वक्रता की त्रिज्या (प्रकाशिकी): Difference between revisions

From Vigyanwiki
Line 31: Line 31:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 03/06/2023]]
[[Category:Created On 03/06/2023]]
[[Category:Vigyan Ready]]

Revision as of 15:13, 3 July 2023

ऑप्टिकल डिजाइन के लिए वक्रता चिह्न परिपाटी की त्रिज्या

प्रकाशिकी डिज़ाइन में वक्रता की त्रिज्या (आरओसी) का एक विशिष्ट अर्थ और चिह्न परिपाटी है। एक गोलाकार लेंस या दर्पण की सतह पर वक्रता का एक केंद्र होता है जो सिस्टम के स्थानीय प्रकाशिकी अक्ष के साथ या उससे विकेंद्रीकृत होता है। लेंस की सतह का शीर्ष स्थानीय ऑप्टिकल अक्ष पर स्थित होता है। शीर्ष से वक्रता केंद्र तक की दूरी सतह की वक्रता की त्रिज्या है।[1][2] वक्रता की प्रकाशिक त्रिज्या के लिए चिह्न परिपाटी इस प्रकार है:

  • यदि शीर्ष वक्रता केंद्र के बाईं ओर है, तो वक्रता की त्रिज्या धनात्मक होती है।
  • यदि शीर्ष वक्रता केंद्र के दाईं ओर है, तो वक्रता की त्रिज्या ऋणात्मक होती है।


इस प्रकार, जब किसी उभयलिंगी लेंस (प्रकाशिकी) को किनारे से देखा जाता है, तो बाईं सतह की वक्रता त्रिज्या धनात्मक होती है, और दाईं ओर की वक्रता त्रिज्या ऋणात्मक होती है।

यद्यपि ध्यान दें कि डिज़ाइन के अतिरिक्त प्रकाशिकी के क्षेत्रों में, कभी-कभी अन्य चिह्न परिपाटी का उपयोग किया जाता है। विशेष रूप से, कई स्नातक भौतिकी पाठ्यपुस्तकें गॉसियन साइन कन्वेंशन का उपयोग करती हैं जिसमें लेंस की उत्तल सतह सदैव धनात्मक होती है।[3] विभिन्न स्रोतों से लिए गए सूत्रों का उपयोग करते समय सावधानी बरतनी चाहिए।

एस्फेरिक सतहें

गैर-गोलाकार प्रोफाइल वाली ऑप्टिकल सतहों, जैसे एस्फेरिक लेंस की सतहों में भी वक्रता की त्रिज्या होती है। इन सतहों को साधारणतया इस तरह डिज़ाइन किया जाता है कि उनकी प्रोफ़ाइल को समीकरण द्वारा वर्णित किया जाता है

जहां ऑप्टिक अक्ष को z दिशा में झूठ माना जाता है, और शिथिलता है—शीर्ष से सतह के विस्थापन (सदिश) का z-घटक, दूरी पर अक्ष से है। यदि और तो शून्य हैं वक्रता की त्रिज्या है और शंकु स्थिरांक है, जैसा कि शीर्ष पर मापा जाता है (जहाँ ). गुणांक द्वारा निर्दिष्ट अक्षीय समरूपता चतुर्भुज सतह से सतह के विचलन का और वर्णन करें।[2]

यह भी देखें

संदर्भ

  1. "एक लेंस की वक्रता की त्रिज्या". 2015-03-06.
  2. 2.0 2.1 Barbastathis, George; Sheppard, Colin. "वास्तविक और आभासी छवियां" (Adobe Portable Document Format). MIT OpenCourseWare (in English). Massachusetts Institute of Technology. p. 4. Retrieved 8 August 2017.
  3. Nave, Carl Rod. "पतला लेंस समीकरण". HyperPhysics (in English). Georgia State University. Retrieved 8 August 2017.