दो आयामों में अक्षों का घूर्णन: Difference between revisions
(Created page with "{{Short description|Transformation of coordinates through an angle}} File:Rotation of coordinates.svg|thumb|320px|एक xy-कार्टेशियन समन्वय...") |
No edit summary |
||
Line 7: | Line 7: | ||
== प्रेरणा == | == प्रेरणा == | ||
[[विश्लेषणात्मक ज्यामिति]] के तरीकों का उपयोग करके [[वक्र (ज्यामिति)]] के समीकरणों का अध्ययन करने के लिए समन्वय प्रणाली आवश्यक है। समन्वय ज्यामिति की विधि का उपयोग करने के लिए, कुल्हाड़ियों को विचाराधीन वक्र के संबंध में सुविधाजनक स्थिति में रखा जाता है। उदाहरण के लिए, दीर्घवृत्त और अति[[परवलय]] के समीकरणों का अध्ययन करने के लिए, [[फोकस (ज्यामिति)]] आमतौर पर अक्षों में से एक पर स्थित होता है और मूल के संबंध में सममित रूप से स्थित होता है। यदि कुल्हाड़ियों के संबंध में वक्र ([[ अतिशयोक्ति ]], पैराबोला, दीर्घवृत्त, आदि) सुविधाजनक रूप से स्थित नहीं है, तो वक्र को एक सुविधाजनक और परिचित स्थान और अभिविन्यास पर रखने के लिए समन्वय प्रणाली को बदला जाना चाहिए। इस बदलाव को करने की प्रक्रिया को कोऑर्डिनेट सिस्टम#ट्रांसफॉर्मेशन कहा जाता है।<ref>{{harvtxt|Protter|Morrey|1970|pp=314–315}}</ref> | [[विश्लेषणात्मक ज्यामिति]] के तरीकों का उपयोग करके [[वक्र (ज्यामिति)]] के समीकरणों का अध्ययन करने के लिए समन्वय प्रणाली आवश्यक है। समन्वय ज्यामिति की विधि का उपयोग करने के लिए, कुल्हाड़ियों को विचाराधीन वक्र के संबंध में सुविधाजनक स्थिति में रखा जाता है। उदाहरण के लिए, दीर्घवृत्त और अति[[परवलय]] के समीकरणों का अध्ययन करने के लिए, [[फोकस (ज्यामिति)]] आमतौर पर अक्षों में से एक पर स्थित होता है और मूल के संबंध में सममित रूप से स्थित होता है। यदि कुल्हाड़ियों के संबंध में वक्र ([[ अतिशयोक्ति ]], पैराबोला, दीर्घवृत्त, आदि) सुविधाजनक रूप से स्थित नहीं है, तो वक्र को एक सुविधाजनक और परिचित स्थान और अभिविन्यास पर रखने के लिए समन्वय प्रणाली को बदला जाना चाहिए। इस बदलाव को करने की प्रक्रिया को कोऑर्डिनेट सिस्टम#ट्रांसफॉर्मेशन कहा जाता है।<ref>{{harvtxt|Protter|Morrey|1970|pp=314–315}}</ref> | ||
एक ही मूल के माध्यम से नए अक्षों को प्राप्त करने के लिए समन्वय अक्षों को घुमाकर कई समस्याओं का समाधान सरल किया जा सकता है। | एक ही मूल के माध्यम से नए अक्षों को प्राप्त करने के लिए समन्वय अक्षों को घुमाकर कई समस्याओं का समाधान सरल किया जा सकता है। | ||
Line 35: | Line 36: | ||
</math> | </math> | ||
जो दो आयामों में अक्षों के घूर्णन का मानक मैट्रिक्स समीकरण है।<ref>{{harvtxt|Anton|1987|p=230}}</ref> | जो दो आयामों में अक्षों के घूर्णन का मानक मैट्रिक्स समीकरण है।<ref>{{harvtxt|Anton|1987|p=230}}</ref> | ||
उलटा परिवर्तन है<ref>{{harvtxt|Protter|Morrey|1970|p=320}}</ref> | उलटा परिवर्तन है<ref>{{harvtxt|Protter|Morrey|1970|p=320}}</ref> | ||
{{NumBlk||<math display="block"> x = x' \cos \theta - y' \sin \theta </math>|{{EquationRef|7}}}} | {{NumBlk||<math display="block"> x = x' \cos \theta - y' \sin \theta </math>|{{EquationRef|7}}}} | ||
Line 97: | Line 99: | ||
अगर <math> \theta </math> चुना जाता है ताकि <math> \cot 2 \theta = (A - C)/B </math> हमारे पास होगा <math> B' = 0 </math> और x′y′ पद समीकरण में ({{EquationNote|10}}) गायब हो जाएगा।<ref>{{harvtxt|Protter|Morrey|1970|pp=321–322}}</ref> | अगर <math> \theta </math> चुना जाता है ताकि <math> \cot 2 \theta = (A - C)/B </math> हमारे पास होगा <math> B' = 0 </math> और x′y′ पद समीकरण में ({{EquationNote|10}}) गायब हो जाएगा।<ref>{{harvtxt|Protter|Morrey|1970|pp=321–322}}</ref> | ||
जब शून्य से भिन्न सभी बी, डी और ई के साथ कोई समस्या उत्पन्न होती है, तो उन्हें उत्तराधिकार में एक रोटेशन (बी को हटाकर) और एक अनुवाद (डी और ई शब्दों को हटाकर) करके समाप्त किया जा सकता है।<ref>{{harvtxt|Protter|Morrey|1970|p=324}}</ref> | जब शून्य से भिन्न सभी बी, डी और ई के साथ कोई समस्या उत्पन्न होती है, तो उन्हें उत्तराधिकार में एक रोटेशन (बी को हटाकर) और एक अनुवाद (डी और ई शब्दों को हटाकर) करके समाप्त किया जा सकता है।<ref>{{harvtxt|Protter|Morrey|1970|p=324}}</ref> | ||
Line 165: | Line 169: | ||
* {{citation | first1 = Richard L. | last1 = Burden | first2 = J. Douglas | last2 = Faires | year = 1993 | isbn = 0-534-93219-3 | title = Numerical Analysis | edition = 5th | publisher = [[Prindle, Weber and Schmidt]] | location = Boston | url-access = registration | url = https://archive.org/details/numericalanalysi00burd }} | * {{citation | first1 = Richard L. | last1 = Burden | first2 = J. Douglas | last2 = Faires | year = 1993 | isbn = 0-534-93219-3 | title = Numerical Analysis | edition = 5th | publisher = [[Prindle, Weber and Schmidt]] | location = Boston | url-access = registration | url = https://archive.org/details/numericalanalysi00burd }} | ||
* {{ citation | first1 = Murray H. | last1 = Protter | first2 = Charles B. | last2 = Morrey, Jr. | year = 1970 | lccn = 76087042 | title = College Calculus with Analytic Geometry | edition = 2nd | publisher = [[Addison-Wesley]] | location = Reading }} | * {{ citation | first1 = Murray H. | last1 = Protter | first2 = Charles B. | last2 = Morrey, Jr. | year = 1970 | lccn = 76087042 | title = College Calculus with Analytic Geometry | edition = 2nd | publisher = [[Addison-Wesley]] | location = Reading }} | ||
[[Category: कार्य और मानचित्रण]] [[Category: यूक्लिडियन ज्यामिति]] [[Category: लीनियर अलजेब्रा]] [[Category: परिवर्तन (फ़ंक्शन)]] [[Category: ROTATION]] | [[Category: कार्य और मानचित्रण]] [[Category: यूक्लिडियन ज्यामिति]] [[Category: लीनियर अलजेब्रा]] [[Category: परिवर्तन (फ़ंक्शन)]] [[Category: ROTATION]] | ||
Revision as of 07:26, 10 June 2023
गणित में, दो आयामों में कुल्हाड़ियों का घूर्णन एक xy-कार्तीय समन्वय प्रणाली से एक x′y-कार्तीय समन्वय प्रणाली का मानचित्र (गणित) है जिसमें मूल (गणित) रखा जाता है। नियत और x और y कुल्हाड़ियों को x और y कुल्हाड़ियों को एक कोण से वामावर्त घुमाकर प्राप्त किया जाता है . एक बिंदु P में मूल प्रणाली के संबंध में निर्देशांक (x, y) हैं और नई प्रणाली के संबंध में निर्देशांक (x′, y′) हैं।[1] नई समन्वय प्रणाली में, बिंदु P विपरीत दिशा में घूमता हुआ प्रतीत होगा, अर्थात, कोण के माध्यम से दक्षिणावर्त . दो से अधिक आयामों में कुल्हाड़ियों के रोटेशन को इसी तरह परिभाषित किया गया है।[2][3] अक्षों का घूर्णन एक रेखीय मानचित्र है[4][5] और एक कठोर परिवर्तन।
प्रेरणा
विश्लेषणात्मक ज्यामिति के तरीकों का उपयोग करके वक्र (ज्यामिति) के समीकरणों का अध्ययन करने के लिए समन्वय प्रणाली आवश्यक है। समन्वय ज्यामिति की विधि का उपयोग करने के लिए, कुल्हाड़ियों को विचाराधीन वक्र के संबंध में सुविधाजनक स्थिति में रखा जाता है। उदाहरण के लिए, दीर्घवृत्त और अतिपरवलय के समीकरणों का अध्ययन करने के लिए, फोकस (ज्यामिति) आमतौर पर अक्षों में से एक पर स्थित होता है और मूल के संबंध में सममित रूप से स्थित होता है। यदि कुल्हाड़ियों के संबंध में वक्र (अतिशयोक्ति , पैराबोला, दीर्घवृत्त, आदि) सुविधाजनक रूप से स्थित नहीं है, तो वक्र को एक सुविधाजनक और परिचित स्थान और अभिविन्यास पर रखने के लिए समन्वय प्रणाली को बदला जाना चाहिए। इस बदलाव को करने की प्रक्रिया को कोऑर्डिनेट सिस्टम#ट्रांसफॉर्मेशन कहा जाता है।[6]
एक ही मूल के माध्यम से नए अक्षों को प्राप्त करने के लिए समन्वय अक्षों को घुमाकर कई समस्याओं का समाधान सरल किया जा सकता है।
व्युत्पत्ति
दो आयामों में परिवर्तन को परिभाषित करने वाले समीकरण, जो xy अक्षों को एक कोण से वामावर्त घुमाते हैं x'y' कुल्हाड़ियों में, निम्नानुसार व्युत्पन्न होते हैं।
मान लीजिए कि xy प्रणाली में बिंदु P का ध्रुवीय निर्देशांक तंत्र है . तब, x'y' निकाय में, P के ध्रुवीय निर्देशांक होंगे .
त्रिकोणमितीय कार्यों का उपयोग करते हुए, हमारे पास है
|
(1) |
|
(2) |
और अंतर के लिए मानक त्रिकोणमितीय सूत्रों का उपयोग करके, हमारे पास है
|
(3) |
|
(4) |
प्रतिस्थापन समीकरण (1) और (2) समीकरणों में (3) और (4), हमने प्राप्त[7]
|
(5) |
|
(6) |
समीकरण (5) और (6) को मैट्रिक्स रूप में दर्शाया जा सकता है
उलटा परिवर्तन है[9]
|
(7) |
|
(8) |
या
दो आयामों में उदाहरण
उदाहरण 1
बिंदु के निर्देशांक ज्ञात कीजिए कुल्हाड़ियों को कोण के माध्यम से घुमाए जाने के बाद , या 30°.
समाधान:
उदाहरण 2
बिंदु के निर्देशांक ज्ञात कीजिए अक्षों को दक्षिणावर्त 90° घुमाने के बाद, यानी कोण के माध्यम से , या -90°।
समाधान:
शंकु वर्गों का घूर्णन
दूसरी डिग्री के सबसे सामान्य समीकरण का रूप है
|
(9) |
निर्देशांकों में परिवर्तन (अक्षों का घूर्णन और अक्षों का अनुवाद) के माध्यम से, समीकरण (9) को कार्टेशियन निर्देशांक में एक शांकव खंड # मानक रूपों में रखा जा सकता है, जिसके साथ काम करना आमतौर पर आसान होता है। x′y′ पद को समाप्त करने के लिए निर्देशांकों को एक विशिष्ट कोण पर घुमाना हमेशा संभव होता है। प्रतिस्थापन समीकरण (7) और (8) समीकरण में (9), हमने प्राप्त
|
(10) |
कहाँ
|
(11) |
अगर चुना जाता है ताकि हमारे पास होगा और x′y′ पद समीकरण में (10) गायब हो जाएगा।[11]
जब शून्य से भिन्न सभी बी, डी और ई के साथ कोई समस्या उत्पन्न होती है, तो उन्हें उत्तराधिकार में एक रोटेशन (बी को हटाकर) और एक अनुवाद (डी और ई शब्दों को हटाकर) करके समाप्त किया जा सकता है।[12]
घुमाए गए शांकव वर्गों की पहचान करना
समीकरण द्वारा दिया गया एक गैर-पतित शांकव खंड (9) का मूल्यांकन करके पहचाना जा सकता है . शांकव खंड है:[13]
- एक दीर्घवृत्त या एक वृत्त, यदि ;
- एक परबोला, अगर ;
- एक अतिपरवलय, अगर .
कई आयामों का सामान्यीकरण
मान लीजिए कि एक आयताकार xyz-निर्देशांक प्रणाली अपने z अक्ष के चारों ओर वामावर्त घुमाई जाती है (धनात्मक z अक्ष को नीचे की ओर देखते हुए) एक कोण के माध्यम से , अर्थात, धनात्मक x अक्ष को धनात्मक y अक्ष में तुरंत घुमाया जाता है। प्रत्येक बिंदु का z निर्देशांक अपरिवर्तित है और x और y निर्देशांक ऊपर के रूप में रूपांतरित होते हैं। किसी बिंदु Q के पुराने निर्देशांक (x, y, z) इसके नए निर्देशांक (x′, y′, z′) से संबंधित हैं[14]
- और
कुछ के लिए और कुछ i ≠ j.[15]
कई आयामों में उदाहरण
उदाहरण 3
बिंदु के निर्देशांक ज्ञात कीजिए सकारात्मक w अक्ष को कोण के माध्यम से घुमाए जाने के बाद , या 15°, धनात्मक z अक्ष में।
'समाधान:'
यह भी देखें
- घूर्णन
- [[ROTATION (गणित)]]
टिप्पणियाँ
- ↑ Protter & Morrey (1970, p. 320)
- ↑ Anton (1987, p. 231)
- ↑ Burden & Faires (1993, p. 532)
- ↑ Anton (1987, p. 247)
- ↑ Beauregard & Fraleigh (1973, p. 266)
- ↑ Protter & Morrey (1970, pp. 314–315)
- ↑ Protter & Morrey (1970, pp. 320–321)
- ↑ Anton (1987, p. 230)
- ↑ Protter & Morrey (1970, p. 320)
- ↑ Protter & Morrey (1970, p. 316)
- ↑ Protter & Morrey (1970, pp. 321–322)
- ↑ Protter & Morrey (1970, p. 324)
- ↑ Protter & Morrey (1970, p. 326)
- ↑ Anton (1987, p. 231)
- ↑ Burden & Faires (1993, p. 532)
संदर्भ
- Anton, Howard (1987), Elementary Linear Algebra (5th ed.), New York: Wiley, ISBN 0-471-84819-0
- Beauregard, Raymond A.; Fraleigh, John B. (1973), A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields, Boston: Houghton Mifflin Co., ISBN 0-395-14017-X
- Burden, Richard L.; Faires, J. Douglas (1993), Numerical Analysis (5th ed.), Boston: Prindle, Weber and Schmidt, ISBN 0-534-93219-3
- Protter, Murray H.; Morrey, Jr., Charles B. (1970), College Calculus with Analytic Geometry (2nd ed.), Reading: Addison-Wesley, LCCN 76087042