नुडसन प्रसार: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Particle behavior in systems of length less than the mean free path}} File:Knudsen diffusion.svg|thumb|300px|नुडसेन प्रसार के...")
 
No edit summary
Line 1: Line 1:
{{short description|Particle behavior in systems of length less than the mean free path}}
{{short description|Particle behavior in systems of length less than the mean free path}}
[[File:Knudsen diffusion.svg|thumb|300px|नुडसेन प्रसार के मामले में एक बेलनाकार छिद्र में एक अणु का योजनाबद्ध आरेखण; ध्यान में लीन होना व्यास संकेत कर रहे हैं ({{mvar|d}}) और कण का मुक्त पथ ({{mvar|l}}).]]भौतिकी में, नुडसन [[प्रसार]], [[मार्टिन नुडसन]] के नाम पर, प्रसार का एक साधन है, जो तब होता है जब एक प्रणाली की [[विशेषता लंबाई]] शामिल कणों के औसत मुक्त पथ से तुलनीय या उससे कम होती है। इसका एक उदाहरण एक संकीर्ण व्यास (2–50 एनएम) के साथ एक लंबे [[सरंध्रता]] में है क्योंकि अणु अक्सर छिद्र की दीवार से टकराते हैं।<ref>{{cite web|url=http://sinnott.mse.ufl.edu/Backgrounds/theo02_diff.html |title=छोटे छिद्रों में परिवहन|access-date=2009-10-20 |url-status=dead |archive-url=https://web.archive.org/web/20091029090411/http://sinnott.mse.ufl.edu/Backgrounds/theo02_diff.html |archive-date=2009-10-29 }}</ref> एक अन्य उदाहरण के रूप में, बहुत छोटे [[केशिका]] छिद्रों के माध्यम से [[गैस]] के अणुओं के प्रसार पर विचार करें। यदि छिद्र का व्यास फैलाने वाले गैस अणुओं के औसत मुक्त पथ से छोटा होता है, और गैस का [[घनत्व]] कम होता है, तो गैस के अणु एक-दूसरे की तुलना में छिद्र की दीवारों से अधिक बार टकराते हैं, जिससे नुडसेन प्रसार होता है।
[[File:Knudsen diffusion.svg|thumb|300px|नुडसेन प्रसार के स्थिति में एक बेलनाकार छिद्र में एक अणु का योजनाबद्ध आरेखण; ध्यान में लीन होना व्यास संकेत कर रहे हैं ({{mvar|d}}) और कण का मुक्त पथ ({{mvar|l}}).]]भौतिकी में, नुडसन [[प्रसार]], [[मार्टिन नुडसन]] के नाम पर, प्रसार का एक साधन है, जो तब होता है जब एक प्रणाली की [[विशेषता लंबाई]] सम्मिलित कणों के औसत मुक्त पथ से तुलनीय या उससे कम होती है। इसका एक उदाहरण एक संकीर्ण व्यास (2–50 एनएम) के साथ एक लंबे [[सरंध्रता]] में है क्योंकि अणु अधिकांशतः छिद्र की दीवार से टकराते हैं।<ref>{{cite web|url=http://sinnott.mse.ufl.edu/Backgrounds/theo02_diff.html |title=छोटे छिद्रों में परिवहन|access-date=2009-10-20 |url-status=dead |archive-url=https://web.archive.org/web/20091029090411/http://sinnott.mse.ufl.edu/Backgrounds/theo02_diff.html |archive-date=2009-10-29 }}</ref> एक अन्य उदाहरण के रूप में, बहुत छोटे [[केशिका]] छिद्रों के माध्यम से [[गैस]] के अणुओं के प्रसार पर विचार करें। यदि छिद्र का व्यास फैलाने वाले गैस अणुओं के औसत मुक्त पथ से छोटा होता है, और गैस का [[घनत्व]] कम होता है, तो गैस के अणु एक-दूसरे की तुलना में छिद्र की दीवारों से अधिक बार टकराते हैं, जिससे नुडसेन प्रसार होता है।


[[द्रव यांत्रिकी]] में, नुडसन संख्या नुडसन प्रसार के सापेक्ष महत्व का एक अच्छा उपाय है। एक से अधिक नूडसेन संख्या इंगित करती है कि नूडसेन प्रसार महत्वपूर्ण है। व्यवहार में, नुडसन प्रसार केवल गैसों पर लागू होता है क्योंकि [[तरल]] अवस्था में अणुओं के लिए औसत मुक्त पथ बहुत छोटा होता है, आमतौर पर अणु के व्यास के पास।
[[द्रव यांत्रिकी]] में, नुडसन संख्या नुडसन प्रसार के सापेक्ष महत्व का एक अच्छा उपाय है। एक से अधिक नूडसेन संख्या संकेत करती है कि नूडसेन प्रसार महत्वपूर्ण है। अभ्यास में नुडसन प्रसार केवल गैसों पर प्रयुक्त होता है क्योंकि तरल अवस्था में अणुओं के लिए औसत मुक्त पथ अणु के व्यास के पास सामान्यतः बहुत छोटा होता है।


== गणितीय विवरण ==
== गणितीय विवरण ==
Knudsen प्रसार के लिए प्रसार गैसों के गतिज सिद्धांत से प्राप्त स्व-प्रसार गुणांक से प्राप्त होता है:<ref>{{cite book |first1=James R. |last1=Welty |first2=Charles E. |last2=Wicks |first3=Robert E. |last3=Wilson |first4=Gregory L. |last4=Rorrer |title=मोमेंटम, हीट एंड मास ट्रांसफर के फंडामेंटल|edition=5th |publisher=John Wiley and Sons |location=Hoboken |isbn=978-0-470-12868-8 |year=2008 }}</ref>
नुडसेन प्रसार के लिए प्रसार गैसों के गतिज सिद्धांत से प्राप्त स्व-प्रसार गुणांक से प्राप्त होता है:<ref>{{cite book |first1=James R. |last1=Welty |first2=Charles E. |last2=Wicks |first3=Robert E. |last3=Wilson |first4=Gregory L. |last4=Rorrer |title=मोमेंटम, हीट एंड मास ट्रांसफर के फंडामेंटल|edition=5th |publisher=John Wiley and Sons |location=Hoboken |isbn=978-0-470-12868-8 |year=2008 }}</ref>
:<math>{D_{AA*}} = {{\lambda u} \over {3}} = {{\lambda}\over{3}} \sqrt{{8R T}\over {\pi M_{A}}}</math>
:<math>{D_{AA*}} = {{\lambda u} \over {3}} = {{\lambda}\over{3}} \sqrt{{8R T}\over {\pi M_{A}}}</math>
नुडसेन प्रसार के लिए, पथ की लंबाई λ को ताकना व्यास से बदल दिया जाता है <math>d</math>, क्योंकि प्रजाति A के अब दूसरे अणु के विपरीत छिद्र की दीवार से टकराने की अधिक संभावना है। विसरित प्रजातियों के लिए नुडसन विसरणशीलता ए, <math>D_{KA}</math> इस प्रकार है
नुडसेन प्रसार के लिए, पथ की लंबाई λ को छिद्रयुक्त व्यास <math>d</math> से बदल दिया जाता है , क्योंकि प्रजाति A के अब दूसरे अणु के विपरीत छिद्र की दीवार से टकराने की अधिक संभावना है। विसरित प्रजातियों के लिए नुडसन विसरणशीलता ए, <math>D_{KA}</math> इस प्रकार है
 
:<math>{D_{KA}} = {d u\over {3}} = {{d\over{3}}} \sqrt{{8 R T}\over {\pi M_{A}}},</math>
:<math>{D_{KA}} = {d u\over {3}} = {{d\over{3}}} \sqrt{{8 R T}\over {\pi M_{A}}},</math>
कहाँ <math>R</math> [[गैस स्थिरांक]] (8.3144 J/(mol·K) SI इकाइयों में), दाढ़ द्रव्यमान है <math>M_{A}</math> किग्रा/मोल और तापमान T ([[केल्विन]] में) की इकाइयों में व्यक्त किया जाता है। नुडसन डिफिसिविटी <math>D_{KA}</math> इस प्रकार ताकना व्यास, प्रजाति दाढ़ द्रव्यमान और तापमान पर निर्भर करता है। एक आणविक प्रवाह के रूप में व्यक्त किया गया, नुडसन प्रसार फिक के प्रसार के नियमों के लिए समीकरण का अनुसरण करता है। फिक का प्रसार का पहला नियम:
जहाँ <math>R</math> [[गैस स्थिरांक]] (8.3144 J/(mol·K) SI इकाइयों में), अणु द्रव्यमान कों <math>M_{A}</math> किग्रा/मोल और तापमान T ([[केल्विन]] में) की इकाइयों में व्यक्त किया जाता है। नुडसन डिफिसिविटी <math>D_{KA}</math> इस प्रकार छिद्रयुक्त व्यास, प्रजाति अणु द्रव्यमान और तापमान पर निर्भर करता है। एक आणविक प्रवाह के रूप में व्यक्त किया गया है, नुडसन प्रसार फिक के प्रसार के नियमों के लिए समीकरण का अनुसरण करता है। फिक प्रसार का पहला नियम के अनुसार
:<math>J_K = \nabla n D_{KA}</math>
:<math>J_K = \nabla n D_{KA}</math>
यहाँ, <math>J_K</math> mol/m²·s में आणविक प्रवाह है, <math>n</math> में दाढ़ एकाग्रता है <math>\rm mol/m^3</math>. विसारक प्रवाह एक सांद्रता प्रवणता द्वारा संचालित होता है, जो ज्यादातर मामलों में एक दबाव प्रवणता (<i>i.e.</i>) के रूप में सन्निहित होता है। <math>n=P/RT</math> इसलिए <math>\nabla n=\frac{\Delta P}{RTl}</math> कहाँ <math>\Delta P</math> ताकना के दोनों पक्षों के बीच दबाव अंतर है और <math>l</math> ताकना की लंबाई है)।
यहाँ, <math>J_K</math> mol/m²·s में आणविक प्रवाह है, <math>n</math> <math>\rm mol/m^3</math> में अणु मोलर सांद्रता है . विसारक प्रवाह एक सांद्रता प्रवणता द्वारा संचालित होता है, जो अधिकतर स्थितियों में एक दबाव प्रवणता <math>n=P/RT</math>(<i>i.e.</i>) के रूप में सन्निहित होता है। इसलिए <math>\nabla n=\frac{\Delta P}{RTl}</math> जहाँ <math>\Delta P</math> छिद्रयुक्त के दोनों पक्षों के बीच दबाव अंतर है और <math>l</math> छिद्रयुक्त की लंबाई है)।


अगर हम ऐसा मान लें <math>\Delta P</math> से बहुत कम है <math>P_{\rm ave}</math>, सिस्टम में औसत निरपेक्ष दबाव (<i>यानी</i> <math>\Delta P \ll P_{\rm ave}</math>) तब हम नुडसेन फ्लक्स को वॉल्यूमेट्रिक फ्लो रेट के रूप में व्यक्त कर सकते हैं:
यदि हम ऐसा मान लें <math>\Delta P</math> से बहुत कम है <math>P_{\rm ave}</math>, सिस्टम में औसत निरपेक्ष दबाव (<i>अर्थात</i> <math>\Delta P \ll P_{\rm ave}</math>) तब हम नुडसेन फ्लक्स को वॉल्यूमेट्रिक फ्लो रेट के रूप में व्यक्त कर सकते हैं:


:<math>Q_K=\frac{\Delta Pd^3}{6lP_{\rm ave}} \sqrt{\frac{2\pi RT}{M_A}}</math>,
:<math>Q_K=\frac{\Delta Pd^3}{6lP_{\rm ave}} \sqrt{\frac{2\pi RT}{M_A}}</math>,


कहाँ <math>Q_K</math> में अनुमापी प्रवाह दर है <math>\rm m^3/s</math>. यदि ताकना अपेक्षाकृत कम है, तो प्रवेश प्रभाव ताकना के माध्यम से शुद्ध प्रवाह को काफी कम कर सकता है। इस मामले में, एक प्रभावी लंबाई को प्रतिस्थापित करके प्रवेश प्रभाव के कारण अतिरिक्त प्रतिरोध की गणना करने के लिए [[ बहाव ]] का उपयोग किया जा सकता है <math>l_{\rm e}=l+\tfrac{4}{3}d</math> के लिए <math>l</math>. आम तौर पर, नुडसन प्रक्रिया केवल कम दबाव और छोटे छिद्र व्यास पर महत्वपूर्ण होती है। हालाँकि ऐसे उदाहरण हो सकते हैं जहाँ नुडसन प्रसार और आणविक प्रसार दोनों हों <math>D_{AB}</math> महत्वपूर्ण हैं। ए और बी के बाइनरी मिश्रण में प्रजाति की प्रभावी प्रसारशीलता, <math>D_{Ae}</math> इसके द्वारा निर्धारित किया जाता है
जहाँ <math>Q_K</math> <math>\rm m^3/s</math> में अनुमापी प्रवाह दर है | यदि छिद्रयुक्त अपेक्षाकृत कम है, तो प्रवेश प्रभाव छिद्रयुक्त के माध्यम से शुद्ध प्रवाह को अधिक कम कर सकता है। इस स्थिति में, एक प्रभावी लंबाई <math>l_{\rm e}=l+\tfrac{4}{3}d</math> के लिए <math>l</math>. सामान्यतः, नुडसन प्रक्रिया केवल कम दबाव और छोटे छिद्र व्यास पर महत्वपूर्ण होती है। चूँकि ऐसे उदाहरण हो सकते हैं जहाँ नुडसन प्रसार और आणविक प्रसार दोनों हों <math>D_{AB}</math> महत्वपूर्ण हैं। aऔर b के बाइनरी मिश्रण में प्रजाति a की प्रभावी प्रसारशीलता, <math>D_{Ae}</math> द्वारा निर्धारित किया जाता है


:<math>\frac{1}{{{D}_{Ae}}}=\frac{1-\alpha {{y}_{a}}}{{{D}_{AB}}}+\frac{1}{{{D}_{KA}}},</math>
:<math>\frac{1}{{{D}_{Ae}}}=\frac{1-\alpha {{y}_{a}}}{{{D}_{AB}}}+\frac{1}{{{D}_{KA}}},</math>
कहाँ <math>\alpha = 1 + \tfrac{{{N}_{B}}}{{{N}_{A}}}</math> और <math>{N}_{i}</math> घटक i का प्रवाह है।
जहाँ <math>\alpha = 1 + \tfrac{{{N}_{B}}}{{{N}_{A}}}</math> और <math>{N}_{i}</math> घटक i का प्रवाह है।
ऐसे मामलों के लिए जहां α = 0 (<math>N_{A} = -N_{B}</math>, यानी प्रतिधारा प्रसार)<ref>{{Cite book|last=Satterfield|first=Charles N.|url=https://www.worldcat.org/oclc/67597|title=विषम कटैलिसीस में बड़े पैमाने पर स्थानांतरण|date=1969|publisher=M.I.T. Press|isbn=0-262-19062-1|location=Cambridge, Mass.|oclc=67597}}</ref> या जहां <math>y_{A}</math> शून्य के करीब है, समीकरण कम हो जाता है
 
ऐसे स्थितियों के लिए जहां α = 0 (<math>N_{A} = -N_{B}</math>, अर्थात प्रतिधारा प्रसार)<ref>{{Cite book|last=Satterfield|first=Charles N.|url=https://www.worldcat.org/oclc/67597|title=विषम कटैलिसीस में बड़े पैमाने पर स्थानांतरण|date=1969|publisher=M.I.T. Press|isbn=0-262-19062-1|location=Cambridge, Mass.|oclc=67597}}</ref> या जहां <math>y_{A}</math> शून्य के निकट है, जिससे समीकरण कम हो जाता है
:<math>\frac{1}{{{D}_{Ae}}}=\frac{1}{{{D}_{AB}}}+\frac{1}{{{D}_{KA}}}.</math>
:<math>\frac{1}{{{D}_{Ae}}}=\frac{1}{{{D}_{AB}}}+\frac{1}{{{D}_{KA}}}.</math>


Line 27: Line 29:
== नुडसेन आत्म प्रसार ==
== नुडसेन आत्म प्रसार ==


नुडसन प्रसार शासन में, अणु एक दूसरे के साथ बातचीत नहीं करते हैं, जिससे कि वे ताकना चैनल सतह पर बिंदुओं के बीच सीधी रेखा में चलते हैं। स्व-विसरणशीलता व्यक्तिगत अणुओं की अनुवाद संबंधी गतिशीलता का एक उपाय है। [[थर्मोडायनामिक संतुलन]] की शर्तों के तहत, एक अणु को टैग किया जाता है और इसके प्रक्षेपवक्र का लंबे समय तक पालन किया जाता है। यदि गति विसारक है, और लंबी दूरी के सहसंबंधों के बिना एक माध्यम में, अणु का वर्ग विस्थापन अपनी मूल स्थिति से अंततः समय के साथ रैखिक रूप से बढ़ेगा (ब्राउनियन गति#आइंस्टीन का सिद्धांत|आइंस्टीन का समीकरण)। सिमुलेशन में सांख्यिकीय त्रुटियों को कम करने के लिए, स्व-विसरणशीलता, <math>D_{S}</math>, एक प्रजाति की एक बड़ी संख्या में अणुओं एन पर आइंस्टीन के समीकरण के औसत से परिभाषित किया गया है।<ref>{{cite web|title=नुडसन सेल्फ- और फिकियन डिफ्यूजन इन रफ नैनोपोरस मीडिया|url=http://www.uni-leipzig.de/diffusion/pdf/MalekCoppens_JCP_031.pdf}}</ref>
नुडसन प्रसार शासन में, अणु एक दूसरे के साथ बातचीत नहीं करते हैं, जिससे कि वे छिद्रयुक्त चैनल सतह पर बिंदुओं के बीच सीधी रेखा में चलते हैं। स्व-विसरणशीलता व्यक्तिगत अणुओं की अनुवाद संबंधी गतिशीलता का एक उपाय है। [[थर्मोडायनामिक संतुलन]] की शर्तों के तहत, एक अणु को टैग किया जाता है और इसके प्रक्षेपवक्र का लंबे समय तक पालन किया जाता है। यदि गति विसारक है, और लंबी दूरी के सहसंबंधों के बिना एक माध्यम में, अणु का वर्ग विस्थापन अपनी मूल स्थिति से अंततः समय के साथ रैखिक रूप से बढ़ेगा (ब्राउनियन गति#आइंस्टीन का सिद्धांत|आइंस्टीन का समीकरण)। सिमुलेशन में सांख्यिकीय त्रुटियों को कम करने के लिए, स्व-विसरणशीलता, <math>D_{S}</math>, एक प्रजाति की एक बड़ी संख्या में अणुओं एन पर आइंस्टीन के समीकरण के औसत से परिभाषित किया गया है।<ref>{{cite web|title=नुडसन सेल्फ- और फिकियन डिफ्यूजन इन रफ नैनोपोरस मीडिया|url=http://www.uni-leipzig.de/diffusion/pdf/MalekCoppens_JCP_031.pdf}}</ref>




Line 41: Line 43:


==बाहरी संबंध==
==बाहरी संबंध==
* [https://www.fxsolver.com/browse/?q=knudsen Knudsen number and diffusivity calculators]
* [https://www.fxsolver.com/browse/?q=knudsen नुडसेन number and diffusivity calculators]
[[Category: प्रसार]]  
[[Category: प्रसार]]  



Revision as of 17:05, 18 June 2023

नुडसेन प्रसार के स्थिति में एक बेलनाकार छिद्र में एक अणु का योजनाबद्ध आरेखण; ध्यान में लीन होना व्यास संकेत कर रहे हैं (d) और कण का मुक्त पथ (l).

भौतिकी में, नुडसन प्रसार, मार्टिन नुडसन के नाम पर, प्रसार का एक साधन है, जो तब होता है जब एक प्रणाली की विशेषता लंबाई सम्मिलित कणों के औसत मुक्त पथ से तुलनीय या उससे कम होती है। इसका एक उदाहरण एक संकीर्ण व्यास (2–50 एनएम) के साथ एक लंबे सरंध्रता में है क्योंकि अणु अधिकांशतः छिद्र की दीवार से टकराते हैं।[1] एक अन्य उदाहरण के रूप में, बहुत छोटे केशिका छिद्रों के माध्यम से गैस के अणुओं के प्रसार पर विचार करें। यदि छिद्र का व्यास फैलाने वाले गैस अणुओं के औसत मुक्त पथ से छोटा होता है, और गैस का घनत्व कम होता है, तो गैस के अणु एक-दूसरे की तुलना में छिद्र की दीवारों से अधिक बार टकराते हैं, जिससे नुडसेन प्रसार होता है।

द्रव यांत्रिकी में, नुडसन संख्या नुडसन प्रसार के सापेक्ष महत्व का एक अच्छा उपाय है। एक से अधिक नूडसेन संख्या संकेत करती है कि नूडसेन प्रसार महत्वपूर्ण है। अभ्यास में नुडसन प्रसार केवल गैसों पर प्रयुक्त होता है क्योंकि तरल अवस्था में अणुओं के लिए औसत मुक्त पथ अणु के व्यास के पास सामान्यतः बहुत छोटा होता है।

गणितीय विवरण

नुडसेन प्रसार के लिए प्रसार गैसों के गतिज सिद्धांत से प्राप्त स्व-प्रसार गुणांक से प्राप्त होता है:[2]

नुडसेन प्रसार के लिए, पथ की लंबाई λ को छिद्रयुक्त व्यास से बदल दिया जाता है , क्योंकि प्रजाति A के अब दूसरे अणु के विपरीत छिद्र की दीवार से टकराने की अधिक संभावना है। विसरित प्रजातियों के लिए नुडसन विसरणशीलता ए, इस प्रकार है

जहाँ गैस स्थिरांक (8.3144 J/(mol·K) SI इकाइयों में), अणु द्रव्यमान कों किग्रा/मोल और तापमान T (केल्विन में) की इकाइयों में व्यक्त किया जाता है। नुडसन डिफिसिविटी इस प्रकार छिद्रयुक्त व्यास, प्रजाति अणु द्रव्यमान और तापमान पर निर्भर करता है। एक आणविक प्रवाह के रूप में व्यक्त किया गया है, नुडसन प्रसार फिक के प्रसार के नियमों के लिए समीकरण का अनुसरण करता है। फिक प्रसार का पहला नियम के अनुसार

यहाँ, mol/m²·s में आणविक प्रवाह है, में अणु मोलर सांद्रता है . विसारक प्रवाह एक सांद्रता प्रवणता द्वारा संचालित होता है, जो अधिकतर स्थितियों में एक दबाव प्रवणता (i.e.) के रूप में सन्निहित होता है। इसलिए जहाँ छिद्रयुक्त के दोनों पक्षों के बीच दबाव अंतर है और छिद्रयुक्त की लंबाई है)।

यदि हम ऐसा मान लें से बहुत कम है , सिस्टम में औसत निरपेक्ष दबाव (अर्थात ) तब हम नुडसेन फ्लक्स को वॉल्यूमेट्रिक फ्लो रेट के रूप में व्यक्त कर सकते हैं:

,

जहाँ में अनुमापी प्रवाह दर है | यदि छिद्रयुक्त अपेक्षाकृत कम है, तो प्रवेश प्रभाव छिद्रयुक्त के माध्यम से शुद्ध प्रवाह को अधिक कम कर सकता है। इस स्थिति में, एक प्रभावी लंबाई के लिए . सामान्यतः, नुडसन प्रक्रिया केवल कम दबाव और छोटे छिद्र व्यास पर महत्वपूर्ण होती है। चूँकि ऐसे उदाहरण हो सकते हैं जहाँ नुडसन प्रसार और आणविक प्रसार दोनों हों महत्वपूर्ण हैं। aऔर b के बाइनरी मिश्रण में प्रजाति a की प्रभावी प्रसारशीलता, द्वारा निर्धारित किया जाता है

जहाँ और घटक i का प्रवाह है।

ऐसे स्थितियों के लिए जहां α = 0 (, अर्थात प्रतिधारा प्रसार)[3] या जहां शून्य के निकट है, जिससे समीकरण कम हो जाता है


नुडसेन आत्म प्रसार

नुडसन प्रसार शासन में, अणु एक दूसरे के साथ बातचीत नहीं करते हैं, जिससे कि वे छिद्रयुक्त चैनल सतह पर बिंदुओं के बीच सीधी रेखा में चलते हैं। स्व-विसरणशीलता व्यक्तिगत अणुओं की अनुवाद संबंधी गतिशीलता का एक उपाय है। थर्मोडायनामिक संतुलन की शर्तों के तहत, एक अणु को टैग किया जाता है और इसके प्रक्षेपवक्र का लंबे समय तक पालन किया जाता है। यदि गति विसारक है, और लंबी दूरी के सहसंबंधों के बिना एक माध्यम में, अणु का वर्ग विस्थापन अपनी मूल स्थिति से अंततः समय के साथ रैखिक रूप से बढ़ेगा (ब्राउनियन गति#आइंस्टीन का सिद्धांत|आइंस्टीन का समीकरण)। सिमुलेशन में सांख्यिकीय त्रुटियों को कम करने के लिए, स्व-विसरणशीलता, , एक प्रजाति की एक बड़ी संख्या में अणुओं एन पर आइंस्टीन के समीकरण के औसत से परिभाषित किया गया है।[4]


यह भी देखें

संदर्भ

  1. "छोटे छिद्रों में परिवहन". Archived from the original on 2009-10-29. Retrieved 2009-10-20.
  2. Welty, James R.; Wicks, Charles E.; Wilson, Robert E.; Rorrer, Gregory L. (2008). मोमेंटम, हीट एंड मास ट्रांसफर के फंडामेंटल (5th ed.). Hoboken: John Wiley and Sons. ISBN 978-0-470-12868-8.
  3. Satterfield, Charles N. (1969). विषम कटैलिसीस में बड़े पैमाने पर स्थानांतरण. Cambridge, Mass.: M.I.T. Press. ISBN 0-262-19062-1. OCLC 67597.
  4. "नुडसन सेल्फ- और फिकियन डिफ्यूजन इन रफ नैनोपोरस मीडिया" (PDF).


बाहरी संबंध