क्यू मान (परमाणु विज्ञान): Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Other uses|Q value (disambiguation){{!}}Q value}} | {{Other uses|Q value (disambiguation){{!}}Q value}} | ||
{{DISPLAYTITLE:''Q'' value (nuclear science)}}{{use dmy dates|date=}}परमाणु भौतिकी और रसायन विज्ञान में, किसी अभिक्रिया के लिए Q मान परमाणु अभिक्रिया के दौरान अवशोषित या जारी ऊर्जा की मात्रा है। यह मान किसी रासायनिक अभिक्रिया की एन्थैल्पी या रेडियोधर्मी क्षय उत्पादों की ऊर्जा से संबंधित है। इसे अभिकारकों और उत्पादों के द्रव्यमान से निर्धारित किया जा सकता है। Q का मान अभिक्रिया दर को प्रभावित करता हैं। प्रायः अभिक्रिया के लिए सकारात्मक Q मान जितना बड़ा होगा, अभिक्रिया उतनी ही तेजी से आगे बढ़ेगी, और अभिक्रिया उत्पादों के "पक्ष" में होने की अधिक संभावना होगी। | {{DISPLAYTITLE:''Q'' value (nuclear science)}}{{use dmy dates|date=}}परमाणु भौतिकी और रसायन विज्ञान में, किसी अभिक्रिया के लिए Q मान परमाणु अभिक्रिया के दौरान अवशोषित या जारी ऊर्जा की मात्रा है। यह मान किसी रासायनिक अभिक्रिया की एन्थैल्पी या रेडियोधर्मी क्षय उत्पादों की ऊर्जा से संबंधित है। इसे अभिकारकों और उत्पादों के द्रव्यमान से निर्धारित किया जा सकता है। Q का मान अभिक्रिया दर को प्रभावित करता हैं। प्रायः अभिक्रिया के लिए सकारात्मक Q मान जितना बड़ा होगा, अभिक्रिया उतनी ही तेजी से आगे बढ़ेगी,और अभिक्रिया उत्पादों के "पक्ष" में होने की अधिक संभावना होगी। | ||
:<math> Q = (\,m_\text{r} - m_\text{p}\,) \times \text{0.9315 GeV } </math> | :<math> Q = (\,m_\text{r} - m_\text{p}\,) \times \text{0.9315 GeV } </math> | ||
जहां द्रव्यमान परमाणु द्रव्यमान इकाइयों में हैं। साथ ही दोनों द्रव्यमान <math>\;m_\text{r}\;</math>और <math>\;m_\text{p}\;</math>क्रमशः अभिकारक और उत्पाद द्रव्यमान के योग हैं। | जहां द्रव्यमान परमाणु द्रव्यमान इकाइयों में हैं। साथ ही दोनों द्रव्यमान <math>\;m_\text{r}\;</math>और <math>\;m_\text{p}\;</math>क्रमशः अभिकारक और उत्पाद द्रव्यमान के योग हैं। | ||
=== परिभाषा === | === परिभाषा === | ||
परमाणु प्रक्रिया की प्रारंभिक और अंतिम ऊर्जा के बीच {{mvar|Q}} द्रव्यमान-ऊर्जा तुल्यता के आधार | परमाणु प्रक्रिया की प्रारंभिक और अंतिम ऊर्जा के बीच {{mvar|Q}} द्रव्यमान-ऊर्जा तुल्यता के आधार पर ऊर्जा का संरक्षण <math>\text{( } E_\text{i} = E_\text{f} \text{ ),}</math> की सामान्य परिभाषा को सक्षम बनाता है। किसी भी रेडियोधर्मी कण के क्षय के लिए, गतिज ऊर्जा अंतर निम्न द्वारा दिया जाएगा: | ||
:<math> Q = K_\text{f} - K_\text{i} = (\,m_\text{i}- m_\text{f}\,) \, c^2 ~</math> | :<math> Q = K_\text{f} - K_\text{i} = (\,m_\text{i}- m_\text{f}\,) \, c^2 ~</math> | ||
जहाँ K द्रव्यमान m की गतिज ऊर्जा को दर्शाता है। Q मान वाली अभिक्रिया ऊष्माक्षेपी होती है, अर्थात इसमें ऊर्जा का शुद्ध विमोचन होता है, क्योंकि अंतिम अवस्था की गतिज ऊर्जा प्रारंभिक अवस्था की गतिज ऊर्जा से अधिक होती है। नकारात्मक Q मान वाली अभिक्रिया ऊष्माशोषी अभिक्रिया होती है, अर्थात इसके लिए शुद्ध ऊर्जा इनपुट की आवश्यकता होती है, क्योंकि अंतिम अवस्था की गतिज ऊर्जा प्रारंभिक अवस्था की गतिज ऊर्जा से कम होती है ध्यान दें कि जब कोई रासायनिक अभिक्रिया ऋणात्मक में | जहाँ K द्रव्यमान m की गतिज ऊर्जा को दर्शाता है। Q मान वाली अभिक्रिया ऊष्माक्षेपी होती है, अर्थात इसमें ऊर्जा का शुद्ध विमोचन होता है, क्योंकि अंतिम अवस्था की गतिज ऊर्जा प्रारंभिक अवस्था की गतिज ऊर्जा से अधिक होती है। नकारात्मक Q मान वाली अभिक्रिया ऊष्माशोषी अभिक्रिया होती है, अर्थात इसके लिए शुद्ध ऊर्जा इनपुट की आवश्यकता होती है, क्योंकि अंतिम अवस्था की गतिज ऊर्जा प्रारंभिक अवस्था की गतिज ऊर्जा से कम होती है ध्यान दें कि जब कोई रासायनिक अभिक्रिया ऋणात्मक एन्थैल्पी में होती है तो वह ऊष्माक्षेपी होती है इसके विपरीत {{mvar|Q}} के मान को द्रव्यमान आधिक्य के रूप में भी व्यक्त किया जा सकता है <math>\Delta M</math> परमाणु प्रजातियों के रूप में: | ||
:<math> Q = \Delta M_\text{i} - \Delta M_\text{f} ~</math> | :<math> Q = \Delta M_\text{i} - \Delta M_\text{f} ~</math> | ||
एक नाभिक के द्रव्यमान को इस रूप में लिखा जा सकता है <math> M = A u + \Delta M, ~</math> | एक नाभिक के द्रव्यमान को इस रूप में लिखा जा सकता है <math> M = A u + \Delta M, ~</math> | ||
जहाँ <math> A ~</math> द्रव्यमान संख्या (प्रोटॉन और न्यूट्रॉन की संख्या का योग) है और <math>u =^{12}\!\!C/12= 931.494 </math> | जहाँ <math> A ~</math> द्रव्यमान संख्या (प्रोटॉन और न्यूट्रॉन की संख्या का योग) है और <math>u =^{12}\!\!C/12= 931.494 </math>MeV/C<math>^2~</math> ध्यान दें कि नाभिकीय अभिक्रिया में न्यूक्लिऑनों की संख्या संरक्षित रहती है। इस तरह, <math> A_f=A_i ~</math> और <math> Q = \Delta M_\text{i} - \Delta M_\text{f} ~</math>. | ||
=== अनुप्रयोग === | === अनुप्रयोग === | ||
रासायनिक Q मान कैलोरीमेट्री में माप हैं। ऊष्माक्षेपी रासायनिक अभिक्रियाएं अधिक सहज होती हैं और प्रकाश या गर्मी उत्सर्जित कर सकती हैं, जिसके परिणामस्वरूप अभिक्रिया (अर्थात विस्फोट) होती है। | रासायनिक Q मान कैलोरीमेट्री में माप हैं। ऊष्माक्षेपी रासायनिक अभिक्रियाएं अधिक सहज होती हैं और प्रकाश या गर्मी उत्सर्जित कर सकती हैं, जिसके परिणामस्वरूप अभिक्रिया (अर्थात विस्फोट) होती है। | ||
Qमान कण भौतिकी में भी चित्रित किए गए हैं। उदाहरण के लिए, सार्जेंट का नियम कहता है कि कमजोर अभिक्रिया दरें Q<sup>5</sup> के समानुपाती होती हैं। Q मान विश्राम अवस्था में क्षय | Qमान कण भौतिकी में भी चित्रित किए गए हैं। उदाहरण के लिए, सार्जेंट का नियम कहता है कि कमजोर अभिक्रिया दरें Q<sup>5</sup> के समानुपाती होती हैं। Q मान विश्राम अवस्था में क्षय के समय जारी गतिज ऊर्जा है। न्यूट्रॉन क्षय के लिए, द्रव्यमान विलुप्त हो जाता है क्योंकि न्यूट्रॉन एक प्रोटॉन, इलेक्ट्रॉन और एंटीन्यूट्रिनो में परिवर्तित हो जाते हैं: :<ref name="Martin"> | ||
{{cite book | {{cite book | ||
|first1=B.R. |last1=Martin | |first1=B.R. |last1=Martin | ||
Line 30: | Line 30: | ||
</ref> | </ref> | ||
:<math> Q = (m_\text{n} - m_\text{p} - m_\mathrm{\overline{\nu}} - m_\text{e})c^2 = K_\text{p} + K_\text{e} + K_{\overline{\nu}} = \text{0.782 MeV ,}</math> | :<math> Q = (m_\text{n} - m_\text{p} - m_\mathrm{\overline{\nu}} - m_\text{e})c^2 = K_\text{p} + K_\text{e} + K_{\overline{\nu}} = \text{0.782 MeV ,}</math> | ||
जहां | जहां m<sub>n</sub> न्यूट्रॉन का द्रव्यमान है, m<sub>p</sub> प्रोटॉन का द्रव्यमान है, m<sub>ν</sub> इलेक्ट्रॉन एंटीन्यूट्रिनो का द्रव्यमान है, और m<sub>e</sub> इलेक्ट्रॉन का द्रव्यमान है; और K संगत गतिज ऊर्जाएँ हैं। न्यूट्रॉन की कोई प्रारंभिक गतिज ऊर्जा नहीं है क्योंकि यह विश्राम की स्थिति में है। बीटा क्षय में, एक सामान्य Q लगभग 1 MeV होता है। | ||
क्षय ऊर्जा को दो से अधिक उत्पादों के लिए निरंतर वितरण में उत्पादों के बीच विभाजित किया जाता है। इस स्पेक्ट्रम को मापने से किसी उत्पाद का द्रव्यमान ज्ञात किया जा सकता है। प्रयोग न्यूट्रिनोलेस क्षय और न्यूट्रिनो मास की खोज के लिए उत्सर्जन स्पेक्ट्रम का अध्ययन कर रहे हैं; यह [[KATRIN]] प्रयोग का सिद्धांत है। | क्षय ऊर्जा को दो से अधिक उत्पादों के लिए निरंतर वितरण में उत्पादों के बीच विभाजित किया जाता है। इस स्पेक्ट्रम को मापने से किसी उत्पाद का द्रव्यमान ज्ञात किया जा सकता है। प्रयोग न्यूट्रिनोलेस क्षय और न्यूट्रिनो मास की खोज के लिए उत्सर्जन स्पेक्ट्रम का अध्ययन कर रहे हैं; यह [[KATRIN]] प्रयोग का सिद्धांत है। |
Revision as of 19:02, 27 June 2023
परमाणु भौतिकी और रसायन विज्ञान में, किसी अभिक्रिया के लिए Q मान परमाणु अभिक्रिया के दौरान अवशोषित या जारी ऊर्जा की मात्रा है। यह मान किसी रासायनिक अभिक्रिया की एन्थैल्पी या रेडियोधर्मी क्षय उत्पादों की ऊर्जा से संबंधित है। इसे अभिकारकों और उत्पादों के द्रव्यमान से निर्धारित किया जा सकता है। Q का मान अभिक्रिया दर को प्रभावित करता हैं। प्रायः अभिक्रिया के लिए सकारात्मक Q मान जितना बड़ा होगा, अभिक्रिया उतनी ही तेजी से आगे बढ़ेगी,और अभिक्रिया उत्पादों के "पक्ष" में होने की अधिक संभावना होगी।
जहां द्रव्यमान परमाणु द्रव्यमान इकाइयों में हैं। साथ ही दोनों द्रव्यमान और क्रमशः अभिकारक और उत्पाद द्रव्यमान के योग हैं।
परिभाषा
परमाणु प्रक्रिया की प्रारंभिक और अंतिम ऊर्जा के बीच Q द्रव्यमान-ऊर्जा तुल्यता के आधार पर ऊर्जा का संरक्षण की सामान्य परिभाषा को सक्षम बनाता है। किसी भी रेडियोधर्मी कण के क्षय के लिए, गतिज ऊर्जा अंतर निम्न द्वारा दिया जाएगा:
जहाँ K द्रव्यमान m की गतिज ऊर्जा को दर्शाता है। Q मान वाली अभिक्रिया ऊष्माक्षेपी होती है, अर्थात इसमें ऊर्जा का शुद्ध विमोचन होता है, क्योंकि अंतिम अवस्था की गतिज ऊर्जा प्रारंभिक अवस्था की गतिज ऊर्जा से अधिक होती है। नकारात्मक Q मान वाली अभिक्रिया ऊष्माशोषी अभिक्रिया होती है, अर्थात इसके लिए शुद्ध ऊर्जा इनपुट की आवश्यकता होती है, क्योंकि अंतिम अवस्था की गतिज ऊर्जा प्रारंभिक अवस्था की गतिज ऊर्जा से कम होती है ध्यान दें कि जब कोई रासायनिक अभिक्रिया ऋणात्मक एन्थैल्पी में होती है तो वह ऊष्माक्षेपी होती है इसके विपरीत Q के मान को द्रव्यमान आधिक्य के रूप में भी व्यक्त किया जा सकता है परमाणु प्रजातियों के रूप में:
एक नाभिक के द्रव्यमान को इस रूप में लिखा जा सकता है
जहाँ द्रव्यमान संख्या (प्रोटॉन और न्यूट्रॉन की संख्या का योग) है और MeV/C ध्यान दें कि नाभिकीय अभिक्रिया में न्यूक्लिऑनों की संख्या संरक्षित रहती है। इस तरह, और .
अनुप्रयोग
रासायनिक Q मान कैलोरीमेट्री में माप हैं। ऊष्माक्षेपी रासायनिक अभिक्रियाएं अधिक सहज होती हैं और प्रकाश या गर्मी उत्सर्जित कर सकती हैं, जिसके परिणामस्वरूप अभिक्रिया (अर्थात विस्फोट) होती है।
Qमान कण भौतिकी में भी चित्रित किए गए हैं। उदाहरण के लिए, सार्जेंट का नियम कहता है कि कमजोर अभिक्रिया दरें Q5 के समानुपाती होती हैं। Q मान विश्राम अवस्था में क्षय के समय जारी गतिज ऊर्जा है। न्यूट्रॉन क्षय के लिए, द्रव्यमान विलुप्त हो जाता है क्योंकि न्यूट्रॉन एक प्रोटॉन, इलेक्ट्रॉन और एंटीन्यूट्रिनो में परिवर्तित हो जाते हैं: :[1]
जहां mn न्यूट्रॉन का द्रव्यमान है, mp प्रोटॉन का द्रव्यमान है, mν इलेक्ट्रॉन एंटीन्यूट्रिनो का द्रव्यमान है, और me इलेक्ट्रॉन का द्रव्यमान है; और K संगत गतिज ऊर्जाएँ हैं। न्यूट्रॉन की कोई प्रारंभिक गतिज ऊर्जा नहीं है क्योंकि यह विश्राम की स्थिति में है। बीटा क्षय में, एक सामान्य Q लगभग 1 MeV होता है।
क्षय ऊर्जा को दो से अधिक उत्पादों के लिए निरंतर वितरण में उत्पादों के बीच विभाजित किया जाता है। इस स्पेक्ट्रम को मापने से किसी उत्पाद का द्रव्यमान ज्ञात किया जा सकता है। प्रयोग न्यूट्रिनोलेस क्षय और न्यूट्रिनो मास की खोज के लिए उत्सर्जन स्पेक्ट्रम का अध्ययन कर रहे हैं; यह KATRIN प्रयोग का सिद्धांत है।
यह भी देखें
नोट्स और संदर्भ
- ↑ Martin, B.R.; Shaw, G. (2007). Particle Physics. John Wiley & Sons. p. 34. ISBN 978-0-471-97285-3.
बाहरी संबंध
- "Query input form". Nuclear Structure and Decay Data. IAEA. – interactive query form for Q-value of requested decay.
- Schuster, Eugenio (Fall 2020). "Nuclear energy release; fusion reactions" (PDF). Mechanical Engineering 362 – Nuclear Fusion and Radiation. Bethlehem, PA: Lehigh University. ME 362 Lecture 1. Retrieved 5 March 2021. – demonstrates simply the mass-energy equivalence.