नेत्र आरेख: Difference between revisions
No edit summary |
|||
Line 23: | Line 23: | ||
टुकड़ा करने की एक बहुत ही सरल विधि ऑसिलोस्कोप डिस्प्ले को एक यूआई चौड़ा से थोड़ा अधिक सेट करना है, संकेत में बढ़ते और गिरने वाले दोनों किनारों पर ट्रिगर करना और प्रदर्शन दृढ़ता को सक्षम करना है ताकि सभी मापा तरंग एक ही प्लॉट में ढेर हो जाएं। यह लगभग किसी भी आस्टसीलस्कप (यहां तक कि पूरी तरह से एनालॉग वाले) पर संभव होने का लाभ है और शोर और समग्र संकेत आकार का अच्छा दृश्य प्रदान कर सकता है, लेकिन संकेत की प्रकंपन सामग्री को पूरी तरह से नष्ट कर देता है क्योंकि उपकरण का ट्रिगर प्रत्येक यूआई को साजिश को फिर से सिंक्रनाइज़ करता है। . इस पद्धति के साथ दिखाई देने वाला एकमात्र कंपन ऑसिलोस्कोप का ही है, साथ ही साथ अत्यंत उच्च आवृत्ति वाला कंपन (यूआई से कम अवधि वाली आवृत्तियां) है। | टुकड़ा करने की एक बहुत ही सरल विधि ऑसिलोस्कोप डिस्प्ले को एक यूआई चौड़ा से थोड़ा अधिक सेट करना है, संकेत में बढ़ते और गिरने वाले दोनों किनारों पर ट्रिगर करना और प्रदर्शन दृढ़ता को सक्षम करना है ताकि सभी मापा तरंग एक ही प्लॉट में ढेर हो जाएं। यह लगभग किसी भी आस्टसीलस्कप (यहां तक कि पूरी तरह से एनालॉग वाले) पर संभव होने का लाभ है और शोर और समग्र संकेत आकार का अच्छा दृश्य प्रदान कर सकता है, लेकिन संकेत की प्रकंपन सामग्री को पूरी तरह से नष्ट कर देता है क्योंकि उपकरण का ट्रिगर प्रत्येक यूआई को साजिश को फिर से सिंक्रनाइज़ करता है। . इस पद्धति के साथ दिखाई देने वाला एकमात्र कंपन ऑसिलोस्कोप का ही है, साथ ही साथ अत्यंत उच्च आवृत्ति वाला कंपन (यूआई से कम अवधि वाली आवृत्तियां) है। | ||
==== | ==== निर्धारित दर ==== | ||
संकेत में | संकेत में आंखों के पतिरूप को प्रदर्शित करने का एक आसान तरीका संकेत की [[प्रतीक दर]] का अनुमान लगाना (शायद समय की ज्ञात विंडो में शून्य पारण की औसत संख्या की गणना करके) और एक दोलनदर्शी अधिकृत में कई यूआई प्राप्त करना है। अधिकृत में पहला शून्य पारण स्थित है और पहले यूआई की शुरुआत के रूप में घोषित किया गया है, और तरंग के शेष भाग को एक यूआई लंबे टुकड़ों में विभाजित किया गया है। | ||
यह दृष्टिकोण स्थिर संकेतों के लिए पर्याप्त रूप से काम कर सकता है जिसमें समय के साथ प्रतीक दर बिल्कुल समान रहती है, हालांकि प्रणाली में अशुद्धियों का मतलब है कि कुछ बहाव अपरिहार्य है इसलिए व्यवहार में इसका उपयोग शायद ही कभी किया जाता है। कुछ प्रोटोकॉल में, जैसे कि [[SATA]], प्रतीक दर | यह दृष्टिकोण स्थिर संकेतों के लिए पर्याप्त रूप से काम कर सकता है जिसमें प्रतीक दर समय के साथ प्रतीक दर बिल्कुल समान रहती है, हालांकि प्रणाली में अशुद्धियों का मतलब है कि कुछ बहाव अपरिहार्य है इसलिए व्यवहार में इसका उपयोग शायद ही कभी किया जाता है। कुछ प्रोटोकॉल में, जैसे कि [[SATA]], प्रतीक दर के उपयोग से भिन्न होती है, इसलिए एक निश्चित दर मानने से आंख संकेत पर मौजूद वास्तविक प्रकंपन को बढ़ा-चढ़ाकर पेश करेगी। (जबकि एक घड़ी पर स्प्रेड स्पेक्ट्रम मॉडुलन सख्त अर्थों में तकनीकी रूप से घबराना है, इन प्रणालियों के लिए रिसीवर प्रतिरुपण को ट्रैक करने के लिए डिज़ाइन किए गए हैं। संकेत इंटीग्रिटी इंजीनियर के लिए रुचि का एकमात्र घबराहट मॉडुलन दर की तुलना में बहुत तेज है, जो रिसीवर नहीं कर सकता प्रभावी ढंग से ट्रैक करें।) | ||
==== संदर्भ घड़ी ==== | ==== संदर्भ घड़ी ==== |
Revision as of 10:11, 26 June 2023
दूरसंचार में, एक नेत्र पतिरूप, जिसे नेत्र आरेख के रूप में भी जाना जाता है, एक आस्टसीलस्कप डिस्प्ले है जिसमें एक रिसीवर से एक डिजिटल संकेत (इलेक्ट्रॉनिक्स) का दोहराव से प्रारूप लिया जाता है और ऊर्ध्वाधर इनपुट (वाई-अक्ष) पर लागू होता है, जबकि क्षैतिज स्वीप (एक्स-अक्ष) को ट्रिगर करने के लिए डेटा दर का उपयोग किया जाता है। इसे इसलिए कहा जाता है, क्योंकि कई प्रकार के कोडिंग के लिए, पतिरूप रेल की एक जोड़ी के बीच आँखों की एक श्रृंखला जैसा दिखता है। यह बेसबैंड पल्स-ट्रांसमिशन प्रणाली के प्रदर्शन पर चैनल शोर, फैलाव और इंटरसिंबल हस्तक्षेप के संयुक्त प्रभावों के मूल्यांकन के लिए एक उपकरण है। इस तकनीक का पहली बार द्वितीय विश्व युद्ध के SIGSALY सुरक्षित भाषण संचरण प्रणाली के साथ उपयोग किया गया था।
गणितीय दृष्टिकोण से, एक आंख का पतिरूप संकेत के संभाव्यता घनत्व फ़ंक्शन (पीडीएफ) का एक दृश्य है, मॉड्यूलर_अरिथमेटिक द यूनिट_इंटरवल_ (डेटा_ट्रांसमिशन) (यूआई)। दूसरे शब्दों में, यह यूआई की अवधि में प्रत्येक संभावित वोल्टेज पर संकेत होने की संभावना को दर्शाता है। आम तौर पर एक False_color#Pseudocolor PDF पर लागू किया जाता है ताकि छोटे चमक अंतर को कल्पना करना आसान हो सके।
प्रदर्शन का विश्लेषण करके कई प्रणाली प्रदर्शन माप प्राप्त किए जा सकते हैं। यदि संकेत बहुत लंबा है, बहुत छोटा है, प्रणाली क्लॉक के साथ खराब तरीके से सिंक्रोनाइज़ किया गया है, बहुत अधिक, बहुत कम, बहुत शोर (भौतिकी), या बदलने में बहुत धीमा है, या बहुत अधिक अंडरशूट या ओवरशूट (संकेत) है, तो इसे देखा जा सकता है नेत्र आरेख से। एक खुली आंख का पतिरूप न्यूनतम संकेत विरूपण से मेल खाता है। इंटरसिंबल हस्तक्षेप और शोर (भौतिकी) के कारण संकेत तरंग का विरूपण आंख पतिरूप के बंद होने के रूप में प्रकट होता है।[1][2][3]
गणना
स्रोत डेटा
एक नेत्र पतिरूप की गणना करने का पहला चरण सामान्य रूप से परिमाणित रूप में विश्लेषण किए जा रहे तरंग को प्राप्त करना है। यह एक प्रस्तावित डिजाइन की संकेत अखंडता का मूल्यांकन करने के लिए पर्याप्त बैंडविड्थ के ऑसिलोस्कोप के साथ वास्तविक विद्युत प्रणाली को मापकर या इलेक्ट्रॉनिक परिपथ सिमुलेशन के साथ सिंथेटिक डेटा बनाकर किया जा सकता है। दो दृष्टिकोणों का एक संयोजन भी इस्तेमाल किया जा सकता है: एक मापा संकेत पर एक मनमाना परिपथ या ट्रांसमिशन_लाइन्स के प्रभावों का अनुकरण करना, शायद यह निर्धारित करने के लिए कि एक लंबी केबल से गुजरने के बाद भी एक संकेत समझदार होगा या नहीं। प्रति यूनिट अंतराल (यूआई) में नमूनों की संख्या बढ़ाने के लिए इस समय प्रक्षेप भी लागू किया जा सकता है और एक चिकनी, अंतर-मुक्त साजिश का उत्पादन किया जा सकता है जो अधिक दृष्टि से आकर्षक और समझने में आसान है।
स्लाइसिंग
अगला, यूआई के भीतर प्रत्येक नमूने की स्थिति निर्धारित की जानी चाहिए। संकेत की विशेषताओं और उपयोग किए जा रहे ऑसिलोस्कोप और सॉफ़्टवेयर की क्षमताओं के आधार पर ऐसा करने के लिए कई तरीके हैं। आंखों में घबराहट के सटीक दृश्य के लिए यह कदम गंभीर रूप से महत्वपूर्ण है।
ट्रिगरिंग
टुकड़ा करने की एक बहुत ही सरल विधि ऑसिलोस्कोप डिस्प्ले को एक यूआई चौड़ा से थोड़ा अधिक सेट करना है, संकेत में बढ़ते और गिरने वाले दोनों किनारों पर ट्रिगर करना और प्रदर्शन दृढ़ता को सक्षम करना है ताकि सभी मापा तरंग एक ही प्लॉट में ढेर हो जाएं। यह लगभग किसी भी आस्टसीलस्कप (यहां तक कि पूरी तरह से एनालॉग वाले) पर संभव होने का लाभ है और शोर और समग्र संकेत आकार का अच्छा दृश्य प्रदान कर सकता है, लेकिन संकेत की प्रकंपन सामग्री को पूरी तरह से नष्ट कर देता है क्योंकि उपकरण का ट्रिगर प्रत्येक यूआई को साजिश को फिर से सिंक्रनाइज़ करता है। . इस पद्धति के साथ दिखाई देने वाला एकमात्र कंपन ऑसिलोस्कोप का ही है, साथ ही साथ अत्यंत उच्च आवृत्ति वाला कंपन (यूआई से कम अवधि वाली आवृत्तियां) है।
निर्धारित दर
संकेत में आंखों के पतिरूप को प्रदर्शित करने का एक आसान तरीका संकेत की प्रतीक दर का अनुमान लगाना (शायद समय की ज्ञात विंडो में शून्य पारण की औसत संख्या की गणना करके) और एक दोलनदर्शी अधिकृत में कई यूआई प्राप्त करना है। अधिकृत में पहला शून्य पारण स्थित है और पहले यूआई की शुरुआत के रूप में घोषित किया गया है, और तरंग के शेष भाग को एक यूआई लंबे टुकड़ों में विभाजित किया गया है।
यह दृष्टिकोण स्थिर संकेतों के लिए पर्याप्त रूप से काम कर सकता है जिसमें प्रतीक दर समय के साथ प्रतीक दर बिल्कुल समान रहती है, हालांकि प्रणाली में अशुद्धियों का मतलब है कि कुछ बहाव अपरिहार्य है इसलिए व्यवहार में इसका उपयोग शायद ही कभी किया जाता है। कुछ प्रोटोकॉल में, जैसे कि SATA, प्रतीक दर के उपयोग से भिन्न होती है, इसलिए एक निश्चित दर मानने से आंख संकेत पर मौजूद वास्तविक प्रकंपन को बढ़ा-चढ़ाकर पेश करेगी। (जबकि एक घड़ी पर स्प्रेड स्पेक्ट्रम मॉडुलन सख्त अर्थों में तकनीकी रूप से घबराना है, इन प्रणालियों के लिए रिसीवर प्रतिरुपण को ट्रैक करने के लिए डिज़ाइन किए गए हैं। संकेत इंटीग्रिटी इंजीनियर के लिए रुचि का एकमात्र घबराहट मॉडुलन दर की तुलना में बहुत तेज है, जो रिसीवर नहीं कर सकता प्रभावी ढंग से ट्रैक करें।)
संदर्भ घड़ी
एचडीएमआई जैसे कुछ प्रोटोकॉल के साथ, संकेत के साथ एक संदर्भ घड़ी की आपूर्ति की जाती है, या तो प्रतीक दर पर या कम (लेकिन समकालिक) आवृत्ति पर जिससे एक प्रतीक घड़ी का पुनर्निर्माण किया जा सकता है। चूंकि प्रणाली में वास्तविक अभिग्राही डेटा का प्रारूप लेने के लिए संदर्भ घड़ी का उपयोग करता है, तथा यूआई सीमाओं को निर्धारित करने के लिए इस घड़ी का उपयोग करने से आंख पतिरूप संकेत को ईमानदारी से प्रदर्शित करने की अनुमति मिलती है क्योंकि प्राप्तकर्ता इसे देखता है, संकेत और संदर्भ घड़ी के बीच केवल प्रकंपन प्रदर्शित होता है।
घड़ी पुनर्प्राप्ति
सबसे तेज गति के सीरियल संकेत, जैसे कि PCIe ,डिस्प्लेपोर्ट, और ईथरनेट के अधिकांश भिन्नरूप, एक लाइन कोड का उपयोग करते हैं, जिसका उद्देश्य पीएलएल के माध्यम से आसान घड़ी पुनर्प्राप्ति की अनुमति देना है। चूंकि वास्तविक प्राप्तकर्ता इसी तरह काम करता है, इसलिए आंखों के पतिरूप के लिए डेटा को स्लाइस करने का सबसे सटीक तरीका सॉफ्टवेयर में समान विशेषताओं वाले पीएलएल को लागू करना है। सही पीएलएल संरूपण आंखों को विस्तार स्पेक्ट्रम समायोजन के प्रभाव और प्रतीक दर में अन्य दीर्घकालिक भिन्नता को छिपाने की अनुमति देता है, जो अभी भी उच्च आवृत्ति प्रकंपन प्रदर्शित करते हुए प्राप्तकर्ता में त्रुटियों में योगदान नहीं करते हैं।
एकीकरण
फिर नमूनों को दो-आयामी हिस्टोग्राम में किया जाता है, जिसमें एक्स अक्ष यूआई के भीतर समय का प्रतिनिधित्व करता है और वाई अक्ष वोल्टेज का प्रतिनिधित्व करता है। फिर इसे प्रत्येक हिस्टोग्राम बिन में मान को सबसे बड़े बिन में मान से विभाजित करके सामान्यीकृत किया जाता है। वितरण के विभिन्न हिस्सों पर बल देने के लिए टोन प्रतिचित्रण, लघुगणकीय मापक्रम, या अन्य गणितीय परिवर्तन लागू किए जा सकते हैं, और प्रदर्शन के लिए अंतिम आंख पर रंग प्रवणता लागू किया जाता है।
संकेत का सटीक प्रतिनिधित्व प्रदान करने के लिए बड़ी मात्रा में डेटा की आवश्यकता हो सकती है, एक नेत्र के पतिरूप के लिए अक्सर करोड़ों यूआई का उपयोग किया जाता है। नीचे दिए गए उदाहरण में, बारह हज़ार यूआई का उपयोग करने वाली नेत्र केवल नेत्र के मूल आकार को दिखाती है, जबकि आठ मिलियन यूआई का उपयोग करने वाली नेत्र बढ़ते और गिरते किनारों पर कहीं अधिक बारीकियाँ दिखाती है।
प्रतिरुपण
बेसबैंड प्रतिरुपण का प्रत्येक रूप एक अद्वितीय उपस्थिति के साथ एक आंख पतिरूप का उत्पादन करता है।
एनआरजेड
एनआरजेड संकेत के आई पतिरूप में दो स्पष्ट रूप से अलग-अलग स्तर होने चाहिए, और उनके बीच सहज संक्रमण होना चाहिए।
एमएलटी-3
एमएलटी-3 संकेत के नेत्र पतिरूप में तीन स्पष्ट रूप से अलग-अलग स्तर होने चाहिए (नाममात्र -1, 0, +1 नीचे से ऊपर तक)। 0 स्तर शून्य वोल्ट पर स्थित होना चाहिए और समग्र आकार क्षैतिज अक्ष के बारे में सममित होना चाहिए। +1 और -1 अवस्थाओं का आयाम समान होना चाहिए। 0 अवस्था से +1 और -1 अवस्थाओं में सहज संक्रमण होना चाहिए, हालांकि -1 से +1 अवस्था में कोई सीधा संक्रमण नहीं होना चाहिए।
पीएएम
पीएएम संकेत के नेत्र पतिरूप में N स्पष्ट रूप से भिन्न स्तर होने चाहिए (पीएएम क्रम के आधार पर, उदाहरण के लिए पीएएम-4 के चार स्तर होने चाहिए)। समग्र आकार क्षैतिज अक्ष के बारे में सममित होना चाहिए और सभी स्तरों की दूरी एक समान होनी चाहिए।
पीएसके
चैनल प्रभाव
एक चैनल के कई गुणों को आंखों के पतिरूप में देखा जा सकता है।
बल
संकेत पर लगाया गया बल संकेत के प्रत्येक मान के लिए एक अतिरिक्त स्तर उत्पन्न करता है जो नाममात्र मान से अधिक (पूर्व-बल के लिए) या कम (डी-बल देने के लिए) होता है।
बल देने वाले संकेत के लिए आंख का पतिरूप पहली नज़र में पीएएम संकेत के लिए गलत हो सकता है, हालांकि करीब निरीक्षण से कुछ प्रमुख अंतर सामने आते हैं। विशेष रूप से, एक प्रबल संकेत में कानूनी बदलाव का एक सीमित सेट होता है,
- मजबूत स्थिति से संबंधित कमजोर स्थिति (1-1 या 0-0 बिट पतिरूप)
- मजबूत स्थिति से विपरीत मजबूत स्थिति (1-0-1 या 0-1-0 बिट पतिरूप का दूसरा संक्रमण)
- कमजोर स्थिति से विपरीत मजबूत स्थिति (1-1-0 या 0-0-1 बिट पतिरूप का दूसरा संक्रमण)
एक प्रबल संकेत कभी भी एक कमजोर स्थिति से संबंधित मजबूत स्थिति, एक कमजोर स्थिति से दूसरी कमजोर स्थिति में परिवर्तित नहीं होगा, या एक से अधिक यूआई के लिए एक ही मजबूत स्थिति में नहीं रहेगा। एक पीएएम संकेत में भी सामान्य रूप से समान दूरी वाले स्तर होते हैं जबकि बल दिए गए स्तर सामान्य रूप से नाममात्र संकेत स्तर के करीब होते हैं।
उच्च-आवृत्ति हानि
ढांकता हुए नुकसान के कारण मुद्रित परिपथ बोर्ड के निशान और केबल का नुकसान आवृत्ति के साथ बढ़ता है, जिससे कारण चैनल कम पास निस्यंदक के रूप में व्यवहार करता है। इसका प्रभाव संकेत के उठने/गिराने के समय में वृद्धि है। यदि डेटा दर काफी अधिक है या चैनल पर्याप्त रूप से हानिपूर्ण है, तो संकेत तेज़ 0-1-0 या 1-0-1 संक्रमण के दौरान अपने पूर्ण मूल्य तक भी नहीं पहुंच सकता है, और कई समान बिट्स के चलने के बाद ही स्थिर हो सकता है। इसके परिणामस्वरूप आंख लंबवत बंद हो जाती है।
नीचे दी गई छवि एक हानिकारक चैनल से गुजरने के बाद 1.25 Gbit/s NRZ संकेत दिखाती है - एक आरजी-188 समाक्षीय केबल जिसकी लंबाई लगभग 12 फीट (3.65 मीटर) है। इस चैनल में हानि डीसी पर 0.1 डीबी से 6 गीगाहर्ट्ज पर 9 डीबी तक काफी रैखिक तरीके में बढ़ रही है।
नेत्र के ऊपर और नीचे की पटरियाँ अंतिम वोल्टेज को दर्शाती हैं जो संकेत एक ही मान के साथ कई लगातार बिट्स के बाद पहुँचता है। चूंकि चैनल को डीसी पर न्यूनतम हानि होती है, इसलिए अधिकतम संकेत आयाम काफी हद तक अप्रभावित रहता है। संकेत के बढ़ते किनारे (एक 0-1 पतिरूप) को देखते हुए हम देख सकते हैं कि संकेत लगभग -300 पीकोसैकन्ड के स्तर से शुरू होता है, लेकिन यूआई की अवधि में धीरे-धीरे बढ़ता रहता है। लगभग +300 पीएस पर, संकेत या तो फिर से गिरना शुरू हो जाता है (0-1-0 पतिरूप) या धीरे-धीरे बढ़ता रहता है (0-1-1 पतिरूप)।
जैसे-जैसे उच्च आवृत्ति हानि बढ़ती है, आंख का समग्र आकार धीरे-धीरे एक साइनसॉइड (एक बार डेटा के उच्च आवृत्ति हार्मोनिक्स को समाप्त कर दिया जाता है) में बदल जाता है है और आयाम में कम हो जाता है।
प्रतिबाधा कुमेलन
संचरण लाइन में स्टब्स, प्रतिबाधा कुमेलन और अन्य दोष संकेत के किनारों में दोष के रूप में दिखाई देने वाले संकेत_प्रतिबिंब का कारण बन सकते हैं। एक यूआई से अधिक देरी वाले प्रतिबिंब अंतराप्रतीक व्यतिकरण (आईएसआई) के कारण आंख को पूरी तरह से अपठनीय बना देते हैं, हालांकि कम देरी वाले प्रतिबिंबों को आंख के आकार में आसानी से देखा जा सकता है।
नीचे दी गई छवि में, लगभग एक इंच (25.4 मिमी) खुला परिपथ स्टब लाइन में मौजूद है, जिससे प्रारंभिक कम-प्रतिबाधा प्रभाव (कम आयाम) होता है, जिसके बाद लगभग 320 पीएस या 0.4 यूआई की देरी के साथ स्टब के अंत से सकारात्मक प्रतिबिंब होता है। इसे स्पष्ट रूप से बढ़ते हुए किनारे में एक कदम के रूप में देखा जा सकता है जिसमें संकेत पूर्ण मूल्य के एक अंश तक बढ़ जाता है, स्टब की गोल यात्रा देरी के लिए स्तर बंद हो जाता है, फिर प्रतिबिंब आने पर अपने पूर्ण मूल्य तक बढ़ जाता है।
नीचे दी गई छवि में, उसी स्टब के अंत में तीन इंच की अतिरिक्त केबल जोड़ी गई है। समान चरण मौजूद है लेकिन अब चार गुना लंबा है, लगभग 1280 पीएस या 1.6 यूआई पर प्रतिबिंब उत्पन्न करता है। यह अत्यधिक आईएसआई उत्पन्न करता है (चूंकि प्रत्येक यूआई का प्रतिबिंब बाद के यूआई के दौरान आता है) जो आंख को पूरी तरह से बंद कर देता है।
माप
ऐसे कई माप हैं जो नेत्र आरेख से प्राप्त किए जा सकते हैं[4]
आयाम माप
- नेत्र आयाम
- आँख पार करने का आयाम
- आँख पार करने का प्रतिशत
- आंखों की ऊंचाई
- आंखों का स्तर
- नेत्र संकेत-से-रव अनुपात
- गुणवत्ता कारक
- ऊर्ध्वाधर आंख खोलना
समय माप
- निर्धारणात्मक प्रकंपन
- आंखों प्रसंकरण का समय
- आंखों में देरी
- आंख गिरने का समय
- नेत्र उठने का समय
- आंखों की चौड़ाई
- क्षैतिज आंख खुलना
- शिखर से शिखर प्रकंपन
- यादृच्छिक प्रकंपन
- आरएमएस प्रकंपन
- सीआरसी प्रकंपन
- पूर्ण प्रकंपन
मापन की व्याख्या करना
नेत्र-आरेख लक्षण | यह क्या मापता है |
---|---|
आँख खोलना (ऊँचाई, शिखर से शिखर) | संकेत में योज्य रव |
आँख अतिलंघन/अवक्रमण | संकेत पथ में रुकावट के कारण विकृति |
आँख विस्तार | समय तुल्यकालन एवं प्रकंपन प्रभाव |
आँख संवरक | अंतराप्रतीक व्यतिकरण, योज्य रव |
यह भी देखें
टिप्पणियाँ
- ↑ Christopher M. Miller "High-Speed Digital Transmitter Characterization Using Eye Diagram Analysis". 1266 Hewlett-Packard Journal 45(1994) Aug., No,4 Archived 2021-01-26 at the Wayback Machine, pp. 29-37.
- ↑ This article incorporates public domain material from Federal Standard 1037C. General Services Administration. (in support of MIL-STD-188).
- ↑ John G Proakis, Digital Communications 3rd ed, 2001
- ↑ "Matlab's help file description of how to use the Eye Diagram Functions in the Communications Toolbox".
संदर्भ
- "HP E4543A Q Factor and Eye Contours Application Software Operating Manual" (PDF). 1999. Archived (PDF) from the original on 2022-10-09.
- "Agilent 71501D Eye-Diagram Analysis User's Guide" (PDF). Archived (PDF) from the original on 2022-10-09.
बाहरी संबंध
- Ruckerbauer, Hermann. "An Eye is Born". YouTube. Gives an example video of construction of an आँख pattern
- Understanding Data आँख Diagram Methodology for Analyzing High Speed Digital Signals