पी-एन डायोड: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(10 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Semiconductor diode based upon the p–n junction}}
{{Short description|Semiconductor diode based upon the p–n junction}}{{Infobox electronic component
 
{{See also|p–n junction|Diode#Semiconductor diodes}}
{{Infobox electronic component
| name              = P–N diode
| name              = P–N diode
| image            =
| image            =
Line 14: Line 11:
| symbol_caption    =
| symbol_caption    =
}}
}}
यह लेख p–n जंक्शन या [[डायोड]] लेखों की तुलना में p–n डायोड व्यवहार की अधिक विस्तृत व्याख्या प्रदान करता है।
यह लेख पी-एन जंक्शन या [[डायोड]] लेखों की तुलना में '''पी-एन डायोड''' व्यवहार की अधिक विस्तृत व्याख्या प्रदान करता है।


p-n डायोड प्रकार का [[ अर्धचालक डायोड |अर्धचालक डायोड]] है जो p-n जंक्शन पर आधारित होता है। डायोड केवल दिशा में करंट का संचालन करता है, और इसे ''p''-टाइप सेमीकंडक्टिंग लेयर को ''n''-टाइप सेमीकंडक्टिंग लेयर से जोड़कर बनाया जाता है। सेमीकंडक्टर डायोड के कई उपयोग हैं जिनमें रेडियो संकेतों का पता लगाने और प्रकाश का उत्सर्जन और पता लगाने में प्रत्यावर्ती धारा को प्रत्यक्ष धारा में सुधार करना शामिल है।
पी-एन डायोड टाइप का [[ अर्धचालक डायोड |अर्धचालक डायोड]] है जो पी-एन जंक्शन पर आधारित होता है। डायोड केवल दिशा में धारा का संचालन करता है और इसे पी- टाइप अर्धचालक परत को ''एन'' -टाइप अर्धचालक परत से जोड़कर बनाया जाता है। अर्धचालक डायोड के कई उपयोग हैं जिनमें रेडियो संकेतों का पता लगाने और प्रकाश का उत्सर्जन और पता लगाने में प्रत्यावर्ती धारा को प्रत्यक्ष धारा में सुधार करना सम्मिलित है।
== संरचना                                                        ==
यह आंकड़ा पी-एन अर्धचालक डायोड के लिए उपयोग की जाने वाली कई संभावित संरचनाओं में से दो को दिखाता है, दोनों को उस वोल्टेज को बढ़ाने के लिए अनुकूलित किया गया है जिसे उपकरण विपरीत पूर्वाग्रह में सामना कर सकते हैं। शीर्ष संरचना आसन्न एन-परत के बगल में ''p<sup>+</sup>''-क्षेत्र की तेज वक्रता से बचने के लिए मेसा का उपयोग करती है। नीचे की संरचना वोल्टेज को बड़ी दूरी तक फैलाने और विद्युत क्षेत्र को कम करने के लिए ''p<sup>+</sup>'' परत के तेज कोने के किनारे पर हल्के से डोप किए गए ''p''-गार्ड-रिंग का उपयोग करती है। (सुपरस्क्रिप्ट जैसे ''n<sup>+</sup>'' या ''n<sup>−</sup>'' भारी या हल्के अशुद्धता डोपिंग स्तरों को संदर्भित करते हैं।)


== संरचना ==
[[File:Two diode structures.png|thumb|200px|मेसा डायोड संरचना (शीर्ष) और गार्ड-रिंग (नीचे) के साथ प्लानर डायोड संरचना।]]
चित्र p-n सेमीकंडक्टर डायोड के लिए उपयोग की जाने वाली कई संभावित संरचनाओं में से दो को दिखाता है, दोनों को वोल्टेज बढ़ाने के लिए अनुकूलित किया जाता है जो उपकरण रिवर्स बायस में सामना कर सकते हैं। पी की तेज वक्रता से बचने के लिए शीर्ष संरचना मेसा का उपयोग करती है<sup>+</sup>-निकटवर्ती n-परत के बगल में क्षेत्र। नीचे की संरचना पी के तेज कोने के किनारे पर हल्के ढंग से डोप किए गए पी-गार्ड-अंगूठी का उपयोग करती है<sup>+</sup>- वोल्टेज को अधिक दूरी तक फैलाने और विद्युत क्षेत्र को कम करने के लिए परत। (सुपरस्क्रिप्ट जैसे एन<sup>+</sup> या एन<sup>−</sup> अशुद्धता डोपिंग के भारी या हल्के स्तरों को संदर्भित करता है।)


[[File:Two diode structures.png|thumb|200px|मेसा डायोड संरचना (शीर्ष) और गार्ड-रिंग (नीचे) के साथ प्लानर डायोड संरचना।]]
== विद्युत व्यवहार                                                ==
[[File:Nonideal diode current-voltage behavior.png|thumb|250px|गैर-आदर्श पी-एन डायोड धारा -वोल्टेज विशेषताएँ।]]आदर्श डायोड में आगे की पूर्वाग्रह ध्रुवता के लिए शून्य प्रतिरोध होता है, और विपरीत वोल्टेज ध्रुवीयता के लिए अनंत प्रतिरोध (शून्य धारा का संचालन करता है) होता है; यदि इसे प्रत्यावर्ती धारा परिपथ में जोड़ा जाए, तो अर्धचालक डायोड विद्युत दिष्टकारी के रूप में कार्य करता है।


== विद्युत व्यवहार ==
अर्धचालक डायोड आदर्श नहीं होता है। जैसा कि चित्र में दिखाया गया है डायोड गैर-शून्य घुटने के वोल्टेज (या टर्न-ऑन, कट-इन, या थ्रेशोल्ड वोल्टेज) तक पहुंचने तक सराहनीय रूप से आचरण नहीं करता है, जिसका मूल्य अर्धचालक (में सूचीबद्ध) पर निर्भर करता है {{Slink|डायोड |डायोड में सूचीबद्ध § विभिन्न के लिए फॉरवर्ड थ्रेशोल्ड वोल्टेज अर्धचालक}}). इस वोल्टेज के ऊपर धारा -वोल्टेज वक्र का ढलान अनंत नहीं है (पर-प्रतिरोध शून्य नहीं है)। विपरीत दिशा में डायोड शून्येतर रिसाव धारा (चित्र में छोटे मापदंड द्वारा अतिरंजित) का संचालन करता है और ब्रेकडाउन वोल्टेज के नीचे पर्याप्त रूप से बड़े विपरीत वोल्टेज पर अधिक नकारात्मक विपरीत वोल्टेज के साथ धारा बहुत तेजी से बढ़ता है।                                                                            
[[File:Nonideal diode current-voltage behavior.png|thumb|250px|गैर-आदर्श पी-एन डायोड करंट-वोल्टेज विशेषताएँ।]]आदर्श डायोड में अग्रदिशिक बायस ध्रुवीयता के लिए शून्य प्रतिरोध होता है, और रिवर्स वोल्टेज ध्रुवता के लिए अनंत प्रतिरोध (शून्य धारा संचालित करता है); यदि प्रत्यावर्ती धारा परिपथ में जुड़ा हो, तो अर्धचालक डायोड दिष्टकारी के रूप में कार्य करता है।


अर्धचालक डायोड आदर्श नहीं है। जैसा कि चित्र में दिखाया गया है, डायोड गैर-शून्य घुटने के वोल्टेज (या टर्न-ऑन, कट-इन, या थ्रेशोल्ड वोल्टेज) तक पहुंचने तक सराहनीय रूप से आचरण नहीं करता है, जिसका मूल्य अर्धचालक (में सूचीबद्ध) पर निर्भर करता है {{Slink|Diode|Forward threshold voltage for various semiconductors}}). इस वोल्टेज के ऊपर करंट-वोल्टेज वक्र का ढलान अनंत नहीं है (ऑन-रेसिस्टेंस शून्य नहीं है)। विपरीत दिशा में डायोड शून्येतर लीकेज करंट (चित्र में छोटे पैमाने द्वारा अतिरंजित) का संचालन करता है और ब्रेकडाउन वोल्टेज के नीचे पर्याप्त रूप से बड़े रिवर्स वोल्टेज पर अधिक नकारात्मक रिवर्स वोल्टेज के साथ करंट बहुत तेजी से बढ़ता है।
जैसा कि चित्र में दिखाया गया है चालू या बंद प्रतिरोध चयनित [[ बयाझिंग |पूर्वाग्रह]] बिंदु पर वर्तमान-वोल्टेज विशेषता के पारस्परिक ढलान हैं:


जैसा कि चित्र में दिखाया गया है, चालू या बंद प्रतिरोध चयनित [[ बयाझिंग |बयाझिंग]] बिंदु पर वर्तमान-वोल्टेज विशेषता के पारस्परिक ढलान हैं:
:<math> r_\text{D} = \left . \frac {\Delta v_\text{D}}{\Delta i_\text{D}} \right| _{v_\text{D}=V_\text{bias}} \ , </math>
:<math> r_\text{D} = \left . \frac {\Delta v_\text{D}}{\Delta i_\text{D}} \right| _{v_\text{D}=V_\text{bias}} \ , </math>
कहाँ <math>r_\text{D}</math> प्रतिरोध है और <math>i_\text{D}</math> डायोड वोल्टेज परिवर्तन के अनुरूप वर्तमान परिवर्तन है <math>\Delta v_\text{D}</math> पक्षपात पर <math>V_\text{bias} \, . </math>


जहां <math>r_\text{D}</math> प्रतिरोध है और <math>i_\text{D}</math> पूर्वाग्रह <math>V_\text{bias} \, . </math> पर डायोड वोल्टेज परिवर्तन '''<math>\Delta v_\text{D}</math>''' के अनुरूप वर्तमान परिवर्तन है
== ऑपरेशन                            ==
[[Image:PN Junction Open Circuited.svg|thumb|250px|right|डोपिंग [[सिलिकॉन]] द्वारा बनाया गया एक अचानक (यानी एक कदम समारोह की तरह व्यवहार करना) पी-एन जंक्शन | पी-एन डायोड।]]यहाँ अचानक पी-एन डायोड के संचालन पर विचार किया जाता है। "अचानक" से तात्पर्य यह है कि पी- और एन-टाइप डोपिंग उस स्तर पर एक चरण फ़ंक्शन असंततता प्रदर्शित करती है जहां वे एक-दूसरे का सामना करते हैं। इसका उद्देश्य वर्तमान-वोल्टेज विशेषताओं को प्रदर्शित करने वाले चित्र में विभिन्न पूर्वाग्रह व्यवस्थाओं की व्याख्या करना है। ऑपरेशन को बैंड-बेंडिंग वाले आरेखों का उपयोग करके वर्णित किया गया है जो दिखाता है कि विभिन्न पूर्वाग्रह स्थितियों के अनुसार डायोड के अंदर स्थिति के साथ सबसे कम चालन बैंड ऊर्जा और उच्चतम वैलेंस बैंड ऊर्जा कैसे भिन्न होती है। अर्थात चर्चा के लिए अर्धचालक या बैंड संरचना पर प्रभाव और [[बैंड आरेख]] लेख देखें।


== ऑपरेशन ==
=== शून्य पूर्वाग्रह                                ===
{{Main|p–n junction}}
[[File:Pn-junction zero bias.png|thumb|300px|पी-एन डायोड के लिए शून्य प्रयुक्त वोल्टेज पर बैंड-बेंडिंग आरेख। कमी क्षेत्र छायांकित है।]]चित्र पी-एन डायोड के लिए बैंड बेंडिंग आरेख दिखाता है; अर्थात् चालन बैंड (ऊपरी रेखा) और संयोजी बैंड (निचली रेखा) के लिए बैंड किनारों को पी- टाइप पदार्थ (बाईं ओर) और एन-टाइप के बीच जंक्शन के दोनों किनारों पर स्थिति के कार्य के रूप में दिखाया गया है। पदार्थ (दाईं ओर) जब ही अर्धचालक के पी- टाइप और एन-क्षेत्र को साथ लाया जाता है और दो डायोड संपर्कों को शॉर्ट-परिपथ किया जाता है तो फर्मी लेवल | फर्मी हाफ-अधिभोग स्तर (धराशायी क्षैतिज सीधी रेखा) स्थिर स्तर पर स्थित होता है। यह स्तर सुनिश्चित करता है कि जंक्शन के दोनों किनारों पर फील्ड-फ्री थोक में छेद और इलेक्ट्रॉन अधिकृत सही हैं। (इसलिए उदाहरण के लिए इलेक्ट्रॉन के लिए यह आवश्यक नहीं है कि वह अधिभोग को समायोजित करने के लिए शॉर्ट परिपथ के माध्यम से एन-साइड को छोड़कर पी-साइड की यात्रा करे।)
[[Image:PN Junction Open Circuited.svg|thumb|250px|right|डोपिंग [[सिलिकॉन]] द्वारा बनाया गया एक अचानक (यानी एक कदम समारोह की तरह व्यवहार करना) पी-एन जंक्शन | पी-एन डायोड।]]यहाँ, अचानक p–n डायोड के संचालन पर विचार किया जाता है। अचानक से इसका मतलब है कि पी- और एन-टाइप डोपिंग उस विमान पर [[ समारोह की ओर कदम बढ़ाएं |समारोह की ओर कदम बढ़ाएं]] डिसकंटिन्यूटी प्रदर्शित करता है जहां वे एक-दूसरे से मिलते हैं। इसका उद्देश्य वर्तमान-वोल्टेज विशेषताओं को प्रदर्शित करने वाले चित्र में विभिन्न बायस व्यवस्थाओं की व्याख्या करना है। ऑपरेशन को बैंड-झुकने वाले आरेखों का उपयोग करके वर्णित किया गया है जो दिखाता है कि विभिन्न पूर्वाग्रह स्थितियों के तहत डायोड के अंदर स्थिति के साथ सबसे कम चालन बैंड ऊर्जा और उच्चतम वैलेंस बैंड ऊर्जा कैसे भिन्न होती है। अतिरिक्त चर्चा के लिए, सेमीकंडक्टर#बैंड संरचना पर प्रभाव और [[बैंड आरेख]] लेख देखें।


=== शून्य पूर्वाग्रह ===
चूंकि , एक फ्लैट फर्मी स्तर के लिए पी-प्रकार की तरफ के बैंड को एन-प्रकार की तरफ के संबंधित बैंड की तुलना में ऊपर जाने की आवश्यकता होती है, जिससे बैंड किनारों में एक चरण (या अवरोध) बनता है, जिसे ''φ''<sub>B</sub> द्वारा लेबल किया जाता है। यह चरण पी-साइड पर इलेक्ट्रॉन घनत्व को एन-साइड की तुलना में बोल्ट्ज़मान कारक <math>e^{-\varphi_\text{B}/V_\text{T}}</math> छोटा करने के लिए विवश करता है, जो पी-क्षेत्र में कम इलेक्ट्रॉन घनत्व के अनुरूप है। प्रतीक <math>V_\text{T}</math> थर्मल वोल्टेज को दर्शाता है, जिसे <math>V_\text{T} = \tfrac{k_\text{B}T}{q} .</math> T = 290 केल्विन (कमरे के तापमान) पर परिभाषित किया गया है, थर्मल वोल्टेज लगभग 25 एमवी है। इसी प्रकार, एन-साइड पर छेद घनत्व पी-साइड की तुलना में बोल्ट्जमान कारक छोटा है। जंक्शन पर अल्पसंख्यक वाहक घनत्व में यह पारस्परिक कमी वाहक घनत्व के पीएन-उत्पाद को विवश करती है
[[File:Pn-junction zero bias.png|thumb|300px|पी-एन डायोड के लिए शून्य लागू वोल्टेज पर बैंड-झुकने आरेख। कमी क्षेत्र छायांकित है।]]चित्र p-n डायोड के लिए बैंड बेंडिंग आरेख दिखाता है; अर्थात्, कंडक्शन बैंड (ऊपरी रेखा) और वैलेंस बैंड (निचली रेखा) के लिए बैंड किनारों को पी-टाइप सामग्री (बाईं ओर) और एन-टाइप के बीच जंक्शन के दोनों किनारों पर स्थिति के कार्य के रूप में दिखाया गया है। सामग्री (दाईं ओर)। जब ही सेमीकंडक्टर के पी-टाइप और एन-टाइप क्षेत्र को साथ लाया जाता है और दो डायोड संपर्कों को शॉर्ट-सर्किट किया जाता है, तो फर्मी लेवल | फर्मी हाफ-ऑक्यूपेंसी लेवल (धराशायी क्षैतिज सीधी रेखा) स्थिर स्तर पर स्थित होता है। यह स्तर सुनिश्चित करता है कि जंक्शन के दोनों किनारों पर फील्ड-फ्री बल्क में छेद और इलेक्ट्रॉन कब्जे सही हैं। (इसलिए, उदाहरण के लिए, इलेक्ट्रॉन के लिए यह आवश्यक नहीं है कि वह अधिभोग को समायोजित करने के लिए शॉर्ट सर्किट के माध्यम से एन-साइड को छोड़कर पी-साइड की यात्रा करे।)
 
हालांकि, फ्लैट [[फर्मी स्तर]] के लिए पी-टाइप साइड पर बैंड को एन-टाइप साइड पर संबंधित बैंड की तुलना में अधिक स्थानांतरित करने की आवश्यकता होती है, जिससे बैंड किनारों में स्टेप (या बैरियर) बनता है, जिसे φ द्वारा लेबल किया जाता है।<sub>B</sub>. यह कदम पी-साइड पर इलेक्ट्रॉन घनत्व को बोल्टज़मान कारक होने के लिए मजबूर करता है <math>e^{-\varphi_\text{B}/V_\text{T}}</math>पी-क्षेत्र में कम इलेक्ट्रॉन घनत्व के अनुरूप, एन-साइड की तुलना में छोटा। प्रतीक <math>V_\text{T}</math> थर्मल वोल्टेज को दर्शाता है, जिसे परिभाषित किया गया है <math>V_\text{T} = \tfrac{k_\text{B}T}{q} .</math> T = 290 [[केल्विन (इकाइयां)]]इकाई)s (कमरे के तापमान) पर, थर्मल वोल्टेज लगभग 25 mV है। इसी तरह, एन-साइड पर होल डेंसिटी पी-साइड की तुलना में छोटा बोल्ट्जमैन फैक्टर है। जंक्शन के पार अल्पसंख्यक वाहक घनत्व में यह पारस्परिक कमी वाहक घनत्वों के पीएन-उत्पाद को होने के लिए मजबूर करती है
:<math>p \, n=p_\text{B} \, n_\text{B}\, e^{-\varphi_\text{B}/V_\text{T}}</math>
:<math>p \, n=p_\text{B} \, n_\text{B}\, e^{-\varphi_\text{B}/V_\text{T}}</math>
संतुलन पर डायोड के भीतर किसी भी स्थिति में।<ref name=Sparkes/>कहाँ <math>p_\text{B}</math> और <math>n_\text{B}</math> क्रमशः पी-साइड और एन-साइड पर थोक बहुसंख्यक वाहक घनत्व हैं।
डायोड के अंदर किसी भी स्थिति में संतुलन पर <ref name=Sparkes/> जहां <math>p_\text{B}</math>और <math>n_\text{B}</math> क्रमशः पी-साइड और एन-साइड पर थोक बहुमत वाहक घनत्व हैं।


बैंड किनारों में इस कदम के परिणामस्वरूप, जंक्शन के पास कमी क्षेत्र छेद और इलेक्ट्रॉनों दोनों से कम हो जाता है, जिससे इन्सुलेटिंग क्षेत्र बन जाता है जिसमें लगभग कोई मोबाइल चार्ज नहीं होता है। हालांकि, डोपेंट आयनों के कारण निश्चित, स्थिर शुल्क हैं। डिप्लेशन लेयर में मोबाइल चार्ज की निकट अनुपस्थिति का मतलब है कि मौजूद मोबाइल चार्ज डोपेंट आयनों द्वारा योगदान किए गए स्थिर चार्ज को संतुलित करने के लिए अपर्याप्त हैं: स्वीकर्ता डोपेंट के कारण पी-टाइप साइड पर नकारात्मक चार्ज और एन पर सकारात्मक चार्ज के रूप में डोनर डोपेंट के कारण टाइप साइड। इस आवेश के कारण इस क्षेत्र में विद्युत क्षेत्र है, जैसा कि प्वासों के समीकरण द्वारा निर्धारित किया गया है। अवक्षय क्षेत्र की चौड़ाई समायोजित होती है इसलिए p-पक्ष पर ऋणात्मक ग्राही आवेश n-पक्ष पर धनात्मक दाता आवेश को बिल्कुल संतुलित करता है, इसलिए दोनों ओर अवक्षय क्षेत्र के बाहर कोई विद्युत क्षेत्र नहीं होता है।
बैंड किनारों में इस चरण के परिणामस्वरूप, जंक्शन के पास एक क्षय क्षेत्र में छेद और इलेक्ट्रॉन दोनों समाप्त हो जाते हैं, जिससे एक इन्सुलेशन क्षेत्र बनता है जिसमें लगभग कोई मोबाइल चार्ज नहीं होता है। चूंकि डोपेंट आयनों के कारण निश्चित, स्थिर शुल्क होते हैं। क्षय परत में मोबाइल चार्ज की लगभग अनुपस्थिति का अर्थ है कि उपस्थित मोबाइल चार्ज डोपेंट आयनों द्वारा योगदान किए गए स्थिर चार्ज को संतुलित करने के लिए अपर्याप्त हैं: स्वीकर्ता डोपेंट के कारण पी-प्रकार की तरफ एक नकारात्मक चार्ज और एन पर एक सकारात्मक चार्ज के रूप में -दाता डोपेंट के कारण प्रकार पक्ष इस आवेश के कारण इस क्षेत्र में विद्युत क्षेत्र है, जैसा कि पॉइसन के समीकरण द्वारा निर्धारित किया गया है। कमी क्षेत्र की चौड़ाई समायोजित हो जाती है जिससे पी-साइड पर नकारात्मक स्वीकर्ता चार्ज एन-साइड पर सकारात्मक दाता चार्ज को बिल्कुल संतुलित कर सकता है इसलिए दोनों तरफ कमी क्षेत्र के बाहर कोई विद्युत क्षेत्र नहीं है।


इस बैंड विन्यास में कोई वोल्टेज लागू नहीं होता है और डायोड के माध्यम से कोई धारा प्रवाहित नहीं होती है। डायोड के माध्यम से करंट को बाध्य करने के लिए आगे बताए अनुसार अग्रदिशिक बायस लागू किया जाना चाहिए।
इस बैंड विन्यास में कोई वोल्टेज प्रयुक्त नहीं होता है और डायोड के माध्यम से कोई धारा प्रवाहित नहीं होती है। डायोड के माध्यम से धारा को बाध्य करने के लिए आगे बताए अनुसार अग्रदिशिक पूर्वाग्रह प्रयुक्त किया जाना चाहिए।


=== फॉरवर्ड बायस ===
=== अग्र पूर्वाग्रह ===
[[File:Pn-junction forward bias.png|thumb|180px|अग्रदिशिक बायस में p–n डायोड के लिए बैंड-बेंडिंग आरेख। प्रसार जंक्शन के पार वाहक को चलाता है।]]
[[File:Pn-junction forward bias.png|thumb|180px|अग्रदिशिक पूर्वाग्रह में पी-एन डायोड के लिए बैंड-बेंडिंग आरेख। प्रसार जंक्शन के पार वाहक को चलाता है।]]
[[File:Diode quasi-fermi levels.svg|thumb|180px|फॉरवर्ड बायस्ड पी-एन-डायोड में [[अर्ध-फर्मी स्तर]] और वाहक घनत्व। यह आंकड़ा मानता है कि पुनर्संयोजन उन क्षेत्रों तक ही सीमित है जहां बहुसंख्यक वाहक सांद्रता थोक मूल्यों के पास है, जो सटीक नहीं है जब क्षेत्र क्षेत्र में पुनर्संयोजन-पीढ़ी केंद्र भूमिका निभाते हैं।]]फॉरवर्ड बायस में, बैटरी का पॉजिटिव टर्मिनल पी-टाइप मटेरियल से जुड़ा होता है और नेगेटिव टर्मिनल एन-टाइप मटेरियल से जुड़ा होता है ताकि छेद को पी-टाइप मटेरियल और इलेक्ट्रॉन्स को एन-टाइप मटेरियल में इंजेक्ट किया जा सके। n-प्रकार की सामग्री में इलेक्ट्रॉनों को उस तरफ बहुसंख्यक वाहक कहा जाता है, लेकिन जो इलेक्ट्रॉन इसे p-प्रकार की ओर बनाते हैं उन्हें अल्पसंख्यक वाहक कहा जाता है। ही वर्णनकर्ता छेद पर लागू होते हैं: वे पी-टाइप साइड पर बहुसंख्यक वाहक होते हैं, और एन-टाइप साइड पर अल्पसंख्यक वाहक होते हैं।
[[File:Diode quasi-fermi levels.svg|thumb|180px|अग्र पूर्वाग्रह पी-एन-डायोड में [[अर्ध-फर्मी स्तर]] और वाहक घनत्व। यह आंकड़ा मानता है कि पुनर्संयोजन उन क्षेत्रों तक ही सीमित है जहां बहुसंख्यक वाहक सांद्रता थोक मूल्यों के पास है, जो स्पष्ट नहीं है जब क्षेत्र क्षेत्र में पुनर्संयोजन-पीढ़ी केंद्र भूमिका निभाते हैं।]]अग्र पूर्वाग्रह में बैटरी का सकारात्मक टर्मिनल पी- टाइप पदार्थ से जुड़ा होता है और नकारात्मक टर्मिनल एन-टाइप पदार्थ से जुड़ा होता है जिससे छेद को पी- टाइप पदार्थ और इलेक्ट्रॉन्स को एन-टाइप पदार्थ में इंजेक्ट किया जा सकता है जो कि n-टाइप की पदार्थ में इलेक्ट्रॉनों को उस तरफ बहुसंख्यक वाहक कहा जाता है किन्तु जो इलेक्ट्रॉन इसे p-टाइप की ओर बनाते हैं उन्हें अल्पसंख्यक वाहक कहा जाता है। एक ही वर्णनकर्ता छेद पर प्रयुक्त होते हैं: और वे पी- टाइप साइड पर बहुसंख्यक वाहक होते हैं और एन-टाइप साइड पर अल्पसंख्यक वाहक होते हैं।


एक फॉरवर्ड बायस लागू वोल्टेज की मात्रा से दो थोक अर्ध-अधिभोग स्तरों को अलग करता है, जो पी-टाइप बल्क बैंड किनारों के अलगाव को एन-टाइप के ऊर्जा के करीब होने के लिए कम करता है। जैसा कि आरेख में दिखाया गया है, लागू वोल्टेज द्वारा बैंड किनारों में कदम कम किया जाता है <math>\varphi_\text{B} - v_\text{D} .</math> (बैंड बेंडिंग आरेख वोल्ट की इकाइयों में बनाया गया है, इसलिए कोई भी इलेक्ट्रॉन आवेश परिवर्तित नहीं होता है <math>v_\text{D}</math> ऊर्जा के लिए।)
एक आगे का पूर्वाग्रह प्रयुक्त वोल्टेज की मात्रा से दो थोक आधे-अधिभोग स्तरों को अलग करता है, जो पी-प्रकार के बल्क बैंड किनारों के पृथक्करण को कम करता है जिससे ऊर्जा में एन-प्रकार के समीप हो सकता है । जैसा कि चित्र में दिखाया गया है, बैंड किनारों में चरण को प्रयुक्त वोल्टेज द्वारा घटाकर <math>\varphi_\text{B} - v_\text{D} .</math>कर दिया जाता है (बैंड बेंडिंग वाला आरेख वोल्ट की इकाइयों में बनाया जाता है इसलिए कोई भी इलेक्ट्रॉन आवेश <math>v_\text{D}</math> में परिवर्तित नहीं होता है।


फॉरवर्ड बायस के तहत, पी-साइड से एन-साइड में और इलेक्ट्रॉनों के एन-साइड से पी-साइड में विपरीत दिशा में प्रसार धारा प्रवाहित होती है (जो एकाग्रता ढाल द्वारा संचालित होती है)इस स्थानांतरण को चलाने वाला ग्रेडिएंट निम्नानुसार स्थापित किया गया है: इंटरफ़ेस से बल्क दूर में, अल्पसंख्यक वाहकों की बहुसंख्यक वाहकों की तुलना में बहुत कम सांद्रता होती है, उदाहरण के लिए, पी-साइड पर इलेक्ट्रॉन घनत्व (जहां वे अल्पसंख्यक वाहक हैं) है कारक <math>e^{-\varphi_\text{B}/V_\text{T}}</math> एन-साइड की तुलना में कम (जहां वे बहुसंख्यक वाहक हैं)दूसरी ओर, इंटरफ़ेस के पास, वोल्टेज का अनुप्रयोग <math>v_\text{D}</math> बैंड किनारों में कदम कम कर देता है और बोल्ट्जमान कारक द्वारा अल्पसंख्यक वाहक घनत्व बढ़ाता है <math>e^{v_\text{D}/V_\text{T}}</math> थोक मूल्यों से ऊपर। जंक्शन के भीतर, पीएन-उत्पाद संतुलन मूल्य से ऊपर बढ़ जाता है:<ref name=Sparkes/>
अग्र पूर्वाग्रह के तहत, पी-साइड से एन-साइड में छिद्रों से एक प्रसार धारा प्रवाहित होती है (जो कि एक सांद्रता प्रवणता द्वारा संचालित धारा होती है), और एन-साइड से पी-साइड तक विपरीत दिशा में इलेक्ट्रॉनों का प्रवाह होता है। इस स्थानांतरण को संचालित करने वाली ढाल निम्नानुसार स्थापित की गई है: इंटरफ़ेस से दूर थोक में, अल्पसंख्यक वाहकों में बहुसंख्यक वाहकों की तुलना में बहुत कम सांद्रता होती है, उदाहरण के लिए, पी-साइड पर इलेक्ट्रॉन घनत्व (जहां वे अल्पसंख्यक वाहक हैं) एक है कारक<math>e^{-\varphi_\text{B}/V_\text{T}}</math>एन-साइड (जहां वे बहुसंख्यक वाहक हैं) से कम है। दूसरी ओर, इंटरफ़ेस के निकट, वोल्टेज का अनुप्रयोग <math>v_\text{D}</math> बैंड किनारों में चरण को कम कर देता है और बल्क मानों के ऊपर बोल्ट्ज़मैन कारक <math>e^{v_\text{D}/V_\text{T}}</math> द्वारा अल्पसंख्यक वाहक घनत्व को बढ़ाता है। जंक्शन के अंदर , पीएन-उत्पाद को संतुलन मूल्य से ऊपर बढ़ाया जाता है:<ref name=Sparkes/>


:<math>p \, n = \left(p_\text{B} \, n_\text{B} \, e^{-\varphi_\text{B}/V_\text{T}}\right) e^{v_\text{D}/V_\text{T}} \ . </math>
:<math>p \, n = \left(p_\text{B} \, n_\text{B} \, e^{-\varphi_\text{B}/V_\text{T}}\right) e^{v_\text{D}/V_\text{T}} \ . </math>
विसरण को चलाने वाला ग्रेडिएंट तब बैरियर पर बड़े अतिरिक्त अल्पसंख्यक वाहक घनत्व और बल्क में कम घनत्व के बीच का अंतर है, और यह ढाल इंटरफ़ेस से थोक में अल्पसंख्यक वाहकों के प्रसार को संचालित करता है। इंजेक्ट किए गए अल्पसंख्यक वाहक संख्या में कम हो जाते हैं क्योंकि वे पुनर्संयोजन तंत्र द्वारा थोक में यात्रा करते हैं जो थोक मूल्यों की ओर अतिरिक्त सांद्रता को चलाते हैं।
प्रसार को संचालित करने वाली ढाल बाधा पर बड़े अर्थात अल्पसंख्यक वाहक घनत्व और थोक में कम घनत्व के बीच का अंतर है और यह ढाल अंतराफलक से थोक में अल्पसंख्यक वाहकों के प्रसार को संचालित करता है। इंजेक्ट किए गए अल्पसंख्यक वाहक संख्या में कम हो जाते हैं क्योंकि वे पुनर्संयोजन तंत्र द्वारा थोक में यात्रा करते हैं जो थोक मूल्यों की ओर अर्थात सांद्रता को चलाते हैं।


पुनर्संयोजन बहुसंख्यक वाहक के साथ सीधे मुठभेड़ से हो सकता है, दोनों वाहकों को नष्ट कर सकता है, या वाहक पीढ़ी और पुनर्संयोजन | पुनर्संयोजन-पीढ़ी केंद्र के माध्यम से हो सकता है, दोष जो वैकल्पिक रूप से छिद्रों और इलेक्ट्रॉनों को फंसाता है, पुनर्संयोजन में सहायता करता है। अल्पसंख्यक वाहकों का सीमित [[वाहक जीवनकाल]] होता है, और बदले में यह जीवनकाल सीमित करता है कि वे बहुसंख्यक वाहक पक्ष से अल्पसंख्यक वाहक पक्ष में कितनी दूर तक फैल सकते हैं, तथाकथित फ़िक के प्रसार के नियम # आयाम में उदाहरण समाधान: प्रसार लंबाई। [[प्रकाश उत्सर्जक डायोड]] में, इलेक्ट्रॉनों और छिद्रों का पुनर्संयोजन वैलेंस और चालन बैंड के बीच ऊर्जा अंतराल से संबंधित तरंग दैर्ध्य के प्रकाश के उत्सर्जन के साथ होता है, इसलिए डायोड आगे की धारा के हिस्से को प्रकाश में परिवर्तित करता है।
पुनर्संयोजन बहुसंख्यक वाहक के साथ सीधे सामना करना पड़ सकता है, दोनों वाहकों को नष्ट कर सकता है, या वाहक पीढ़ी और पुनर्संयोजन-पीढ़ी केंद्र के माध्यम से हो सकता है, दोष जो वैकल्पिक रूप से छिद्रों और इलेक्ट्रॉनों को फंसाता है, पुनर्संयोजन में सहायता करता है। अल्पसंख्यक वाहकों का सीमित [[वाहक जीवनकाल]] होता है और बदले में यह जीवनकाल सीमित करता है कि वे बहुसंख्यक वाहक पक्ष से अल्पसंख्यक वाहक पक्ष में कितनी दूर तक फैल सकते हैं, तथाकथित फ़िक के प्रसार के नियम या आयाम में उदाहरण समाधान: प्रसार लंबाई [[प्रकाश उत्सर्जक डायोड]] में, इलेक्ट्रॉनों और छिद्रों का पुनर्संयोजन वैलेंस और चालन बैंड के बीच ऊर्जा अंतराल से संबंधित तरंग दैर्ध्य के प्रकाश के उत्सर्जन के साथ होता है, इसलिए डायोड आगे की धारा के भाग को प्रकाश में परिवर्तित करता है।


आगे के पूर्वाग्रह के तहत, छेद और इलेक्ट्रॉनों के लिए अर्ध-अधिभोग लाइनें पूरे उपकरण में सपाट नहीं रह सकतीं, क्योंकि वे संतुलन में होते हैं, लेकिन अर्ध-फर्मी स्तर बन जाते हैं जो स्थिति के साथ भिन्न होते हैं। जैसा कि चित्र में दिखाया गया है, इलेक्ट्रॉन अर्ध-फर्मी स्तर स्थिति के साथ बदलता है, एन-बल्क में अर्ध-अधिभोग संतुलन फर्मी स्तर से, पी-बल्क में गहरे छिद्रों के लिए अर्ध-अधिभोग संतुलन स्तर तक। छेद अर्ध-फर्मी स्तर उल्टा करता है। थोक सामग्री में गहरे को छोड़कर दो अर्ध-फर्मी स्तर मेल नहीं खाते हैं।
आगे के पूर्वाग्रह के अनुसार छेद और इलेक्ट्रॉनों के लिए अर्ध-अधिभोग पंक्तियाँ पूरे उपकरण में समतल नहीं रह सकतीं है क्योंकि वे संतुलन में होते हैं, किन्तु अर्ध-फर्मी स्तर बन जाते हैं जो स्थिति के साथ भिन्न होते हैं। जैसा कि चित्र में दिखाया गया है, इलेक्ट्रॉन अर्ध-फर्मी स्तर स्थिति के साथ बदलता है, एन-थोक में अर्ध-अधिभोग संतुलन फर्मी स्तर से, पी-थोक में गहरे छिद्रों के लिए अर्ध-अधिभोग संतुलन स्तर तक छेद अर्ध-फर्मी स्तर विपरीत करता है। थोक पदार्थ में गहरे को छोड़कर दो अर्ध-फर्मी स्तर मेल नहीं खाते हैं


आंकड़ा दिखाता है कि बहुसंख्यक वाहक घनत्व बहुसंख्यक वाहक घनत्व स्तरों से गिरता है <math>(n_\text{B}, p_\text{B})</math> उनके संबंधित थोक सामग्री में, स्तर कारक के लिए <math>e^{-(\varphi_\text{B} - v_\text{D}) / V_\text{T}}</math> बाधा के शीर्ष पर छोटा, जो संतुलन मूल्य से घटाया जाता है <math>\varphi_\text{B}</math> अग्र डायोड बायस की मात्रा द्वारा <math>v_\text{D} .</math> क्योंकि यह अवरोध विपरीत रूप से डोप की गई सामग्री में स्थित है, अवरोधक स्थिति में इंजेक्ट किए गए वाहक अब अल्पसंख्यक वाहक हैं। जैसा कि पुनर्संयोजन जोर पकड़ता है, अल्पसंख्यक वाहक घनत्व थोक अल्पसंख्यक वाहकों के लिए उनके संतुलन मूल्यों की गहराई के साथ गिरता है, कारक <math>e^{-\varphi_\text{B} / V_\text{T}}</math> उनके थोक घनत्व से छोटा <math>(n_\text{B}, p_\text{B})</math> इंजेक्शन से पहले बहुमत वाहक के रूप में। इस बिंदु पर अर्ध-फर्मी स्तर बल्क फर्मी स्तर की स्थितियों से जुड़ जाते हैं।
यह आंकड़ा दिखाता है कि बहुसंख्यक वाहक घनत्व उनके संबंधित थोक सामग्रियों में बहुसंख्यक वाहक घनत्व स्तर <math>(n_\text{B}, p_\text{B})</math>से गिरकर बाधा के शीर्ष पर एक कारक <math>e^{-(\varphi_\text{B} - v_\text{D}) / V_\text{T}}</math> छोटे स्तर तक गिर जाता है, जो संतुलन मूल्य से कम हो जाता है <math>\varphi_\text{B}</math> अग्र डायोड पूर्वाग्रह की मात्रा <math>v_\text{D} .</math> क्योंकि यह अवरोध विपरीत रूप से डोप की गई सामग्री में स्थित है, अवरोध स्थिति में इंजेक्ट किए गए वाहक अब अल्पसंख्यक वाहक हैं। जैसे-जैसे पुनर्संयोजन जोर पकड़ता है, अल्पसंख्यक वाहक घनत्व थोक अल्पसंख्यक वाहकों के लिए उनके संतुलन मूल्यों की गहराई के साथ कम हो जाता है, जो इंजेक्शन से पहले बहुसंख्यक वाहकों के रूप में उनके थोक घनत्व <math>(n_\text{B}, p_\text{B})</math> से एक कारक <math>e^{-\varphi_\text{B} / V_\text{T}}</math> छोटा होता है। इस बिंदु पर अर्ध-फर्मी स्तर थोक फर्मी स्तर की स्थिति में फिर से सम्मिलित हो जाते हैं।


बैंड किनारों में घटे हुए कदम का अर्थ यह भी है कि आगे के पूर्वाग्रह के तहत कमी क्षेत्र संकरा हो जाता है क्योंकि पी-साइड से इसमें छेद और एन-साइड से इलेक्ट्रॉनों को धकेल दिया जाता है।
बैंड किनारों में घटे हुए चरण का अर्थ यह भी है कि आगे के पूर्वाग्रह के अनुसार कमी क्षेत्र संकरा हो जाता है क्योंकि पी-साइड से इसमें छेद और एन-साइड से इलेक्ट्रॉनों को आगे बढ़ा दिया जाता है।


सरल पी-एन डायोड में वाहक घनत्व में घातीय वृद्धि के कारण आगे की धारा तेजी से आगे बायस वोल्टेज के साथ बढ़ जाती है, इसलिए लागू वोल्टेज के बहुत छोटे मूल्यों पर हमेशा कुछ वर्तमान होता है। हालांकि, अगर कोई किसी विशेष वर्तमान स्तर में रुचि रखता है, तो उसे वर्तमान स्तर तक पहुंचने से पहले घुटने के वोल्टेज की आवश्यकता होगी (सिलिकॉन डायोड के लिए ~ 0.7 वी, अन्य सूचीबद्ध हैं) {{Slink|Diode|Forward threshold voltage for various semiconductors}}).<ref name=cut-in/>घुटने के ऊपर, करंट तेजी से बढ़ता रहता है। कुछ विशेष डायोड, जैसे कि कुछ वैरिएक्टर, आगे की दिशा में घुटने के वोल्टेज तक कम वर्तमान स्तर को बनाए रखने के लिए जानबूझकर डिज़ाइन किए गए हैं।
सरल पी-एन डायोड में वाहक घनत्व में घातीय वृद्धि के कारण आगे की धारा तेजी से आगे पूर्वाग्रह वोल्टेज के साथ बढ़ जाती है, इसलिए प्रयुक्त वोल्टेज के बहुत छोटे मूल्यों पर सदैव कुछ वर्तमान होता है। चूंकि यदि c कोई किसी विशेष वर्तमान स्तर में रुचि रखता है, तो उसे वर्तमान स्तर तक पहुंचने से पहले घुटने के वोल्टेज की आवश्यकता होगी (सिलिकॉन डायोड के लिए ~ 0.7 वी, अन्य सूचीबद्ध हैं) {{Slink|डायोड|विभिन्न अर्धचालकों के लिए फॉरवर्ड थ्रेशोल्ड वोल्टेज}}).<ref name=cut-in/> घुटने के ऊपर धारा तेजी से बढ़ता रहता है। कुछ विशेष डायोड, जैसे कि कुछ वैक्टरआगे की दिशा में घुटने के वोल्टेज तक कम वर्तमान स्तर को बनाए रखने के लिए अभिप्रायपूर्वक डिज़ाइन किए गए हैं।


=== उल्टा पूर्वाग्रह ===
=== विपरीत पूर्वाग्रह ===
[[File:Pn-junction reverse bias.png|thumb|180px|पी-एन डायोड के लिए रिवर्स बायस में बैंड-बेंडिंग]]
[[File:Pn-junction reverse bias.png|thumb|180px|पी-एन डायोड के लिए विपरीत पूर्वाग्रह में बैंड-बेंडिंग]]
[[File:Quasi-Fermi levels.png|thumb|180px|रिवर्स-बायस्ड पी-एन डायोड में क्वासी-फर्मी स्तर।]]रिवर्स बायस में छिद्रों के लिए अधिभोग स्तर फिर से बल्क पी-टाइप सेमीकंडक्टर के स्तर पर रहने लगता है जबकि इलेक्ट्रॉनों के लिए अधिभोग स्तर बल्क एन-प्रकार के लिए अनुसरण करता है। इस मामले में, पी-टाइप बल्क बैंड किनारों को रिवर्स बायस द्वारा एन-टाइप बल्क के सापेक्ष उठाया जाता है <math>v_\text{R} ,</math> इसलिए लागू वोल्टेज द्वारा निर्धारित ऊर्जा द्वारा दो बल्क ऑक्यूपेंसी स्तरों को फिर से अलग किया जाता है। जैसा कि आरेख में दिखाया गया है, इस व्यवहार का मतलब है कि बैंड किनारों में कदम बढ़ा दिया गया है <math>\varphi_\text{B} + v_\text{R},</math> और रिक्तीकरण क्षेत्र चौड़ा हो जाता है क्योंकि पी-साइड पर छिद्रों को इससे दूर खींच लिया जाता है और इलेक्ट्रॉनों को एन-साइड पर खींच लिया जाता है।
[[File:Quasi-Fermi levels.png|thumb|180px|रिवर्स-बायस्ड पी-एन डायोड में क्वासी-फर्मी स्तर।]]विपरीत पूर्वाग्रह में छिद्रों के लिए अधिभोग स्तर फिर से थोक पी-प्रकार अर्धचालक के स्तर पर रहता है जबकि इलेक्ट्रॉनों के लिए अधिभोग स्तर थोक एन-प्रकार के लिए होता है। इस स्थिति में, पी-टाइप बल्क बैंड किनारों को रिवर्स पूर्वाग्रह <math>v_\text{R} ,</math> द्वारा एन-टाइप बल्क के सापेक्ष उठाया जाता है, इसलिए दो बल्क अधिभोग स्तर प्रयुक्त वोल्टेज द्वारा निर्धारित ऊर्जा द्वारा फिर से अलग हो जाते हैं। जैसा कि चित्र में दिखाया गया है, इस व्यवहार का अर्थ है कि बैंड किनारों में चरण को बढ़ाकर <math>\varphi_\text{B} + v_\text{R},</math> कर दिया गया है और कमी क्षेत्र चौड़ा हो गया है क्योंकि पी-साइड पर छेद और एन-साइड पर इलेक्ट्रॉन इससे दूर खींचे जाते हैं।


जब रिवर्स बायस लागू किया जाता है, तो रिक्तीकरण क्षेत्र में विद्युत क्षेत्र बढ़ जाता है, शून्य बायस मामले की तुलना में इलेक्ट्रॉनों और छेदों को और दूर खींचता है। इस प्रकार, कोई भी धारा जो प्रवाहित होती है वह इस क्षेत्र में पीढ़ी-पुनर्संयोजन दोषों के कारण कमी क्षेत्र के अंदर वाहक निर्माण की बहुत कमजोर प्रक्रिया के कारण होती है। वह बहुत छोटा करंट रिवर्स बायस के तहत लीकेज करंट का स्रोत है। [[ photodiode |photodiode]] में, घटना प्रकाश द्वारा कमी क्षेत्र में छेद और इलेक्ट्रॉनों के निर्माण का उपयोग करके रिवर्स करंट पेश किया जाता है, इस प्रकार घटना प्रकाश के हिस्से को विद्युत प्रवाह में परिवर्तित किया जाता है।
जब विपरीत पूर्वाग्रह प्रयुक्त किया जाता है, तो रिक्तीकरण क्षेत्र में विद्युत क्षेत्र बढ़ जाता है, शून्य पूर्वाग्रह स्थिति की तुलना में इलेक्ट्रॉनों और छेदों को और दूर खींचता है। इस प्रकार, कोई भी धारा जो प्रवाहित होती है वह इस क्षेत्र में पीढ़ी-पुनर्संयोजन दोषों के कारण कमी क्षेत्र के अंदर वाहक निर्माण की बहुत अशक्त प्रक्रिया के कारण होती है। वह बहुत छोटा धारा विपरीत पूर्वाग्रह के अनुसार रिसाव धारा का स्रोत है। [[ photodiode |फोटोडायोड]] में, घटना प्रकाश द्वारा कमी क्षेत्र में छेद और इलेक्ट्रॉनों के निर्माण का उपयोग करके विपरीत धारा प्रस्तुत किया जाता है, इस टाइप घटना प्रकाश के भाग को विद्युत प्रवाह में परिवर्तित किया जाता है।


जब रिवर्स बायस बहुत बड़ा हो जाता है, ब्रेकडाउन वोल्टेज तक पहुंच जाता है, तो कमी क्षेत्र में उत्पादन प्रक्रिया तेज हो जाती है जिससे हिमस्खलन की स्थिति पैदा हो जाती है जो भगोड़ा हो सकता है और डायोड को नष्ट कर सकता है।
जब विपरीत पूर्वाग्रह बहुत बड़ा हो जाता है, ब्रेकडाउन वोल्टेज तक पहुंच जाता है, तो कमी क्षेत्र में उत्पादन प्रक्रिया तेज हो जाती है जिससे हिमस्खलन की स्थिति उत्पन्न हो जाती है जो भगा हुआ हो सकता है और डायोड को नष्ट कर सकता है।


=== डायोड कानून ===
=== डायोड नियम ===
आदर्श पी-एन डायोड का डीसी करंट-वोल्टेज व्यवहार [[शॉक्ले डायोड समीकरण]] द्वारा नियंत्रित होता है:<ref name=Grebennikov/>
आदर्श पी-एन डायोड का डीसी धारा -वोल्टेज व्यवहार [[शॉक्ले डायोड समीकरण]] द्वारा नियंत्रित होता है:<ref name=Grebennikov/>


:<math>I_\text{D} = I_\text{R} \left(e^{\frac{V_\text{D}}{nV_\text{T}}}-1\right), </math>
:<math>I_\text{D} = I_\text{R} \left(e^{\frac{V_\text{D}}{nV_\text{T}}}-1\right), </math>
कहाँ
जहाँ


:<math>V_\text{D}</math> डायोड के पार डीसी वोल्टेज है।
:<math>V_\text{D}</math> डायोड के पार डीसी वोल्टेज है।
:<math>I_\text{R}</math> रिवर्स सैचुरेशन करंट है, वह करंट जो तब बहता है जब डायोड रिवर्स बायस्ड होता है (यानी, <math>V_\text{D}</math> बड़ा और नकारात्मक है)।
:<math>I_\text{R}</math> विपरीत सैचुरेशन धारा है, वह धारा जो तब बहता है जब डायोड विपरीत बायस्ड होता है (अर्थात , <math>V_\text{D}</math> बड़ा और नकारात्मक है)।
:<math>n</math> आदर्श डायोड कानून द्वारा भविष्यवाणी की तुलना में वृद्धि की धीमी दर को मॉडल करने के लिए पेश किया गया आदर्श कारक है।
:<math>n</math> आदर्श डायोड नियम द्वारा भविष्यवाणी की तुलना में वृद्धि की धीमी दर को मॉडल करने के लिए प्रस्तुत किया गया आदर्श कारक है।
:<math>V_\text{T}</math> का ऊष्मीय वोल्टेज है <math>\tfrac{k_\text{B}T}{q},</math> T = 290 केल्विन (इकाई) पर लगभग 25 mV के बराबर।
:<math>V_\text{T}</math> का ऊष्मीय वोल्टेज है <math>\tfrac{k_\text{B}T}{q},</math> T = 290 केल्विन (इकाई) पर लगभग 25 mV के समान है ।


यह समीकरण गैर-आदर्श व्यवहार जैसे अतिरिक्त रिवर्स लीकेज या ब्रेकडाउन घटना को मॉडल नहीं करता है।
यह समीकरण गैर-आदर्श व्यवहार जैसे अर्थात विपरीत रिसाव या ब्रेकडाउन घटना को मॉडल नहीं करता है।


इस समीकरण का उपयोग करते हुए, प्रतिरोध पर डायोड है
इस समीकरण का उपयोग करते हुए, प्रतिरोध पर डायोड है


:<math>r_\text{D} = \frac{1}{di_\text{D}/dv_\text{D}} \approx \frac{nV_\text{T}}{i_\text{D}} , </math>
:<math>r_\text{D} = \frac{1}{di_\text{D}/dv_\text{D}} \approx \frac{nV_\text{T}}{i_\text{D}} , </math>
कम प्रतिरोध प्रदर्शित करने से धारा जितनी अधिक होगी। नोट: [[ विभेदक रूप |विभेदक रूप]] या समय-भिन्न डायोड करंट और वोल्टेज, लोअरकेस को संदर्भित करने के लिए <math>i_\text{D} </math> और <math>v_\text{D} </math> उपयोग किया जाता है।
कम प्रतिरोध प्रदर्शित करने से धारा जितनी अधिक होगी। नोट: [[ विभेदक रूप |विभेदक रूप]] या समय-भिन्न डायोड धारा और वोल्टेज,लोअरकेस को संदर्भित करने के लिए <math>i_\text{D} </math> और <math>v_\text{D} </math> उपयोग किया जाता है।


=== समाई ===
=== समाई ===
p-n डायोड के n और p पक्षों के बीच अवक्षय परत इन्सुलेट क्षेत्र के रूप में कार्य करता है जो दो डायोड संपर्कों को अलग करता है। इस प्रकार, रिवर्स बायस में डायोड डिप्लेशन-लेयर कैपेसिटेंस प्रदर्शित करता है, कभी-कभी अधिक अस्पष्ट रूप से जंक्शन कैपेसिटेंस कहा जाता है, संपर्कों के बीच ढांकता हुआ स्पेसर के साथ समानांतर प्लेट कैपेसिटर के अनुरूप होता है। रिवर्स बायस में घटती परत की चौड़ाई बढ़ते हुए रिवर्स बायस के साथ चौड़ी हो जाती है <math>v_\text{R} </math> और समाई तदनुसार कम हो जाती है। इस प्रकार, जंक्शन वोल्टेज-नियंत्रणीय संधारित्र के रूप में कार्य करता है। सरलीकृत आयामी मॉडल में, जंक्शन समाई है:
पी-एन डायोड के n और p पक्षों के बीच अवक्षय परत इन्सुलेट क्षेत्र के रूप में कार्य करता है जो दो डायोड संपर्कों को अलग करता है। इस प्रकार, विपरीत पूर्वाग्रह में डायोड डिप्लेशन-परत कैपेसिटेंस प्रदर्शित करता है, कभी-कभी अधिक अस्पष्ट रूप से जंक्शन कैपेसिटेंस कहा जाता है, संपर्कों के बीच परावैद्युत स्पेसर के साथ समानांतर प्लेट कैपेसिटर के अनुरूप होता है। विपरीत पूर्वाग्रह में घटती परत की चौड़ाई बढ़ते हुए विपरीत पूर्वाग्रह <math>v_\text{R} </math> के साथ चौड़ी हो जाती है और समाई तदनुसार कम हो जाती है। इस प्रकार, जंक्शन वोल्टेज-नियंत्रणीय संधारित्र के रूप में कार्य करता है। सरलीकृत आयामी मॉडल में जंक्शन समाई है:


:<math>C_\text{J} = \kappa \varepsilon_0 \frac{A}{w(v_\text{R})} \ , </math>
:<math>C_\text{J} = \kappa \varepsilon_0 \frac{A}{w(v_\text{R})} \ , </math>
साथ <math>A </math> उपकरण क्षेत्र, <math>\kappa </math> रिश्तेदार अर्धचालक ढांकता हुआ पारगम्यता, <math>\varepsilon_0 </math> [[विद्युत स्थिरांक]], और <math>w </math> कमी चौड़ाई (उस क्षेत्र की मोटाई जहां मोबाइल वाहक घनत्व नगण्य है)।
<math>A </math> के साथ उपकरण क्षेत्र <math>\kappa </math> सापेक्ष अर्धचालक परावैद्युत पारगम्यता <math>\varepsilon_0 </math> विद्युत स्थिरांक, और <math>w </math> कमी चौड़ाई (उस क्षेत्र की मोटाई जहां मोबाइल वाहक घनत्व नगण्य है)।


आगे के पूर्वाग्रह में, उपरोक्त कमी-परत समाई के अलावा, अल्पसंख्यक वाहक चार्ज इंजेक्शन और प्रसार होता है। फॉरवर्ड बायस में बदलाव के साथ होने वाले माइनॉरिटी कैरियर चार्ज में बदलाव को व्यक्त करते हुए [[प्रसार समाई]] मौजूद है। संग्रहीत अल्पसंख्यक वाहक प्रभार के संदर्भ में, डायोड करंट है:
आगे के पूर्वाग्रह में, उपरोक्त कमी-परत समाई के अतिरिक्त अल्पसंख्यक वाहक चार्ज इंजेक्शन और प्रसार होता है। अग्र पूर्वाग्रह में बदलाव के साथ होने वाले माइनॉरिटी कैरियर चार्ज में बदलाव को व्यक्त करते हुए [[प्रसार समाई]] उपस्थित है। संग्रहीत अल्पसंख्यक वाहक प्रभार के संदर्भ में डायोड धारा है:
:<math>i_\text{D} = \frac{Q_\text{D}}{\tau} \ , </math>
:<math>i_\text{D} = \frac{Q_\text{D}}{\tau} \ , </math>
कहाँ <math>Q_\text{D} </math> अल्पसंख्यक वाहकों के प्रसार से जुड़ा प्रभार है, और <math>\tau </math> पारगमन समय है, इंजेक्शन क्षेत्र को पार करने के लिए अल्पसंख्यक प्रभार के लिए लिया गया समय, आमतौर पर 0.1–100 [[नैनोसेकंड]]।<ref name=Arora/>इस आधार पर, प्रसार समाई की गणना की जाती है:
जहाँ <math>Q_\text{D} </math> अल्पसंख्यक वाहकों के प्रसार से जुड़ा प्रभार है, और <math>\tau </math> पारगमन समय है, इंजेक्शन क्षेत्र को पार करने के लिए अल्पसंख्यक प्रभार के लिए लिया गया समय सामान्यतः 0.1–100 [[नैनोसेकंड]]।<ref name=Arora/>इस आधार पर, प्रसार समाई की गणना की जाती है:


:<math>C_\text{D} = \frac {dQ_\text{D}}{dv_\text{D}} = \tau \frac {d i_\text{D}}{dv_\text{D}} = \frac{i_\text{D} \tau}{V_\text{T}} \ . </math>
:<math>C_\text{D} = \frac {dQ_\text{D}}{dv_\text{D}} = \tau \frac {d i_\text{D}}{dv_\text{D}} = \frac{i_\text{D} \tau}{V_\text{T}} \ . </math>
सामान्यतया, फॉरवर्ड बायस में सामान्य वर्तमान स्तरों के लिए, यह धारिता अवक्षय-परत धारिता से कहीं अधिक है।
सामान्यतया अग्र पूर्वाग्रह में सामान्य वर्तमान स्तरों के लिए, यह धारिता अवक्षय-परत धारिता से कहीं अधिक है।


=== क्षणिक प्रतिक्रिया ===
=== क्षणिक प्रतिक्रिया ===
[[File:PN-diode small-signal circuit2.png|thumb|200px|p-n डायोड के लिए लघु-संकेत परिपथ नॉर्टन के प्रमेय के रूप में दर्शाए गए वर्तमान संकेत द्वारा संचालित होता है।]]डायोड अत्यधिक गैर-रैखिक उपकरण है, लेकिन छोटे-सिग्नल विविधताओं के लिए इसकी प्रतिक्रिया का विश्लेषण छोटे-सिग्नल सर्किट का उपयोग करके किया जा सकता है, जो चयनित अर्ध-डीसी बायसिंग बिंदु (या क्यू-पॉइंट) पर आधारित होता है, जिसके बारे में संकेत भिन्न होने की कल्पना की जाती है। वर्तमान के साथ नॉर्टन के प्रमेय द्वारा संचालित डायोड के समतुल्य सर्किट <math>I_\text{S}</math> और प्रतिरोध <math>R_\text{S}</math> दिखाई जा रही है।{{Clarification needed|reason=We should really reserve I_s for "Reverse Saturation Current" as used in [[Shockley diode equation]].  This Norton-equivalent schematic and the following equations should use I_no and R_no to stand for "norton-equivalent" instead of I_s and R_s.|date=January 2023}} आउटपुट नोड पर किरचॉफ के वर्तमान कानून का उपयोग करना:
[[File:PN-diode small-signal circuit2.png|thumb|200px|पी-एन डायोड के लिए लघु-संकेत परिपथ नॉर्टन के प्रमेय के रूप में दर्शाए गए वर्तमान संकेत द्वारा संचालित होता है।]]डायोड एक अत्यधिक गैर-रैखिक उपकरण है, किन्तु छोटे-सिग्नल भिन्नताओं के लिए इसकी प्रतिक्रिया का विश्लेषण एक चयनित शांत डीसी पूर्वाग्रह बिंदु (या क्यू-पॉइंट) के आधार पर एक छोटे-सिग्नल परिपथ का उपयोग करके किया जा सकता है, जिसके बारे में सिग्नल में भिन्नता की कल्पना की जाती है। वर्तमान <math>I_\text{S}</math> और प्रतिरोध <math>R_\text{S}</math> के साथ नॉर्टन स्रोत द्वारा संचालित डायोड के लिए समतुल्य परिपथ दिखाया गया है। आउटपुट नोड पर किरचॉफ के वर्तमान नियम का उपयोग करना:


:<math>I_\text{S}=\left(j\omega (C_\text{J}+C_\text{D}) + \frac{1}{r_\text{D}} +\frac{1}{R_\text{S}} \right) V_\text{O} \ , </math>
:<math>I_\text{S}=\left(j\omega (C_\text{J}+C_\text{D}) + \frac{1}{r_\text{D}} +\frac{1}{R_\text{S}} \right) V_\text{O} \ , </math>
साथ <math>C_\text{D} </math> डायोड प्रसार समाई, <math>C_\text{J} </math> डायोड जंक्शन कैपेसिटेंस (डिप्लीशन लेयर कैपेसिटेंस) और <math>r_\text{D} </math> डायोड चालू या बंद प्रतिरोध, सभी उस Q-बिंदु पर। इस सर्किट द्वारा प्रदान किया गया आउटपुट वोल्टेज तब है:
<math>C_\text{D} </math> डायोड प्रसार समाई,<math>C_\text{J} </math> डायोड जंक्शन समाई (घटाव परत समाई) और <math>r_\text{D} </math> डायोड चालू या बंद प्रतिरोध के साथ, सभी उस क्यू-बिंदु पर इस परिपथ द्वारा प्रदान किया गया आउटपुट वोल्टेज तब है:
:<math>\frac{V_\text{O}}{I_\text{S}} =\frac{(R_\text{S} \mathit{\parallel} r_\text{D})}{1+j\omega (C_\text{D}+C_\text{J})(R_\text{S}  \mathit{\parallel}r_\text{D})} \ , </math>
:<math>\frac{V_\text{O}}{I_\text{S}} =\frac{(R_\text{S} \mathit{\parallel} r_\text{D})}{1+j\omega (C_\text{D}+C_\text{J})(R_\text{S}  \mathit{\parallel}r_\text{D})} \ , </math>
कहाँ || [[समानांतर प्रतिरोध ऑपरेटर]] को इंगित करता है। यह ट्रांसरेसिस्टेंस एम्पलीफायर कोने की आवृत्ति या कटऑफ आवृत्ति को दर्शाता है <math>f_\text{c} </math>:
जहाँ || [[समानांतर प्रतिरोध ऑपरेटर]] को इंगित करता है। यह ट्रांसरेसिस्टेंस एम्पलीफायर कोने की आवृत्ति या कटऑफ आवृत्ति <math>f_\text{c} </math>को दर्शाता है :
:<math>f_\text{c} = \frac{1}{2\pi (C_\text{D}+C_\text{J})(R_\text{S}  \mathit{\parallel}r_\text{D})} \ , </math>
:<math>f_\text{c} = \frac{1}{2\pi (C_\text{D}+C_\text{J})(R_\text{S}  \mathit{\parallel}r_\text{D})} \ , </math>
और आवृत्तियों के लिए <math>f \gg f_\text{c}</math> कैपेसिटर शॉर्ट-सर्किट रोकनेवाला के रूप में लाभ आवृत्ति के साथ बंद हो जाता है <math>r_\text{D} . </math> मान लीजिए, जैसा मामला है जब डायोड चालू होता है, वह <math>C_\text{D} \gg C_\text{J} </math> और <math>R_\text{S} \gg r_\text{D} , </math> डायोड प्रतिरोध और समाई के लिए ऊपर पाए गए भाव प्रदान करते हैं:
 
 
और आवृत्तियों के लिए <math>f \gg f_\text{c}</math> लाभ आवृत्ति के साथ बंद हो जाता है क्योंकि कैपेसिटर अवरोधक को लघु परिपथ करता है <math>r_\text{D} . </math> मान लें, जैसा कि डायोड चालू होने पर होता है, कि<math>C_\text{D} \gg C_\text{J} </math> और <math>R_\text{S} \gg r_\text{D} , </math> के लिए ऊपर दिए गए भाव डायोड प्रतिरोध और समाई प्रदान करते हैं:
:<math>f_\text{c} = \frac{1}{2 \pi  n\tau} \ , </math>
:<math>f_\text{c} = \frac{1}{2 \pi  n\tau} \ , </math>
जो कोने की आवृत्ति को डायोड ट्रांजिट समय से संबंधित करता है।
जो कोने की आवृत्ति को डायोड ट्रांजिट समय से संबंधित करता है।


रिवर्स बायस में संचालित डायोड के लिए, <math>C_\text{D} </math> शून्य है और टर्म कॉर्नर फ्रीक्वेंसी को अक्सर कटऑफ फ्रीक्वेंसी से बदल दिया जाता है। किसी भी घटना में, रिवर्स बायस में डायोड प्रतिरोध काफी बड़ा हो जाता है, हालांकि आदर्श डायोड कानून के रूप में अनंत नहीं है, और यह धारणा कि यह चालक के नॉर्टन प्रतिरोध से कम है, सटीक नहीं हो सकता है। जंक्शन कैपेसिटेंस छोटा है और रिवर्स बायस पर निर्भर करता है <math>v_\text{R}. </math> कटऑफ आवृत्ति तब है:
 
विपरीत पूर्वाग्रह में संचालित डायोड के लिए <math>C_\text{D} </math> शून्य है और शब्द कोने की आवृत्ति को अधिकांशतः कटऑफ आवृत्ति द्वारा प्रतिस्थापित किया जाता है। किसी भी घटना में, विपरीत पूर्वाग्रह में डायोड प्रतिरोध अधिक बड़ा हो जाता है, चूंकि आदर्श डायोड नियम के अनुसार अनंत नहीं है, और यह धारणा कि यह चालक के नॉर्टन प्रतिरोध से कम है, स्पष्ट नहीं हो सकती है। जंक्शन कैपेसिटेंस छोटा है और विपरीत पूर्वाग्रह पर निर्भर करता है <math>v_\text{R}. </math> कटऑफ आवृत्ति तब होती है:
:<math>f_\text{c} = \frac{1}{2\pi \, C_\text{J}(R_\text{S}  \mathit{\parallel}r_\text{D})} \ , </math>
:<math>f_\text{c} = \frac{1}{2\pi \, C_\text{J}(R_\text{S}  \mathit{\parallel}r_\text{D})} \ , </math>
और रिवर्स बायस के साथ बदलता है क्योंकि चौड़ाई <math>w(v_\text{R}) </math> बढ़ते हुए डायोड रिवर्स बायस के साथ मोबाइल कैरियर्स की कमी वाले इंसुलेटिंग क्षेत्र में वृद्धि होती है, जिससे कैपेसिटेंस कम हो जाता है।<ref name=varactor/>


और विपरीत पूर्वाग्रह के साथ बदलता रहता है क्योंकि डायोड विपरीत पूर्वाग्रह बढ़ने के साथ मोबाइल कैरियर्स के ख़त्म हुए इंसुलेटिंग क्षेत्र की चौड़ाई <math>w(v_\text{R}) </math> बढ़ जाती है, जिससे कैपेसिटेंस कम हो जाता है।<ref name="varactor" />
== यह भी देखें ==
== यह भी देखें ==
* [[पिन डायोड]]
* [[पिन डायोड]]
Line 160: Line 157:
{{citizendium|title=Semiconductor diode}}
{{citizendium|title=Semiconductor diode}}


{{DEFAULTSORT:P-n diode}}[[Category: डायोड]] [Category:Semiconductor devic
{{DEFAULTSORT:P-n diode}} [Category:Semiconductor devic
 
[[Category: सेमीकंडक्टर देवी]]
[[Category:Created On 09/03/2023|P-n diode]]
[[Category: सेमीकंडक्टर देवी]]
[[Category:Infobox templates|electronic component]]
[[Category: Machine Translated Page]]
[[Category:Lua-based templates|P-n diode]]
[[Category:Created On 09/03/2023]]
[[Category:Machine Translated Page|P-n diode]]
[[Category:Pages with script errors|P-n diode]]
[[Category:Templates Vigyan Ready|P-n diode]]
[[Category:Templates that add a tracking category|P-n diode]]
[[Category:Templates that generate short descriptions|P-n diode]]
[[Category:Templates using TemplateData|P-n diode]]
[[Category:Wikipedia articles incorporating text from Citizendium|पी-एन डायोड]]
[[Category:डायोड|P-n diode]]
[[Category:सेमीकंडक्टर देवी|P-n diode]]

Latest revision as of 11:49, 2 July 2023

P–N diode
प्रकारSemiconductor
Working principlep–n junction
Pin configuration A: Anode, K: Cathode
Electronic symbol
IEEE 315-1975 (1993) 8.5.1.svg

यह लेख पी-एन जंक्शन या डायोड लेखों की तुलना में पी-एन डायोड व्यवहार की अधिक विस्तृत व्याख्या प्रदान करता है।

पी-एन डायोड टाइप का अर्धचालक डायोड है जो पी-एन जंक्शन पर आधारित होता है। डायोड केवल दिशा में धारा का संचालन करता है और इसे पी- टाइप अर्धचालक परत को एन -टाइप अर्धचालक परत से जोड़कर बनाया जाता है। अर्धचालक डायोड के कई उपयोग हैं जिनमें रेडियो संकेतों का पता लगाने और प्रकाश का उत्सर्जन और पता लगाने में प्रत्यावर्ती धारा को प्रत्यक्ष धारा में सुधार करना सम्मिलित है।

संरचना

यह आंकड़ा पी-एन अर्धचालक डायोड के लिए उपयोग की जाने वाली कई संभावित संरचनाओं में से दो को दिखाता है, दोनों को उस वोल्टेज को बढ़ाने के लिए अनुकूलित किया गया है जिसे उपकरण विपरीत पूर्वाग्रह में सामना कर सकते हैं। शीर्ष संरचना आसन्न एन-परत के बगल में p+-क्षेत्र की तेज वक्रता से बचने के लिए मेसा का उपयोग करती है। नीचे की संरचना वोल्टेज को बड़ी दूरी तक फैलाने और विद्युत क्षेत्र को कम करने के लिए p+ परत के तेज कोने के किनारे पर हल्के से डोप किए गए p-गार्ड-रिंग का उपयोग करती है। (सुपरस्क्रिप्ट जैसे n+ या n भारी या हल्के अशुद्धता डोपिंग स्तरों को संदर्भित करते हैं।)

मेसा डायोड संरचना (शीर्ष) और गार्ड-रिंग (नीचे) के साथ प्लानर डायोड संरचना।

विद्युत व्यवहार

गैर-आदर्श पी-एन डायोड धारा -वोल्टेज विशेषताएँ।

आदर्श डायोड में आगे की पूर्वाग्रह ध्रुवता के लिए शून्य प्रतिरोध होता है, और विपरीत वोल्टेज ध्रुवीयता के लिए अनंत प्रतिरोध (शून्य धारा का संचालन करता है) होता है; यदि इसे प्रत्यावर्ती धारा परिपथ में जोड़ा जाए, तो अर्धचालक डायोड विद्युत दिष्टकारी के रूप में कार्य करता है।

अर्धचालक डायोड आदर्श नहीं होता है। जैसा कि चित्र में दिखाया गया है डायोड गैर-शून्य घुटने के वोल्टेज (या टर्न-ऑन, कट-इन, या थ्रेशोल्ड वोल्टेज) तक पहुंचने तक सराहनीय रूप से आचरण नहीं करता है, जिसका मूल्य अर्धचालक (में सूचीबद्ध) पर निर्भर करता है डायोड § डायोड में सूचीबद्ध § विभिन्न के लिए फॉरवर्ड थ्रेशोल्ड वोल्टेज अर्धचालक). इस वोल्टेज के ऊपर धारा -वोल्टेज वक्र का ढलान अनंत नहीं है (पर-प्रतिरोध शून्य नहीं है)। विपरीत दिशा में डायोड शून्येतर रिसाव धारा (चित्र में छोटे मापदंड द्वारा अतिरंजित) का संचालन करता है और ब्रेकडाउन वोल्टेज के नीचे पर्याप्त रूप से बड़े विपरीत वोल्टेज पर अधिक नकारात्मक विपरीत वोल्टेज के साथ धारा बहुत तेजी से बढ़ता है।

जैसा कि चित्र में दिखाया गया है चालू या बंद प्रतिरोध चयनित पूर्वाग्रह बिंदु पर वर्तमान-वोल्टेज विशेषता के पारस्परिक ढलान हैं:

जहां प्रतिरोध है और पूर्वाग्रह पर डायोड वोल्टेज परिवर्तन के अनुरूप वर्तमान परिवर्तन है

ऑपरेशन

पी-एन डायोड।

यहाँ अचानक पी-एन डायोड के संचालन पर विचार किया जाता है। "अचानक" से तात्पर्य यह है कि पी- और एन-टाइप डोपिंग उस स्तर पर एक चरण फ़ंक्शन असंततता प्रदर्शित करती है जहां वे एक-दूसरे का सामना करते हैं। इसका उद्देश्य वर्तमान-वोल्टेज विशेषताओं को प्रदर्शित करने वाले चित्र में विभिन्न पूर्वाग्रह व्यवस्थाओं की व्याख्या करना है। ऑपरेशन को बैंड-बेंडिंग वाले आरेखों का उपयोग करके वर्णित किया गया है जो दिखाता है कि विभिन्न पूर्वाग्रह स्थितियों के अनुसार डायोड के अंदर स्थिति के साथ सबसे कम चालन बैंड ऊर्जा और उच्चतम वैलेंस बैंड ऊर्जा कैसे भिन्न होती है। अर्थात चर्चा के लिए अर्धचालक या बैंड संरचना पर प्रभाव और बैंड आरेख लेख देखें।

शून्य पूर्वाग्रह

पी-एन डायोड के लिए शून्य प्रयुक्त वोल्टेज पर बैंड-बेंडिंग आरेख। कमी क्षेत्र छायांकित है।

चित्र पी-एन डायोड के लिए बैंड बेंडिंग आरेख दिखाता है; अर्थात् चालन बैंड (ऊपरी रेखा) और संयोजी बैंड (निचली रेखा) के लिए बैंड किनारों को पी- टाइप पदार्थ (बाईं ओर) और एन-टाइप के बीच जंक्शन के दोनों किनारों पर स्थिति के कार्य के रूप में दिखाया गया है। पदार्थ (दाईं ओर) जब ही अर्धचालक के पी- टाइप और एन-क्षेत्र को साथ लाया जाता है और दो डायोड संपर्कों को शॉर्ट-परिपथ किया जाता है तो फर्मी लेवल | फर्मी हाफ-अधिभोग स्तर (धराशायी क्षैतिज सीधी रेखा) स्थिर स्तर पर स्थित होता है। यह स्तर सुनिश्चित करता है कि जंक्शन के दोनों किनारों पर फील्ड-फ्री थोक में छेद और इलेक्ट्रॉन अधिकृत सही हैं। (इसलिए उदाहरण के लिए इलेक्ट्रॉन के लिए यह आवश्यक नहीं है कि वह अधिभोग को समायोजित करने के लिए शॉर्ट परिपथ के माध्यम से एन-साइड को छोड़कर पी-साइड की यात्रा करे।)

चूंकि , एक फ्लैट फर्मी स्तर के लिए पी-प्रकार की तरफ के बैंड को एन-प्रकार की तरफ के संबंधित बैंड की तुलना में ऊपर जाने की आवश्यकता होती है, जिससे बैंड किनारों में एक चरण (या अवरोध) बनता है, जिसे φB द्वारा लेबल किया जाता है। यह चरण पी-साइड पर इलेक्ट्रॉन घनत्व को एन-साइड की तुलना में बोल्ट्ज़मान कारक छोटा करने के लिए विवश करता है, जो पी-क्षेत्र में कम इलेक्ट्रॉन घनत्व के अनुरूप है। प्रतीक थर्मल वोल्टेज को दर्शाता है, जिसे T = 290 केल्विन (कमरे के तापमान) पर परिभाषित किया गया है, थर्मल वोल्टेज लगभग 25 एमवी है। इसी प्रकार, एन-साइड पर छेद घनत्व पी-साइड की तुलना में बोल्ट्जमान कारक छोटा है। जंक्शन पर अल्पसंख्यक वाहक घनत्व में यह पारस्परिक कमी वाहक घनत्व के पीएन-उत्पाद को विवश करती है

डायोड के अंदर किसी भी स्थिति में संतुलन पर [1] जहां और क्रमशः पी-साइड और एन-साइड पर थोक बहुमत वाहक घनत्व हैं।

बैंड किनारों में इस चरण के परिणामस्वरूप, जंक्शन के पास एक क्षय क्षेत्र में छेद और इलेक्ट्रॉन दोनों समाप्त हो जाते हैं, जिससे एक इन्सुलेशन क्षेत्र बनता है जिसमें लगभग कोई मोबाइल चार्ज नहीं होता है। चूंकि डोपेंट आयनों के कारण निश्चित, स्थिर शुल्क होते हैं। क्षय परत में मोबाइल चार्ज की लगभग अनुपस्थिति का अर्थ है कि उपस्थित मोबाइल चार्ज डोपेंट आयनों द्वारा योगदान किए गए स्थिर चार्ज को संतुलित करने के लिए अपर्याप्त हैं: स्वीकर्ता डोपेंट के कारण पी-प्रकार की तरफ एक नकारात्मक चार्ज और एन पर एक सकारात्मक चार्ज के रूप में -दाता डोपेंट के कारण प्रकार पक्ष इस आवेश के कारण इस क्षेत्र में विद्युत क्षेत्र है, जैसा कि पॉइसन के समीकरण द्वारा निर्धारित किया गया है। कमी क्षेत्र की चौड़ाई समायोजित हो जाती है जिससे पी-साइड पर नकारात्मक स्वीकर्ता चार्ज एन-साइड पर सकारात्मक दाता चार्ज को बिल्कुल संतुलित कर सकता है इसलिए दोनों तरफ कमी क्षेत्र के बाहर कोई विद्युत क्षेत्र नहीं है।

इस बैंड विन्यास में कोई वोल्टेज प्रयुक्त नहीं होता है और डायोड के माध्यम से कोई धारा प्रवाहित नहीं होती है। डायोड के माध्यम से धारा को बाध्य करने के लिए आगे बताए अनुसार अग्रदिशिक पूर्वाग्रह प्रयुक्त किया जाना चाहिए।

अग्र पूर्वाग्रह

अग्रदिशिक पूर्वाग्रह में पी-एन डायोड के लिए बैंड-बेंडिंग आरेख। प्रसार जंक्शन के पार वाहक को चलाता है।
अग्र पूर्वाग्रह पी-एन-डायोड में अर्ध-फर्मी स्तर और वाहक घनत्व। यह आंकड़ा मानता है कि पुनर्संयोजन उन क्षेत्रों तक ही सीमित है जहां बहुसंख्यक वाहक सांद्रता थोक मूल्यों के पास है, जो स्पष्ट नहीं है जब क्षेत्र क्षेत्र में पुनर्संयोजन-पीढ़ी केंद्र भूमिका निभाते हैं।

अग्र पूर्वाग्रह में बैटरी का सकारात्मक टर्मिनल पी- टाइप पदार्थ से जुड़ा होता है और नकारात्मक टर्मिनल एन-टाइप पदार्थ से जुड़ा होता है जिससे छेद को पी- टाइप पदार्थ और इलेक्ट्रॉन्स को एन-टाइप पदार्थ में इंजेक्ट किया जा सकता है जो कि n-टाइप की पदार्थ में इलेक्ट्रॉनों को उस तरफ बहुसंख्यक वाहक कहा जाता है किन्तु जो इलेक्ट्रॉन इसे p-टाइप की ओर बनाते हैं उन्हें अल्पसंख्यक वाहक कहा जाता है। एक ही वर्णनकर्ता छेद पर प्रयुक्त होते हैं: और वे पी- टाइप साइड पर बहुसंख्यक वाहक होते हैं और एन-टाइप साइड पर अल्पसंख्यक वाहक होते हैं।

एक आगे का पूर्वाग्रह प्रयुक्त वोल्टेज की मात्रा से दो थोक आधे-अधिभोग स्तरों को अलग करता है, जो पी-प्रकार के बल्क बैंड किनारों के पृथक्करण को कम करता है जिससे ऊर्जा में एन-प्रकार के समीप हो सकता है । जैसा कि चित्र में दिखाया गया है, बैंड किनारों में चरण को प्रयुक्त वोल्टेज द्वारा घटाकर कर दिया जाता है (बैंड बेंडिंग वाला आरेख वोल्ट की इकाइयों में बनाया जाता है इसलिए कोई भी इलेक्ट्रॉन आवेश में परिवर्तित नहीं होता है।

अग्र पूर्वाग्रह के तहत, पी-साइड से एन-साइड में छिद्रों से एक प्रसार धारा प्रवाहित होती है (जो कि एक सांद्रता प्रवणता द्वारा संचालित धारा होती है), और एन-साइड से पी-साइड तक विपरीत दिशा में इलेक्ट्रॉनों का प्रवाह होता है। इस स्थानांतरण को संचालित करने वाली ढाल निम्नानुसार स्थापित की गई है: इंटरफ़ेस से दूर थोक में, अल्पसंख्यक वाहकों में बहुसंख्यक वाहकों की तुलना में बहुत कम सांद्रता होती है, उदाहरण के लिए, पी-साइड पर इलेक्ट्रॉन घनत्व (जहां वे अल्पसंख्यक वाहक हैं) एक है कारकएन-साइड (जहां वे बहुसंख्यक वाहक हैं) से कम है। दूसरी ओर, इंटरफ़ेस के निकट, वोल्टेज का अनुप्रयोग बैंड किनारों में चरण को कम कर देता है और बल्क मानों के ऊपर बोल्ट्ज़मैन कारक द्वारा अल्पसंख्यक वाहक घनत्व को बढ़ाता है। जंक्शन के अंदर , पीएन-उत्पाद को संतुलन मूल्य से ऊपर बढ़ाया जाता है:[1]

प्रसार को संचालित करने वाली ढाल बाधा पर बड़े अर्थात अल्पसंख्यक वाहक घनत्व और थोक में कम घनत्व के बीच का अंतर है और यह ढाल अंतराफलक से थोक में अल्पसंख्यक वाहकों के प्रसार को संचालित करता है। इंजेक्ट किए गए अल्पसंख्यक वाहक संख्या में कम हो जाते हैं क्योंकि वे पुनर्संयोजन तंत्र द्वारा थोक में यात्रा करते हैं जो थोक मूल्यों की ओर अर्थात सांद्रता को चलाते हैं।

पुनर्संयोजन बहुसंख्यक वाहक के साथ सीधे सामना करना पड़ सकता है, दोनों वाहकों को नष्ट कर सकता है, या वाहक पीढ़ी और पुनर्संयोजन-पीढ़ी केंद्र के माध्यम से हो सकता है, दोष जो वैकल्पिक रूप से छिद्रों और इलेक्ट्रॉनों को फंसाता है, पुनर्संयोजन में सहायता करता है। अल्पसंख्यक वाहकों का सीमित वाहक जीवनकाल होता है और बदले में यह जीवनकाल सीमित करता है कि वे बहुसंख्यक वाहक पक्ष से अल्पसंख्यक वाहक पक्ष में कितनी दूर तक फैल सकते हैं, तथाकथित फ़िक के प्रसार के नियम या आयाम में उदाहरण समाधान: प्रसार लंबाई प्रकाश उत्सर्जक डायोड में, इलेक्ट्रॉनों और छिद्रों का पुनर्संयोजन वैलेंस और चालन बैंड के बीच ऊर्जा अंतराल से संबंधित तरंग दैर्ध्य के प्रकाश के उत्सर्जन के साथ होता है, इसलिए डायोड आगे की धारा के भाग को प्रकाश में परिवर्तित करता है।

आगे के पूर्वाग्रह के अनुसार छेद और इलेक्ट्रॉनों के लिए अर्ध-अधिभोग पंक्तियाँ पूरे उपकरण में समतल नहीं रह सकतीं है क्योंकि वे संतुलन में होते हैं, किन्तु अर्ध-फर्मी स्तर बन जाते हैं जो स्थिति के साथ भिन्न होते हैं। जैसा कि चित्र में दिखाया गया है, इलेक्ट्रॉन अर्ध-फर्मी स्तर स्थिति के साथ बदलता है, एन-थोक में अर्ध-अधिभोग संतुलन फर्मी स्तर से, पी-थोक में गहरे छिद्रों के लिए अर्ध-अधिभोग संतुलन स्तर तक छेद अर्ध-फर्मी स्तर विपरीत करता है। थोक पदार्थ में गहरे को छोड़कर दो अर्ध-फर्मी स्तर मेल नहीं खाते हैं

यह आंकड़ा दिखाता है कि बहुसंख्यक वाहक घनत्व उनके संबंधित थोक सामग्रियों में बहुसंख्यक वाहक घनत्व स्तर से गिरकर बाधा के शीर्ष पर एक कारक छोटे स्तर तक गिर जाता है, जो संतुलन मूल्य से कम हो जाता है अग्र डायोड पूर्वाग्रह की मात्रा क्योंकि यह अवरोध विपरीत रूप से डोप की गई सामग्री में स्थित है, अवरोध स्थिति में इंजेक्ट किए गए वाहक अब अल्पसंख्यक वाहक हैं। जैसे-जैसे पुनर्संयोजन जोर पकड़ता है, अल्पसंख्यक वाहक घनत्व थोक अल्पसंख्यक वाहकों के लिए उनके संतुलन मूल्यों की गहराई के साथ कम हो जाता है, जो इंजेक्शन से पहले बहुसंख्यक वाहकों के रूप में उनके थोक घनत्व से एक कारक छोटा होता है। इस बिंदु पर अर्ध-फर्मी स्तर थोक फर्मी स्तर की स्थिति में फिर से सम्मिलित हो जाते हैं।

बैंड किनारों में घटे हुए चरण का अर्थ यह भी है कि आगे के पूर्वाग्रह के अनुसार कमी क्षेत्र संकरा हो जाता है क्योंकि पी-साइड से इसमें छेद और एन-साइड से इलेक्ट्रॉनों को आगे बढ़ा दिया जाता है।

सरल पी-एन डायोड में वाहक घनत्व में घातीय वृद्धि के कारण आगे की धारा तेजी से आगे पूर्वाग्रह वोल्टेज के साथ बढ़ जाती है, इसलिए प्रयुक्त वोल्टेज के बहुत छोटे मूल्यों पर सदैव कुछ वर्तमान होता है। चूंकि यदि c कोई किसी विशेष वर्तमान स्तर में रुचि रखता है, तो उसे वर्तमान स्तर तक पहुंचने से पहले घुटने के वोल्टेज की आवश्यकता होगी (सिलिकॉन डायोड के लिए ~ 0.7 वी, अन्य सूचीबद्ध हैं) डायोड § विभिन्न अर्धचालकों के लिए फॉरवर्ड थ्रेशोल्ड वोल्टेज).[2] घुटने के ऊपर धारा तेजी से बढ़ता रहता है। कुछ विशेष डायोड, जैसे कि कुछ वैक्टरआगे की दिशा में घुटने के वोल्टेज तक कम वर्तमान स्तर को बनाए रखने के लिए अभिप्रायपूर्वक डिज़ाइन किए गए हैं।

विपरीत पूर्वाग्रह

पी-एन डायोड के लिए विपरीत पूर्वाग्रह में बैंड-बेंडिंग
रिवर्स-बायस्ड पी-एन डायोड में क्वासी-फर्मी स्तर।

विपरीत पूर्वाग्रह में छिद्रों के लिए अधिभोग स्तर फिर से थोक पी-प्रकार अर्धचालक के स्तर पर रहता है जबकि इलेक्ट्रॉनों के लिए अधिभोग स्तर थोक एन-प्रकार के लिए होता है। इस स्थिति में, पी-टाइप बल्क बैंड किनारों को रिवर्स पूर्वाग्रह द्वारा एन-टाइप बल्क के सापेक्ष उठाया जाता है, इसलिए दो बल्क अधिभोग स्तर प्रयुक्त वोल्टेज द्वारा निर्धारित ऊर्जा द्वारा फिर से अलग हो जाते हैं। जैसा कि चित्र में दिखाया गया है, इस व्यवहार का अर्थ है कि बैंड किनारों में चरण को बढ़ाकर कर दिया गया है और कमी क्षेत्र चौड़ा हो गया है क्योंकि पी-साइड पर छेद और एन-साइड पर इलेक्ट्रॉन इससे दूर खींचे जाते हैं।

जब विपरीत पूर्वाग्रह प्रयुक्त किया जाता है, तो रिक्तीकरण क्षेत्र में विद्युत क्षेत्र बढ़ जाता है, शून्य पूर्वाग्रह स्थिति की तुलना में इलेक्ट्रॉनों और छेदों को और दूर खींचता है। इस प्रकार, कोई भी धारा जो प्रवाहित होती है वह इस क्षेत्र में पीढ़ी-पुनर्संयोजन दोषों के कारण कमी क्षेत्र के अंदर वाहक निर्माण की बहुत अशक्त प्रक्रिया के कारण होती है। वह बहुत छोटा धारा विपरीत पूर्वाग्रह के अनुसार रिसाव धारा का स्रोत है। फोटोडायोड में, घटना प्रकाश द्वारा कमी क्षेत्र में छेद और इलेक्ट्रॉनों के निर्माण का उपयोग करके विपरीत धारा प्रस्तुत किया जाता है, इस टाइप घटना प्रकाश के भाग को विद्युत प्रवाह में परिवर्तित किया जाता है।

जब विपरीत पूर्वाग्रह बहुत बड़ा हो जाता है, ब्रेकडाउन वोल्टेज तक पहुंच जाता है, तो कमी क्षेत्र में उत्पादन प्रक्रिया तेज हो जाती है जिससे हिमस्खलन की स्थिति उत्पन्न हो जाती है जो भगा हुआ हो सकता है और डायोड को नष्ट कर सकता है।

डायोड नियम

आदर्श पी-एन डायोड का डीसी धारा -वोल्टेज व्यवहार शॉक्ले डायोड समीकरण द्वारा नियंत्रित होता है:[3]

जहाँ

डायोड के पार डीसी वोल्टेज है।
विपरीत सैचुरेशन धारा है, वह धारा जो तब बहता है जब डायोड विपरीत बायस्ड होता है (अर्थात , बड़ा और नकारात्मक है)।
आदर्श डायोड नियम द्वारा भविष्यवाणी की तुलना में वृद्धि की धीमी दर को मॉडल करने के लिए प्रस्तुत किया गया आदर्श कारक है।
का ऊष्मीय वोल्टेज है T = 290 केल्विन (इकाई) पर लगभग 25 mV के समान है ।

यह समीकरण गैर-आदर्श व्यवहार जैसे अर्थात विपरीत रिसाव या ब्रेकडाउन घटना को मॉडल नहीं करता है।

इस समीकरण का उपयोग करते हुए, प्रतिरोध पर डायोड है

कम प्रतिरोध प्रदर्शित करने से धारा जितनी अधिक होगी। नोट: विभेदक रूप या समय-भिन्न डायोड धारा और वोल्टेज,लोअरकेस को संदर्भित करने के लिए और उपयोग किया जाता है।

समाई

पी-एन डायोड के n और p पक्षों के बीच अवक्षय परत इन्सुलेट क्षेत्र के रूप में कार्य करता है जो दो डायोड संपर्कों को अलग करता है। इस प्रकार, विपरीत पूर्वाग्रह में डायोड डिप्लेशन-परत कैपेसिटेंस प्रदर्शित करता है, कभी-कभी अधिक अस्पष्ट रूप से जंक्शन कैपेसिटेंस कहा जाता है, संपर्कों के बीच परावैद्युत स्पेसर के साथ समानांतर प्लेट कैपेसिटर के अनुरूप होता है। विपरीत पूर्वाग्रह में घटती परत की चौड़ाई बढ़ते हुए विपरीत पूर्वाग्रह के साथ चौड़ी हो जाती है और समाई तदनुसार कम हो जाती है। इस प्रकार, जंक्शन वोल्टेज-नियंत्रणीय संधारित्र के रूप में कार्य करता है। सरलीकृत आयामी मॉडल में जंक्शन समाई है:

के साथ उपकरण क्षेत्र सापेक्ष अर्धचालक परावैद्युत पारगम्यता विद्युत स्थिरांक, और कमी चौड़ाई (उस क्षेत्र की मोटाई जहां मोबाइल वाहक घनत्व नगण्य है)।

आगे के पूर्वाग्रह में, उपरोक्त कमी-परत समाई के अतिरिक्त अल्पसंख्यक वाहक चार्ज इंजेक्शन और प्रसार होता है। अग्र पूर्वाग्रह में बदलाव के साथ होने वाले माइनॉरिटी कैरियर चार्ज में बदलाव को व्यक्त करते हुए प्रसार समाई उपस्थित है। संग्रहीत अल्पसंख्यक वाहक प्रभार के संदर्भ में डायोड धारा है:

जहाँ अल्पसंख्यक वाहकों के प्रसार से जुड़ा प्रभार है, और पारगमन समय है, इंजेक्शन क्षेत्र को पार करने के लिए अल्पसंख्यक प्रभार के लिए लिया गया समय सामान्यतः 0.1–100 नैनोसेकंड[4]इस आधार पर, प्रसार समाई की गणना की जाती है:

सामान्यतया अग्र पूर्वाग्रह में सामान्य वर्तमान स्तरों के लिए, यह धारिता अवक्षय-परत धारिता से कहीं अधिक है।

क्षणिक प्रतिक्रिया

पी-एन डायोड के लिए लघु-संकेत परिपथ नॉर्टन के प्रमेय के रूप में दर्शाए गए वर्तमान संकेत द्वारा संचालित होता है।

डायोड एक अत्यधिक गैर-रैखिक उपकरण है, किन्तु छोटे-सिग्नल भिन्नताओं के लिए इसकी प्रतिक्रिया का विश्लेषण एक चयनित शांत डीसी पूर्वाग्रह बिंदु (या क्यू-पॉइंट) के आधार पर एक छोटे-सिग्नल परिपथ का उपयोग करके किया जा सकता है, जिसके बारे में सिग्नल में भिन्नता की कल्पना की जाती है। वर्तमान और प्रतिरोध के साथ नॉर्टन स्रोत द्वारा संचालित डायोड के लिए समतुल्य परिपथ दिखाया गया है। आउटपुट नोड पर किरचॉफ के वर्तमान नियम का उपयोग करना:

डायोड प्रसार समाई, डायोड जंक्शन समाई (घटाव परत समाई) और डायोड चालू या बंद प्रतिरोध के साथ, सभी उस क्यू-बिंदु पर इस परिपथ द्वारा प्रदान किया गया आउटपुट वोल्टेज तब है:

जहाँ || समानांतर प्रतिरोध ऑपरेटर को इंगित करता है। यह ट्रांसरेसिस्टेंस एम्पलीफायर कोने की आवृत्ति या कटऑफ आवृत्ति को दर्शाता है :


और आवृत्तियों के लिए लाभ आवृत्ति के साथ बंद हो जाता है क्योंकि कैपेसिटर अवरोधक को लघु परिपथ करता है मान लें, जैसा कि डायोड चालू होने पर होता है, कि और के लिए ऊपर दिए गए भाव डायोड प्रतिरोध और समाई प्रदान करते हैं:

जो कोने की आवृत्ति को डायोड ट्रांजिट समय से संबंधित करता है।


विपरीत पूर्वाग्रह में संचालित डायोड के लिए शून्य है और शब्द कोने की आवृत्ति को अधिकांशतः कटऑफ आवृत्ति द्वारा प्रतिस्थापित किया जाता है। किसी भी घटना में, विपरीत पूर्वाग्रह में डायोड प्रतिरोध अधिक बड़ा हो जाता है, चूंकि आदर्श डायोड नियम के अनुसार अनंत नहीं है, और यह धारणा कि यह चालक के नॉर्टन प्रतिरोध से कम है, स्पष्ट नहीं हो सकती है। जंक्शन कैपेसिटेंस छोटा है और विपरीत पूर्वाग्रह पर निर्भर करता है कटऑफ आवृत्ति तब होती है:

और विपरीत पूर्वाग्रह के साथ बदलता रहता है क्योंकि डायोड विपरीत पूर्वाग्रह बढ़ने के साथ मोबाइल कैरियर्स के ख़त्म हुए इंसुलेटिंग क्षेत्र की चौड़ाई बढ़ जाती है, जिससे कैपेसिटेंस कम हो जाता है।[5]

यह भी देखें

टिप्पणियाँ

  1. 1.0 1.1 John Sparkes (1994). Semiconductor Devices (2nd ed.). CRC Press. p. 78. ISBN 0-7487-7382-7.
  2. Naturally, this voltage depends upon the selected current level. This voltage for the p–n diode is taken variously as 0.7 V and 0.5 V; see AS Sedra and KF Smith (1998). "Chapter 3: Diodes". Microelectronic circuits (4th ed.). Oxford University Press. p. 134 & Figure 3.8. ISBN 0-19-511663-1..
  3. Andrei Grebennikov (2011). "§2.1.1: Diodes: Operational principle". RF and Microwave Transmitter Design. J Wiley & Sons. p. 59. ISBN 978-0-470-52099-4.
  4. Narain Arora (2007). Mosfet modeling for VLSI simulation: theory and practice. World Scientific. p. 539. ISBN 978-981-256-862-5. Jean-Pierre Colinge, Cynthia A. Colinge (2002). Physics of semiconductor devices (2nd ed.). Springer. p. 149. ISBN 1-4020-7018-7.
  5. The varactor is a p–n diode operated in reverse bias. See, for example, V.S.Bagad (2009). "§5.8.1 Varactor diode: Working principle". Microwave and Radar Engineering (2nd ed.). Technical Publications Pune. ISBN 978-81-8431-121-1.

This article incorporates material from the Citizendium article "Semiconductor diode", which is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License but not under the GFDL.

 [Category:Semiconductor devic