प्राकृतिक निस्पंदन: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
गणित और सांख्यिकी में प्रसंभाव्य प्रक्रियाओं के सिद्धांत में, प्रसंभाव्य प्रक्रिया से संयोजित उत्पन्न निस्पंदन या प्राकृतिक निस्पंदन प्रक्रिया से संयोजित निस्पंदन (संभाव्यता सिद्धांत) है जो प्रत्येक समय अपने पूर्व व्यवहार को अभिलेखित करता है। यह अर्थ में दी गई प्रक्रिया का अध्ययन करने के लिए उपलब्ध सबसे सरल निस्यंदक है: प्रक्रिया से संबंधित सभी सूचना, और मात्र वह सूचना, प्राकृतिक निस्यंदक में उपलब्ध है। | गणित और सांख्यिकी में '''प्रसंभाव्य प्रक्रियाओं''' के सिद्धांत में, प्रसंभाव्य प्रक्रिया से संयोजित उत्पन्न निस्पंदन या '''प्राकृतिक निस्पंदन''' प्रक्रिया से संयोजित निस्पंदन (संभाव्यता सिद्धांत) है जो प्रत्येक समय अपने पूर्व व्यवहार को अभिलेखित करता है। यह अर्थ में दी गई प्रक्रिया का अध्ययन करने के लिए उपलब्ध सबसे सरल निस्यंदक है: प्रक्रिया से संबंधित सभी सूचना, और मात्र वह सूचना, प्राकृतिक निस्यंदक में उपलब्ध है। | ||
अधिक औपचारिक रूप से, मान लीजिए (Ω, ''F'', P) एक संभाव्यता स्थान है; मान लीजिए (''I'', ≤) | अधिक औपचारिक रूप से, मान लीजिए (Ω, ''F'', '''P''') एक संभाव्यता स्थान है; मान लीजिए (''I'', ≤) एक पूर्ण रूप से क्रमबद्ध [[ सूचकांक सेट |सूचकांक समुच्चय]] है; मान लीजिए (''S'', Σ) एक मापने योग्य स्थान है; मान लीजिए X: ''I'' × Ω → ''S एक'' प्रसंभाव्य प्रक्रिया है। फिर ''X'' के संबंध में ''F'' के प्राकृतिक निस्यंदक को | ||
:<math>F_{i}^{X} = \sigma \left\{ \left. X_{j}^{-1} (A) \right| j \in I, j \leq i, A \in \Sigma \right\} | :<math>F_{i}^{X} = \sigma \left\{ \left. X_{j}^{-1} (A) \right| j \in I, j \leq i, A \in \Sigma \right\}</math> | ||
:द्वारा दिए गए निस्पंदन ''F''<sub>•</sub><sup>X = (F<sub>''i''</sub><sup>X)<sub>''i''∈''I''</sub> के रूप में परिभाषित किया गया है, | |||
अर्थात, Ω पर सबसे छोटा सिग्मा (σ)-बीजगणित जिसमें i तक "समय" ''j'' के लिए ''S'' के Σ-मापने योग्य उपसमुच्चय के सभी पूर्व-प्रतिबिम्ब सम्मिलित हैं। | |||
कई उदाहरणों में, | कई उदाहरणों में, सूचकांक समुच्चय I [[प्राकृतिक संख्या]] 'N' (संभवतः 0 सहित) या [[अंतराल (गणित)]] [0, T] या [0, +∞] है; अवस्था स्थान S प्रायः [[वास्तविक रेखा]] 'R' या [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन समष्टि]] 'R'<sup>n</sup> होता है। | ||
कोई भी | कोई भी प्रसंभाव्य प्रक्रिया X अपने प्राकृतिक निस्पंदन के संबंध में [[अनुकूलित प्रक्रिया]] है। | ||
==संदर्भ== | ==संदर्भ== | ||
{{Reflist}} | {{Reflist}} | ||
* {{citation | author1= | * {{citation | author1=डेलिया कोकुलेस्कु | author2= अश्कान निकेघबली | year=2010| title=निस्पंदन | encyclopedia= मात्रात्मक वित्त का विश्वकोश}} | ||
Revision as of 13:34, 2 July 2023
गणित और सांख्यिकी में प्रसंभाव्य प्रक्रियाओं के सिद्धांत में, प्रसंभाव्य प्रक्रिया से संयोजित उत्पन्न निस्पंदन या प्राकृतिक निस्पंदन प्रक्रिया से संयोजित निस्पंदन (संभाव्यता सिद्धांत) है जो प्रत्येक समय अपने पूर्व व्यवहार को अभिलेखित करता है। यह अर्थ में दी गई प्रक्रिया का अध्ययन करने के लिए उपलब्ध सबसे सरल निस्यंदक है: प्रक्रिया से संबंधित सभी सूचना, और मात्र वह सूचना, प्राकृतिक निस्यंदक में उपलब्ध है।
अधिक औपचारिक रूप से, मान लीजिए (Ω, F, P) एक संभाव्यता स्थान है; मान लीजिए (I, ≤) एक पूर्ण रूप से क्रमबद्ध सूचकांक समुच्चय है; मान लीजिए (S, Σ) एक मापने योग्य स्थान है; मान लीजिए X: I × Ω → S एक प्रसंभाव्य प्रक्रिया है। फिर X के संबंध में F के प्राकृतिक निस्यंदक को
- द्वारा दिए गए निस्पंदन F•X = (FiX)i∈I के रूप में परिभाषित किया गया है,
अर्थात, Ω पर सबसे छोटा सिग्मा (σ)-बीजगणित जिसमें i तक "समय" j के लिए S के Σ-मापने योग्य उपसमुच्चय के सभी पूर्व-प्रतिबिम्ब सम्मिलित हैं।
कई उदाहरणों में, सूचकांक समुच्चय I प्राकृतिक संख्या 'N' (संभवतः 0 सहित) या अंतराल (गणित) [0, T] या [0, +∞] है; अवस्था स्थान S प्रायः वास्तविक रेखा 'R' या यूक्लिडियन समष्टि 'R'n होता है।
कोई भी प्रसंभाव्य प्रक्रिया X अपने प्राकृतिक निस्पंदन के संबंध में अनुकूलित प्रक्रिया है।
संदर्भ
- डेलिया कोकुलेस्कु; अश्कान निकेघबली (2010), "निस्पंदन", मात्रात्मक वित्त का विश्वकोश
यह भी देखें
श्रेणी:प्रसंभाव्य प्रक्रियाएं