सेलुलर पॉट्स मॉडल: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 57: | Line 57: | ||
* [[Stochastic cellular automata]] | * [[Stochastic cellular automata]] | ||
{{DEFAULTSORT:Cellular Potts Model}} | {{DEFAULTSORT:Cellular Potts Model}} | ||
[[Category:Created On 19/06/2023|Cellular Potts Model]] | |||
[[Category:Lua-based templates|Cellular Potts Model]] | |||
[[Category: Machine Translated Page]] | [[Category:Machine Translated Page|Cellular Potts Model]] | ||
[[Category: | [[Category:Pages with script errors|Cellular Potts Model]] | ||
[[Category:Vigyan Ready]] | [[Category:Templates Vigyan Ready|Cellular Potts Model]] | ||
[[Category:Templates that add a tracking category|Cellular Potts Model]] | |||
[[Category:Templates that generate short descriptions|Cellular Potts Model]] | |||
[[Category:Templates using TemplateData|Cellular Potts Model]] | |||
[[Category:जालीदार मॉडल|Cellular Potts Model]] | |||
[[Category:सांख्यिकीय यांत्रिकी|Cellular Potts Model]] | |||
[[Category:स्टोकेस्टिक मॉडल|Cellular Potts Model]] |
Latest revision as of 19:25, 5 July 2023
कम्प्यूटेशनल जीव विज्ञान में, एक सेलुलर पॉट्स मॉडल (सीपीएम, जिसे ग्लेज़ियर-ग्रैनर-हॉगवेग मॉडल के रूप में भी जाना जाता है) कोशिकाओं और ऊतकों का एक कम्प्यूटेशनल मॉडल है। इसका उपयोग व्यक्तिगत और सामूहिक कोशिका व्यवहार, ऊतक रूपजनन और कैंसर के विकास को अनुकरण करने के लिए किया जाता है। सीपीएम एक निश्चित मात्रा के साथ विकृत वस्तुओं के रूप में कोशिकाओं का वर्णन करता है, जो एक दूसरे के साथ और जिस माध्यम में वे रहते हैं, उसके लिए आसंजन कर सकते हैं। कोशिका व्यवहार जैसे कोशिका माइग्रेशन, कोशिका विकास और कोशिका विभाजन , और कोशिका सिग्नलिंग को सम्मिलित करने के लिए औपचारिकता को बढ़ाया जा सकता है। पहले सीपीएम को फ्रांकोइस ग्रेनर और जेम्स ग्लेज़ियर द्वारा एक बड़े-क्यू पॉट्स मॉडल के संशोधन के रूप में कोशिका सॉर्टिंग के अनुकरण के लिए प्रस्तावित किया गया था।[1] सीपीएम को तब पॉलीन हॉगवेग द्वारा मॉर्फोजेनेसिस का अध्ययन करने के लिए लोकप्रिय बनाया गया था।[2] यद्यपि मॉडल को जैविक कोशिकाओं का वर्णन करने के लिए विकसित किया गया था, इसका उपयोग जैविक कोशिका के अलग-अलग भागो या द्रव के क्षेत्रों के मॉडल के लिए भी किया जा सकता है।
मॉडल विवरण
सीपीएम में एक आयताकार यूक्लिडियन जाली होती है, जहां प्रत्येक कोशिका एक ही कोशिका आईडी साझा करने वाली जाली साइटों का एक उपसमूह होती है (भौतिकी में पॉट्स मॉडल में स्पिन के अनुरूप) जालक स्थल जिन पर कोशिकाओं का अधिकृत नहीं होता है जिसका वे माध्यम हैं। मॉडल की गतिशीलता एक ऊर्जा कार्य द्वारा नियंत्रित होती है: हैमिल्टनियन जो जाली में कोशिकाओं के एक विशेष विन्यास की ऊर्जा का वर्णन करता है। एक मूलभूत सीपीएम में, यह ऊर्जा कोशिकाओं के बीच आसंजन और कोशिकाओं के आयतन परिवर्तन के प्रतिरोध के परिणामस्वरूप होती है। सीपीएम को अपडेट करने का एल्गोरिदम इस ऊर्जा को कम करता है।
मॉडल को विकसित करने के लिए मेट्रोपोलिस-शैली के अपडेट किए जाते हैं, अर्थात्:
- एक यादृच्छिक जाली साइट i चुनें
- इसकी आईडी को i में कॉपी करने के लिए एक यादृच्छिक निकट जाली साइट j चुनें।
- मूल और प्रस्तावित नए विन्यास के बीच ऊर्जा () में अंतर की गणना करें।
- ऊर्जा में परिवर्तन के आधार पर इस प्रतिलिपि घटना को निम्नानुसार स्वीकार या अस्वीकार करें:
- यदि नई ऊर्जा कम है, तो सदैव कॉपी स्वीकार करें;
- यदि नई ऊर्जा अधिक है, तो प्रतिलिपि को प्रायिकता के साथ स्वीकार करें (बोल्ट्ज़मान तापमान T ऊर्जावान रूप से प्रतिकूल उतार-चढ़ाव की संभावना निर्धारित करता है)।
हैमिल्टनियन
ग्रैनर और ग्लेज़ियर द्वारा प्रस्तावित मूल मॉडल में दो प्रकार की कोशिकाएँ होती हैं, जिसमें एक ही प्रकार की कोशिकाओं और एक अलग प्रकार की कोशिकाओं के लिए अलग-अलग आसंजन ऊर्जा होती है। प्रत्येक कोशिका प्रकार में माध्यम के साथ एक अलग संपर्क ऊर्जा भी होती है, और कोशिका वॉल्यूम को लक्ष्य मान के निकट रहने के लिए माना जाता है। हैमिल्टनियन के रूप में तैयार किया गया है:
जहां i, j जाली स्थल हैं, σi स्थल i पर कोशिका है, τ(σ) कोशिका σ का कोशिका प्रकार है, J दो प्रकार की कोशिकाओं के बीच आसंजन का निर्धारण करने वाला गुणांक है τ(σ),τ(σ') , δ क्रोनकर डेल्टा है, v(σ) कोशिका σ का आयतन है, V(σ) लक्ष्य आयतन है, और λ एक लैग्रेंज गुणक है जो आयतन बाधा की ताकत का निर्धारण करता है।
अपने झिल्ली संपर्क के लिए कम J मान वाली कोशिकाएँ अधिक शक्ति से एक साथ चिपकी रहेंगी। इसलिए, J मानों को अलग-अलग करके कोशिका सॉर्टिंग के विभिन्न पैटर्न का अनुकरण किया जा सकता है।
विस्तार
समय के साथ, सीपीएम कोशिका सॉर्टिंग के एक विशिष्ट मॉडल से कई एक्सटेंशन के साथ एक सामान्य रूपरेखा में विकसित हुआ है, जिनमें से कुछ आंशिक रूप से या पूरी तरह से ऑफ-लैटिस हैं।[3] विभिन्न कोशिका व्यवहार, जैसे कि कीमोटैक्सिस, बढ़ाव और हैप्टोटैक्सिस को हैमिल्टनियन, H, या ऊर्जा में परिवर्तन का विस्तार करके सम्मिलित किया जा सकता है। अतिरिक्त स्थानिक जानकारी, जैसे रसायनों की सांद्रता को सम्मिलित करने के लिए सहायक उप-जालियों का उपयोग किया जा सकता है।
केमोटैक्सिस
सीपीएम में, जब केमोकाइन सांद्रता जे पर अधिक होती है, तो साइट j की आईडी को साइट i में कॉपी करने की संभावना को बढ़ाकर, कोशिकाओं को उच्च केमोकाइन सांद्रता की दिशा में ले जाया जा सकता है। यह ऊर्जा में परिवर्तन को एक ऐसे पद के साथ संशोधित करके किया जाता है जो i और j पर एकाग्रता के अंतर के समानुपाती होता है:[2]
जहां केमोटैक्टिक गति की ताकत है, और और क्रमशः साइट i और j पर केमोकाइन की सांद्रता हैं। केमोकाइन ग्रेडिएंट सामान्यतः सेल जाली के समान आयामों की एक अलग जाली पर प्रयुक्त किया जाता है।
सीपीएम का उपयोग करते हुए मल्टीस्केल और हाइब्रिड मॉडलिंग
कोर जीजीएच (या सीपीएम) एल्गोरिथ्म जो सेलुलर स्तर की संरचनाओं के विकास को परिभाषित करता है, को आसानी से इंट्रासेल्युलर सिग्नलिंग डायनेमिक्स, रिएक्शन डिफ्यूजन डायनेमिक्स और नियम आधारित मॉडल के साथ एकीकृत किया जा सकता है, जो कम (या उच्च) समय के मापदंड पर होने वाली प्रक्रियाओं के लिए खाता है।[4] ओपन सोर्स सॉफ्टवेयर बायोनेटसॉल्वर का उपयोग सीपीएम एल्गोरिथम के साथ इंट्रासेल्युलर डायनेमिक्स को एकीकृत करने के लिए किया जा सकता है।[5]
संदर्भ
- ↑ Graner, François; Glazier, James (1992). "द्वि-आयामी विस्तारित पॉट्स मॉडल का उपयोग करके जैविक सेल छँटाई का अनुकरण". Phys. Rev. Lett. 69 (13): 2013–7. Bibcode:1992PhRvL..69.2013G. doi:10.1103/PhysRevLett.69.2013. PMID 10046374.
- ↑ 2.0 2.1 Savill, Nicholas J.; Hogeweg, Paulien (1997). "Modelling Morphogenesis: From Single Cells to Crawling Slugs". J. Theor. Biol. 184 (3): 229–235. Bibcode:1997JThBi.184..229S. doi:10.1006/jtbi.1996.0237. hdl:1874/1405. PMID 31940735.
- ↑ Balter, Ariel; Merks, Roeland M.H.; Popławski, Nikodem J.; Swat, Maciej; Glazier, James A. (2007). "The Glazier-Graner-Hogeweg model: extensions, future directions, and opportunities for further study". जीव विज्ञान और चिकित्सा में एकल-कोशिका-आधारित मॉडल. Mathematics and Biosciences in Interaction. pp. 151–167. doi:10.1007/978-3-7643-8123-3_7. ISBN 978-3-7643-8101-1.
- ↑ Szabó, A; Merks, RM (2013). "ट्यूमर के विकास, ट्यूमर के आक्रमण और ट्यूमर के विकास के सेलुलर पॉट्स मॉडलिंग". Frontiers in Oncology. 3: 87. doi:10.3389/fonc.2013.00087. PMC 3627127. PMID 23596570.
- ↑ Andasari, Vivi; Roper, Ryan T; Swat, Maciej H; Chaplain, MA (2012). "Integrating intracellular dynamics using CompuCell3D and Bionetsolver: applications to multiscale modelling of cancer cell growth and invasion". PLOS ONE. 7 (3): e33726. Bibcode:2012PLoSO...733726A. doi:10.1371/journal.pone.0033726. PMC 3312894. PMID 22461894.
- Chen, Nan; Glazier, James A.; Izaguirre, Jesus A.; Alber, Mark S. (2007). "A parallel implementation of the Cellular Potts Model for simulation of cell-based morphogenesis". Computer Physics Communications. 176 (11–12): 670–681. Bibcode:2007CoPhC.176..670C. doi:10.1016/j.cpc.2007.03.007. PMC 2139985. PMID 18084624.
बाहरी संबंध
- James Glazier (professional website)
- CompuCell3D, a सीपीएम simulation environment: Sourceforge
- SimTK
- Notre Dame development site
- Artificial Life model of multicellular morphogenesis with autonomously generated gradients for positional information using the Cellular Potts model
- Stochastic cellular automata