(प्रतिसममित) और सकर्मक है।[8]यानी, सभी a, b, और c में P के लिए, यह तीन निम्नलिखित खंडों को संतुष्ट करना चाहिए:
- a ≤ a (रिफ्लेक्सिटी) (स्वबोधक)
- यदि a≤ b और b ≤ a, तो a = b [एंटीसिमेट्री(प्रतिसममित)]
- यदि a ≤ b और b ≤ c, तो a ≤ c (सकर्मक)
आंशिक क्रम वाले समुच्चय को आंशिक क्रमित समुच्चय कहा जाता है।[9]वे बहुत ही बुनियादी स्वयंसिद्ध हैं जिन्हें हर तरह के आदेश को संतुष्ट करना पड़ता है।एक सेट P पर आदेशों की अन्य परिभाषाओं के लिए मौजूद अन्य स्वयंसिद्ध शामिल हैं:
- P में प्रत्येक a और b के लिए, एक a≤b या b≤a (कुल क्रम)।
- P में सभी a और b के लिए, जिसके लिए a <b, P में एक c है जैसे कि a <c <b (घने क्रम)।
- ऊपरी बाउंड के साथ P के प्रत्येक गैर-खाली सबसेट में P(कम से कम-ऊँचा-बाध्य संपत्ति) में कम से कम ऊपरी बाउंड (सुप्रीम) होता है।
ऑर्डर किए गए फ़ील्ड
यदि (f, +, ×) एक फ़ील्ड है और f पर कुल ऑर्डर है, तो (f, +, ×, ≤) को 'ऑर्डर किए गए फ़ील्ड' कहा जाता है यदि और केवल अगर:
- a≤b का अर्थ है a+c ≤ b+ c;
- 0 ≤ a और 0 ≤ b का तात्पर्य 0 × a × b है।
दोनों (Q, +, ×, ≤) और (R, +, ×, ≤) आदेशित क्षेत्र हैं, लेकिन (C, +, ×, ≤) को एक क्रमबद्ध क्षेत्र बनाने के लिए परिभाषित नहीं किया जा सकता है।[10]क्योंकि −1, i का वर्ग है और इसलिए धनात्मक होगा।
एक आदेशित क्षेत्र होने के अलावा, 'आर' में कम से कम-ऊँचा-बाध्य संपत्ति भी है।वास्तव में, 'आर' को उस गुणवत्ता के साथ एकमात्र आदेशित क्षेत्र के रूप में परिभाषित किया जा सकता है।[11]
जंजीर संकेतन
अंकन ऊपर की गई संपत्ति, यह भी इस प्रकार है कि ।उपरोक्त कानूनों द्वारा, कोई तीनों शब्दों में एक ही संख्या को जोड़ या घटाया जा सकता है, या सभी तीन शब्दों को एक ही नॉनज़ेरो नंबर से गुणा या विभाजित कर सकता है और सभी असमानताओं को उलट सकता है यदि यह संख्या नकारात्मक है।इसलिए, उदाहरण के लिए, C' ' -' 'E' '।
इस संकेतन को किसी भी संख्या में सामान्यीकृत किया जा सकता है: उदाहरण के लिए, ए 1 ≤ a2 ≤ ... ≤ an means that ai ≤ ai+1 for i = 1, 2, ..., n − 1. By transitivity, this condition is equivalent to ai ≤ ajकिसी भी 1 ≤ i ≤ j ≤ n के लिए।
जंजीर संकेतन का उपयोग करके असमानताओं को हल करते समय, स्वतंत्र रूप से शर्तों का मूल्यांकन करना संभव है और कभी -कभी आवश्यक है।उदाहरण के लिए, असमानता को हल करने के लिए 4x <2x + 1 ≤ 3x + 2, अतिरिक्त या घटाव के माध्यम से असमानता के किसी एक हिस्से में एक्स को अलग करना संभव नहीं है।इसके बजाय, असमानताओं को स्वतंत्र रूप से हल किया जाना चाहिए, क्रमशः x <1/2 और x −11 की उपज, जिसे अंतिम समाधान −1 ≤ x <1/2 में जोड़ा जा सकता है।
कभी -कभी, जंजीर संकेतन का उपयोग अलग -अलग दिशाओं में असमानताओं के साथ किया जाता है, जिस स्थिति में अर्थ आसन्न शब्दों के बीच असमानताओं का तार्किक संयोजन है।उदाहरण के लिए, एक ज़िगज़ैग पोज़िट की परिभाषित सम्मेलन एक के रूप में लिखा गया है1 < a2 > a3 < a4 > a5 < a6> ...मिश्रित जंजीर संकेतन का उपयोग अधिक बार संगत संबंधों के साथ किया जाता है, जैसे <, =,,।उदाहरण के लिए, a <b = c ≤ d का अर्थ है कि a <b, b = c, और c ≤ d।यह संकेतन कुछ प्रोग्रामिंग भाषाओं जैसे पायथन में मौजूद है।इसके विपरीत, प्रोग्रामिंग भाषाओं में जो तुलनात्मक परिणामों के प्रकार पर एक ऑर्डर प्रदान करते हैं, जैसे कि सी, यहां तक कि सजातीय श्रृंखलाओं का भी पूरी तरह से अलग अर्थ हो सकता है।[12]
तेज असमानताएं
एक असमानता को तेज कहा जाता है यदि इसे आराम नहीं किया जा सकता है और अभी भी सामान्य रूप से मान्य है।औपचारिक रूप से, एक सार्वभौमिक रूप से परिमाणित असमानता φ को तेज कहा जाता है, अगर प्रत्येक वैध सार्वभौमिक रूप से मात्रा निर्धारित असमानता के लिए, अगर, अगर ψ ⇒ φ होल्ड्स, फिर ψ ⇔ φ इसके अलावा।उदाहरण के लिए, असमानता ∀a ∈ ℝ. a2 ≥ 0 तेज है, जबकि असमानता ∀a ∈ ℝ. a2 ≥ −1 तेज नहीं है।[citation needed]
साधन के बीच असमानताएं
साधनों के बीच कई असमानताएं हैं।उदाहरण के लिए, किसी भी सकारात्मक संख्या के लिए1, a2, …, anअपने पास H ≤ G ≤ A ≤ Q, कहाँ पे
-
---
(अनुकूल माध्य), ---
(जियोमेट्रिक माध्य), ---
(अंकगणित औसत), ---
(द्विघात माध्य)।
Cauchy -Schwarz असमानता
Cauchy -Schwarz असमानता में कहा गया है कि सभी वैक्टर U और V के लिए एक आंतरिक उत्पाद स्थान के लिए यह सच है कि यह सच है
कहाँ पे आंतरिक उत्पाद है।आंतरिक उत्पादों के उदाहरणों में वास्तविक और जटिल डॉट उत्पाद शामिल हैं;यूक्लिडियन स्पेस आर मेंnमानक आंतरिक उत्पाद के साथ, Cauchy -Schwarz असमानता है
पावर असमानताएं
एक शक्ति असमानता एक असमानता है जिसमें की शर्तें हैंb जहां ए और बी वास्तविक सकारात्मक संख्या या चर अभिव्यक्ति हैं।वे अक्सर गणितीय ओलंपियाड अभ्यास में दिखाई देते हैं।
उदाहरण
- किसी भी वास्तविक एक्स के लिए,
- यदि x> 0 और p> 0, तो
- P → 0 की सीमा में, ऊपरी और निचले सीमाएँ ln (x) में परिवर्तित होती हैं।
- अगर x> 0, तो
- अगर x> 0, तो
- यदि x, y, z> 0, तो
- किसी भी वास्तविक अलग संख्या के लिए ए और बी,
- यदि x, y> 0 और 0 <p <1, तो
- यदि x, y, z> 0, तो
- यदि a, b> 0, तो
प्रसिद्ध असमानताएं
गणितज्ञ अक्सर असमानताओं का उपयोग बाध्य मात्राओं के लिए करते हैं जिनके लिए सटीक सूत्र आसानी से गणना नहीं किया जा सकता है।कुछ असमानताओं का उपयोग इतनी बार किया जाता है कि उनके नाम होते हैं:
- अज़ुमा की असमानता
- बर्नौली की असमानता
- बेल की असमानता
- बोले की असमानता
- Cauchy -Schwarz असमानता
- चेबीशेव की असमानता
- चेरनॉफ की असमानता
- Cramér -rao असमानता
- होफिंग की असमानता
- होल्डर की असमानता
- अंकगणित और ज्यामितीय साधनों की असमानता
- जेन्सेन की असमानता
- कोलमोगोरोव की असमानता
- मार्कोव की असमानता
- मिंकोव्स्की असमानता
- नेस्बिट की असमानता
- पेडो की असमानता
- Poincaré असमानता
- सैमुएलसन की असमानता
- असमानित त्रिकोण
जटिल संख्या और असमानताएं
इसके अलावा और गुणन के संचालन के साथ जटिल संख्याओं का सेट एक क्षेत्र है, लेकिन किसी भी संबंध को परिभाषित करना असंभव है। (ℂ, +, ×, ≤) एक आदेशित क्षेत्र बन जाता है।बनाने के लिए (ℂ, +, ×, ≤) एक आदेशित क्षेत्र, इसे निम्नलिखित दो गुणों को संतुष्ट करना होगा:
- यदि a ≤ b, फिर a + c ≤ b + c;
- यदि 0 ≤ a तथा 0 ≤ b, फिर 0 ≤ ab।
क्योंकि, कुल आदेश है, किसी भी संख्या के लिए, या तो 0 ≤ a या a ≤ 0 (जिस स्थिति में ऊपर की पहली संपत्ति का अर्थ है कि 0 ≤ −a)।किसी भी मामले में 0 ≤ a2;इस का मतलब है कि i2 > 0 तथा 12 > 0;इसलिए −1 > 0 तथा 1 > 0, जिसका अर्थ है (−1 + 1)> 0;अंतर्विरोध।
हालांकि, एक ऑपरेशन to को परिभाषित किया जा सकता है ताकि केवल पहली संपत्ति को संतुष्ट किया जा सके (अर्थात्, यदि) a ≤ b, फिर a + c ≤ b + c)।कभी -कभी लेक्सोग्राफिक ऑर्डर परिभाषा का उपयोग किया जाता है:
- a ≤ b, यदि
- Re(a) < Re(b), या
- Re(a) = Re (b) और {NowRap | im (a) ≤ im (b)}}}
यह आसानी से साबित हो सकता है कि इस परिभाषा के लिए {NowRap | A ≤ B}} का अर्थ है {NowRap | a + c ≤ b + c}}
वेक्टर असमानताएं
ऊपर परिभाषित किए गए लोगों के समान असमानता संबंध भी कॉलम वैक्टर के लिए परिभाषित किए जा सकते हैं।अगर हम वैक्टर को देते हैं (जिसका अर्थ है कि तथा , कहाँ पे तथा के लिए वास्तविक संख्याएं हैं ), हम निम्नलिखित संबंधों को परिभाषित कर सकते हैं:
- , यदि के लिये ।
- , यदि के लिये ।
- , यदि के लिये तथा ।
- , यदि के लिये ।
इसी तरह, हम रिश्तों को परिभाषित कर सकते हैं , , तथा ।यह संकेतन मल्टीक्रिटेरिया ऑप्टिमाइज़ेशन (संदर्भ देखें) में मैथियस एरगॉट द्वारा उपयोग किया जाता है।
ट्राइकोटॉमी संपत्ति (जैसा कि ऊपर कहा गया है) वेक्टर संबंधों के लिए मान्य नहीं है।उदाहरण के लिए, जब तथा , इन दो वैक्टर के बीच कोई वैध असमानता संबंध मौजूद नहीं है।हालांकि, उपरोक्त संपत्तियों के बाकी हिस्सों के लिए, वेक्टर असमानताओं के लिए एक समानांतर संपत्ति मौजूद है।
असमानताओं की प्रणाली
रैखिक असमानताओं की प्रणालियों को फूरियर -मॉट्ज़किन उन्मूलन द्वारा सरल किया जा सकता है।[15]
बेलनाकार बीजगणितीय अपघटन एक एल्गोरिथ्म है जो परीक्षण की अनुमति देता है कि क्या बहुपद समीकरणों और असमानताओं की एक प्रणाली में समाधान हैं, और, यदि समाधान मौजूद हैं, तो उनका वर्णन करते हैं।इस एल्गोरिथ्म की जटिलता चर की संख्या में दोगुना घातीय है।यह एल्गोरिदम को डिजाइन करने के लिए एक सक्रिय अनुसंधान डोमेन है जो विशिष्ट मामलों में अधिक कुशल हैं।
यह भी देखें
- द्विआधारी संबंध
- ब्रैकेट (गणित), समान और ›संकेतों के लिए कोष्ठक के रूप में संकेत
- समावेश (सेट सिद्धांत)
- असमानता
- अंतराल (गणित)
- असमानताओं की सूची
- त्रिकोण असमानताओं की सूची
- आंशिक रूप से ऑर्डर किए गए सेट
- संबंधपरक ऑपरेटर, असमानता को निरूपित करने के लिए प्रोग्रामिंग भाषाओं में उपयोग किया जाता है
संदर्भ
- ↑ 1.0 1.1 "Inequality Definition (Illustrated Mathematics Dictionary)". www.mathsisfun.com. Retrieved 2019-12-03.
- ↑ 2.0 2.1 "Inequality". www.learnalberta.ca. Retrieved 2019-12-03.
- ↑ Polyanin, A.D.; Manzhirov, A.V. (2006). Handbook of Mathematics for Engineers and Scientists. CRC Press. p. 29. ISBN 978-1-4200-1051-0. Retrieved 2021-11-19.
- ↑ Weisstein, Eric W. "Much Less". mathworld.wolfram.com (in English). Retrieved 2019-12-03.
- ↑ Weisstein, Eric W. "Much Greater". mathworld.wolfram.com (in English). Retrieved 2019-12-03.
- ↑ Drachman, Bryon C.; Cloud, Michael J. (2006). Inequalities: With Applications to Engineering. Springer Science & Business Media. pp. 2–3. ISBN 0-3872-2626-5.
- ↑ "ProvingInequalities". www.cs.yale.edu. Retrieved 2019-12-03.
- ↑ Simovici, Dan A. & Djeraba, Chabane (2008). "Partially Ordered Sets". Mathematical Tools for Data Mining: Set Theory, Partial Orders, Combinatorics. Springer. ISBN 9781848002012.
- ↑ Weisstein, Eric W. "Partially Ordered Set". mathworld.wolfram.com (in English). Retrieved 2019-12-03.
- ↑ Feldman, Joel (2014). "Fields" (PDF). math.ubc.ca. Retrieved 2019-12-03.
- ↑ Stewart, Ian (2007). Why Beauty Is Truth: The History of Symmetry. Hachette UK. p. 106. ISBN 978-0-4650-0875-9.
- ↑ Brian W. Kernighan and Dennis M. Ritchie (Apr 1988). The C Programming Language. Prentice Hall Software Series (2nd ed.). Englewood Cliffs/NJ: Prentice Hall. ISBN 0131103628. यहाँ: sect.a.7.9 रिलेशनल ऑपरेटर्स, p.167: QUOTE: A <B <C को पार्स किया गया है (a <b) <c
- ↑ Laub, M.; Ilani, Ishai (1990). "E3116". The American Mathematical Monthly. 97 (1): 65–67. doi:10.2307/2324012. JSTOR 2324012.
- ↑ Manyama, S. (2010). "Solution of One Conjecture on Inequalities with Power-Exponential Functions" (PDF). Australian Journal of Mathematical Analysis and Applications. 7 (2): 1.
- ↑ Gärtner, Bernd; Matoušek, Jiří (2006). Understanding and Using Linear Programming. Berlin: Springer. ISBN 3-540-30697-8.
स्रोत
- Hardy, G., Littlewood J. E., Pólya, G. (1999). Inequalities. Cambridge Mathematical Library, Cambridge University Press. ISBN 0-521-05206-8.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - Beckenbach, E. F., Bellman, R. (1975). An Introduction to Inequalities. Random House Inc. ISBN 0-394-01559-2.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - Drachman, Byron C., Cloud, Michael J. (1998). Inequalities: With Applications to Engineering. Springer-Verlag. ISBN 0-387-98404-6.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - Grinshpan, A. Z. (2005), "General inequalities, consequences, and applications", Advances in Applied Mathematics, 34 (1): 71–100, doi:10.1016/j.aam.2004.05.001
- Murray S. Klamkin. "'Quickie' inequalities" (PDF). Math Strategies.
- Arthur Lohwater (1982). "Introduction to Inequalities". Online e-book in PDF format.
- Harold Shapiro (2005). "Mathematical Problem Solving". The Old Problem Seminar. Kungliga Tekniska högskolan.
- "3rd USAMO". Archived from the original on 2008-02-03.
- Pachpatte, B. G. (2005). Mathematical Inequalities. North-Holland Mathematical Library. Vol. 67 (first ed.). Amsterdam, The Netherlands: Elsevier. ISBN 0-444-51795-2. ISSN 0924-6509. MR 2147066. Zbl 1091.26008.
- Ehrgott, Matthias (2005). Multicriteria Optimization. Springer-Berlin. ISBN 3-540-21398-8.
- Steele, J. Michael (2004). The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities. Cambridge University Press. ISBN 978-0-521-54677-5.