रुकावट विलंबता: Difference between revisions

From Vigyanwiki
Line 21: Line 21:


== यह भी देखें ==
== यह भी देखें ==
* [[ उन्नत [[प्रोग्रामेबल इंटरप्ट कंट्रोलर|प्रोग्रामेबल अंतरायकंट्रोलर]] ]] (APIC)
* [[उन्नत]] [[प्रोग्रामेबल इंटरप्ट कंट्रोलर|प्रोग्रामयोग्य अंतराय नियंत्रक]] (एपीआईसी)
* [[ईथरनेट प्रवाह नियंत्रण]]
* [[ईथरनेट प्रवाह नियंत्रण]]
* IEEE 802.3 (प्रवाह नियंत्रण के लिए 802.3x पॉज़ फ़्रेम)
* [[IEEE 802.3]] (प्रवाह नियंत्रण के लिए 802.3x पॉज़ (विश्राम) फ़्रेम)
* [[ इंटर-प्रोसेसर रुकावट | इंटर-संसाधित्ररुकावट]] (IPI)
* [[ इंटर-प्रोसेसर रुकावट | इंटर-संसाधित्र अंतराय]] (आईपीआई)
* [[बाधा डालना]]
* [[बाधा डालना|अंतरायन]]
* अंतरायहैंडलर
* [[अंतराय हैंडलर]]
* [[ गैर-नकाबपोश व्यवधान ]] (NMI)
* [[ गैर-नकाबपोश व्यवधान | गैर-आच्छादनशील अंतरायन]] (एनएमआई)
* प्रोग्रामेबल अंतरायकंट्रोलर (PIC)
* [[प्रोग्रामन योग्य अंतराय नियंत्रक]] (पीआईसी)
* [[प्रतिक्रिया समय (प्रौद्योगिकी)]]
* [[प्रतिक्रिया समय (प्रौद्योगिकी)|अनुक्रिया समय (तकनीकी)]]
* [[विलंबता (इंजीनियरिंग)]]
* [[विलंबता (इंजीनियरिंग)|प्रसुप्ति (इंजीनियरिंग)]]
* विलंबता (इंजीनियरिंग) # कंप्यूटर हार्डवेयर और प्रचालन तंत्र
* [[विलंबता (इंजीनियरिंग)|कंप्यूटर हार्डवेयर और प्रचालन तंत्र प्रसुप्ति]]


==संदर्भ==
==संदर्भ==

Revision as of 17:18, 2 July 2023

कंप्यूटिंग में, अंतराय प्रसुप्ति एक अंतराय अनुरोध (आईआरक्यू) की शुरुआत और संबंधित अंतराय सर्विस नेमका (आईएसआर) की शुरुआत के बीच के विलंब को संदर्भित करती है।[1]कई प्रचालन तंत्रों के लिए, जैसे ही उपकरणों का अंतराय हैंडलर (प्रबंधकर्ता) निष्पादित होता है, उपकरणों की सर्विस हो जाती है। अंतराय प्रसुप्ति सूक्ष्मसंसाधित्र डिज़ाइन, अंतराय नियंत्रक, अंतराय आच्छदन और प्रचालन तंत्र (ओएस) के अंतराय हैंडलिंग तरीकों से प्रभावित हो सकती है।[2]

पृष्ठभूमि

आमतौर पर अंतराय प्रसुप्ति, थ्रूपुट और संसाधित्र उपयोग के मध्य एक ट्रेड-बंद होता है। सीपीयू और ओएस डिजाइन की कई तकनीकें जो अंतराय प्रसुप्ति में सुधार करती हैं, थ्रूपुट को कम करती हैं और संसाधित्र के उपयोग को बढ़ाती हैं। तकनीकें जो थ्रूपुट को बढ़ाती हैं, थ्रूपुट बढ़ाने वाली तकनीकें अंतराय प्रसुप्ति और संसाधित्र उपयोग को बढ़ा सकती हैं। अंत में, संसाधित्र उपयोग को कम करने का प्रयास करने से अंतराय प्रसुप्ति बढ़ सकती है और थ्रूपुट कम हो सकता है।

न्यूनतम अंतराय प्रसुप्ति मुख्य रूप से अंतराय नियंत्रक परिपथ और उसके विन्यास द्वारा निर्धारित की जाती है। वे अंतराय प्रसुप्ति में आकंप को भी प्रभावित कर सकते हैं, जो तंत्र की वास्तविक समय अनुसूचि को काफी प्रभावित कर सकता है। इंटेल एपीआईसी आर्किटेक्चर भारी मात्रा में अंतराय प्रसुप्ति आकंप उत्पन्न करने के लिए जाना जाता है।[citation needed]

अधिकतम अंतराय प्रसुप्ति व्यापक रुप से उन तरीकों से निर्धारित होती है जो ओएस अंतराय हैंडलिंग के लिए उपयोग करता है। उदाहरण के लिए, अधिकांश संसाधित्र प्रोग्राम को कोड के महत्वपूर्ण अनुभागों की सुरक्षा के लिए, अंतराय हैंडलर के निष्पादन को रोकते हुए, अंतराय को अक्षम करने की अनुमति देते हैं। ऐसे महत्वपूर्ण अनुभागों के निष्पादन के दौरान, सभी अंतराय हैंडलर जो एक महत्वपूर्ण अनुभाग के भीतर सुरक्षित रूप से निष्पादित नहीं कर सकते हैं, उन्हें अवरुद्ध कर दिया जाता है (वे सभी महत्वपूर्ण अनुभागों के बाहर निकलने के बाद अंतराय हैंडलर को पुनरारंभ करने के लिए आवश्यक न्यूनतम जानकारी सुरक्षित करते हैं)। इसलिए किसी अवरुद्ध अंतरायन के लिए अंतराय प्रसुप्ति को महत्वपूर्ण अनुभाग के अंत तक बढ़ा दिया जाता है, साथ ही समान और उच्च प्राथमिकता वाले किसी भी अंतराय को जो खंडक के स्थान पर आने के दौरान आते है।

कई कंप्यूटर तंत्रों को कम अंतराय प्रसुप्ति की आवश्यकता होती है, विशेष रूप से अंतः स्थापित तंत्र जिन्हें वास्तविक समय में मशीनरी को नियंत्रित करने की आवश्यकता होती है। कभी-कभी ये तंत्र वास्तविक समय प्रचालन तंत्र (आरटीओएस) का उपयोग करते हैं। आरटीओएस यह संकेत करता है कि उपनेमका के निष्पादन के मध्य एक निर्दिष्ट अधिकतम समय से अधिक समय नहीं गुजरेगा। ऐसा करने के लिए, आरटीओएस को यह भी गारंटी देनी होगी कि अंतराय प्रसुप्ति कभी भी पूर्वनिर्धारित अधिकतम से अधिक नहीं होगी।

विचार

उन्नत अंतरायनियंत्रक संदर्भ स्विच के दौरान ओवरहेड को कम करने और प्रभावी अंतरायविलंबता के लिए हार्डवेयर सुविधाओं की भीड़ को लागू करते हैं। इनमें निम्न विशेषताएं शामिल हैं:

  • नॉन-इंटरप्टिबल निर्देशों के माध्यम से न्यूनतम जिटर[1]* मेमोरी सिस्टम के लिए जीरो वेट स्टेट्स[1]* स्विचेबल रजिस्टर बैंक[1]* टेल चेनिंग[1]* आलसी स्टैकिंग[1]* विलंब से आगमन[1]* पॉप प्रीमेशन[1]* स्लीप-ऑन-एग्जिट फीचर[1]

साथ ही, ऐसी कई अन्य विधियाँ हैं जिनका उपयोग हार्डवेयर किसी स्थिति में दिए गए व्यवधान विलंबता को सहनीय बनाने के लिए कम रुकावट विलंबता के लिए आवश्यकताओं को कम करने में मदद के लिए कर सकता है। इनमें बफ़र्स और प्रवाह नियंत्रण (डेटा)डेटा) शामिल हैं। उदाहरण के लिए, अधिकांश नेटवर्क कार्ड ट्रांसमिट और रिसीव रिंग बफर, अंतरायरेट लिमिटिंग और हार्डवेयर फ्लो कंट्रोल को लागू करते हैं। बफ़र्स डेटा को तब तक संग्रहीत करने की अनुमति देते हैं जब तक कि इसे स्थानांतरित नहीं किया जा सकता है, और प्रवाह नियंत्रण नेटवर्क कार्ड को बफ़र भर जाने पर डेटा को हटाए बिना संचार को रोकने की अनुमति देता है।

आधुनिक हार्डवेयर अंतरायरेट लिमिटिंग को भी लागू करता है। यह हार्डवेयर को उत्पन्न होने वाली प्रत्येक बाधा के बीच एक प्रोग्राम करने योग्य न्यूनतम समय की प्रतीक्षा करके रुकावट तूफान या live को रोकने में मदद करता है। अंतरायरेट लिमिटिंग सर्विसिंग में लगने वाले समय की मात्रा को कम कर देता है, जिससे संसाधित्रको उपयोगी कार्य करने में अधिक समय लगता है। इस समय से अधिक होने पर सॉफ्ट (रिकवरेबल) या हार्ड (नॉन-रिकवरेबल) त्रुटि होती है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Yiu, Joseph (2016-04-01). "A Beginner's Guide on Interrupt Latency - and Interrupt Latency of the Arm Cortex-M processors". Arm Community. Archived from the original on 15 June 2019. Retrieved 2019-06-15.
  2. Lin, Feng; Ashley, David T.; Burke, Michael J.; Heymann, Michael (1999). "इंटरप्ट लेटेंसी संगतता समस्या का एक हाइब्रिड सिस्टम समाधान". SAE Transactions. 108: 2112–2125. ISSN 0096-736X. JSTOR 44733861.