डायोड तर्क: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(8 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{short description|Constructs Boolean logic gates from diodes}}'''डायोड तर्क''' (या '''डायोड-प्रतिरोधक तर्क''') डायोड और प्रतिरोधक के साथ AND और OR तर्क गेट्स (द्वार) का निर्माण करता है।
{{short description|Constructs Boolean logic gates from diodes}}'''डायोड तर्क''' (या '''डायोड-प्रतिरोधक तर्क''') डायोड और प्रतिरोधक के साथ AND और OR तर्क गेट्स (द्वार) का निर्माण करता है।


सक्रिय उपकरण (प्रारम्भिक कंप्यूटरों में निर्वात नलिका, फिर डायोड-प्रतिरोधान्तरित्र तर्क में प्रतिरोधान्तरित्र) अतिरिक्त रूप से विद्युत-दाब स्तर पुनःस्थापन के लिए कार्यात्मक पूर्णता और प्रवर्धन के लिए तार्किक अंर्तवर्तक (NOT) प्रदान करने के लिए आवश्यक है, जो एकल डायोड तर्क प्रदान नहीं कर सकता है।
सक्रिय उपकरण (प्रारम्भिक कंप्यूटरों में निर्वात नलिका, फिर डायोड-प्रतिरोधान्तरित्र तर्क में प्रतिरोधान्तरित्र) अतिरिक्त रूप से विद्युत-दाब स्तर पुनःस्थापन के लिए कार्यात्मक पूर्णता और प्रवर्धन के लिए तर्क अंतर्वर्तन (NOT) प्रदान करने के लिए आवश्यक है जो एकल डायोड तर्क प्रदान नहीं कर सकता है।
[[File:Animated diode logic encoder.gif|thumb|430x430px|डायोड तर्क में सरल एनकोडर एक एकल उच्च इनपुट के लिए 3-बिट बाइनरी अनुक्रमणिका आउटपुट करता है।]]
[[File:Animated diode logic encoder.gif|thumb|430x430px|डायोड तर्क में सरल एनकोडर एक एकल उच्च निविष्‍ट के लिए 3-बिट बाइनरी अनुक्रमणिका निर्गम करता है।]]
चूंकि प्रत्येक डायोड तर्क चरण के साथ विद्युत-दाब का स्तर दुर्बल होता है, डायोड तर्क की उपयोगिता को सीमित करते हुए, कई चरणों को आसानी से सोपानित नहीं किया जा सकता है। हालाँकि, डायोड तर्क में केवल सस्ते निष्क्रिय घटकों का उपयोग करने का लाभ है।
चूंकि प्रत्येक डायोड तर्क चरण के साथ विद्युत-दाब का स्तर दुर्बल होता है डायोड तर्क की उपयोगिता को सीमित करते हुए कई चरणों को आसानी से सोपानित नहीं किया जा सकता है। चूँकि डायोड तर्क में केवल सरल निष्क्रिय घटकों का उपयोग करने का लाभ होता है।


== बैकग्राउन्ड ==
== अनुभव ==


=== तर्क गेट्स ===
=== तर्क गेट्स ===
तर्क गेट बूलियन बीजगणित का मूल्यांकन करते हैं, सामान्य रूप से समानांतर या श्रृंखला में जुड़े तार्किक इनपुट गेट्सा नियंत्रित इलेक्ट्रॉनिक स्विच का उपयोग करते हैं। डायोड तर्क केवल OR और AND को प्रयुक्त कर सकता है, क्योंकि प्रतिवर्तित्र (गेट नहीं) को एक सक्रिय उपकरण की आवश्यकता होती है।
तर्क गेट बूलियन बीजगणित का मूल्यांकन करते हैं, सामान्य रूप से समानांतर या श्रृंखला में जुड़े तर्क निविष्‍ट गेट्स नियंत्रित इलेक्ट्रॉनिक स्विच का उपयोग करते हैं। डायोड तर्क केवल OR और AND को प्रयुक्त कर सकता है, क्योंकि प्रतिवर्तित्र (गेट नहीं) को एक सक्रिय उपकरण की आवश्यकता होती है।


=== तर्क विद्युत-दाब स्तर ===
=== तर्क विद्युत-दाब स्तर ===
''मुख्य लेख[[मुख्य लेख: तर्क स्तर § 2-स्तरीय तर्क|: तर्क स्तर § 2-स्तरीय तर्क]]''
''मुख्य लेख[[मुख्य लेख: तर्क स्तर § 2-स्तरीय तर्क|: तर्क स्तर § 2-स्तरीय तर्क]]''


बाइनरी तर्क विद्युत-दाब सिग्नल के दो अलग-अलग तर्क स्तरों का उपयोग करता है जिन्हें उच्च और निम्न लेबल किया जा सकता है। इस तर्क में, +5 वोल्ट के समीप विद्युत-दाब अधिक हैं, और 0 वोल्ट (क्षेत्र) के समीप विद्युत-दाब कम होता हैं। विद्युत-दाब का परिशुद्ध परिमाण महत्वपूर्ण नहीं है, परंतु इनपुट पर्याप्त प्रबल स्रोतों गेट्सा संचालित हों ताकि आउटपुट विद्युत-दाब अलग-अलग श्रेणी के अंदर हों।
बाइनरी तर्क विद्युत-दाब सिग्नल के दो अलग-अलग तर्क स्तरों का उपयोग करता है जिन्हें उच्च और निम्न लेबल किया जा सकता है। इस तर्क में, +5 वोल्ट के समीप विद्युत-दाब अधिक हैं, और 0 वोल्ट (क्षेत्र) के समीप विद्युत-दाब कम होता हैं। विद्युत-दाब का परिशुद्ध परिमाण महत्वपूर्ण नहीं है, परंतु निविष्‍ट पर्याप्त प्रबल स्रोत गेट्स संचालित हों जिससे निर्गम विद्युत-दाब अलग-अलग श्रेणी के अंदर होंते है।


सक्रिय-उच्च या सकारात्मक तर्क के लिए, उच्च तर्क 1 (सत्य) का प्रतिनिधित्व करता है और निम्न तर्क 0 (असत्य) का प्रतिनिधित्व करता है। हालांकि, उच्च या निम्न के लिए तार्किक 1 और तार्किक 0 का समनुदेशन यादृच्छिक है और सक्रिय-निम्न या ऋणात्मक तर्क में प्रतिवर्त है, जहां निम्न तार्किक 1 होता है जबकि उच्च तार्किक 0 होता है। निम्नलिखित डायोड तर्क गेट सक्रिय-उच्च या सक्रिय-निम्न तर्क दोनों में काम करते हैं, हालांकि वे जिस तार्किक फलन को प्रयुक्त करते हैं, वह इस बात पर निर्भर करता है कि किस विद्युत-दाब स्तर को सक्रिय माना जाता है। सक्रिय-उच्च और सक्रिय-निम्न के बीच स्विचिंग सामान्य रूप से अधिक सक्षम तर्क डिजाइन प्राप्त करने के लिए उपयोग किया जाता है।
सक्रिय-उच्च या धनात्मक तर्क के लिए, उच्च तर्क 1 (सत्य) का प्रतिनिधित्व करता है और निम्न तर्क 0 (असत्य) का प्रतिनिधित्व करता है। चूँकि, उच्च या निम्न के लिए तर्क 1 और तर्क 0 का समनुदेशन यादृच्छिक होता है और सक्रिय-निम्न या ऋणात्मक तर्क में प्रतिवर्त है, जहां निम्न तर्क 1 होता है जबकि उच्च तर्क 0 होता है। निम्नलिखित डायोड तर्क गेट सक्रिय-उच्च या सक्रिय-निम्न तर्क दोनों में कार्य करते हैं, चूँकि वे जिस तर्क प्रकार्य को प्रयुक्त करते हैं, वह इस बात पर निर्भर करता है कि किस विद्युत-दाब स्तर को सक्रिय माना जाता है। सक्रिय-उच्च और सक्रिय-निम्न के बीच स्विचिंग सामान्य रूप से अधिक सक्षम तर्क डिजाइन प्राप्त करने के लिए उपयोग किया जाता है।


=== डायोड बायसन ===
=== डायोड बायसन ===
अग्रबायसित डायोड में कम प्रतिबाधा होती है, जो एक छोटे विद्युत-दाब पात के साथ लघु परिपथ का अनुमान लगाती है, जबकि विपरीत अभिनत डायोड में विवृत परिपथ का अनुमान लगाते हुए बहुत अधिक प्रतिबाधा होती है। डायोड प्रतीक का तीर पारंपरिक धारा प्रवाह की अग्रबायसित दिशा को दर्शाता है।
फॉरवर्ड-बायस्ड डायोड में कम प्रतिबाधा होती है, जो एक छोटे विद्युत-दाब पात के साथ लघु परिपथ का अनुमान लगाती है, जबकि विपरीत अभिनत डायोड में विवृत परिपथ का अनुमान लगाते हुए बहुत अधिक प्रतिबाधा होती है। डायोड का प्रतीक तीर पारंपरिक धारा प्रवाह की फॉरवर्ड-बायस्ड दिशा को दर्शाता है।


== डायोड AND और OR तर्क गेट ==
== डायोड AND और OR तर्क गेट ==


डायोड तार्किक गेट का प्रत्येक इनपुट एक साझा तार तार्किक आउटपुट से जुड़े डायोड के माध्यम से जुड़ता है। डायोड के प्रत्येक इनपुट और दिशा के विद्युत-दाब स्तर के आधार पर, प्रत्येक डायोड अग्रबायसित हो सकता है या नहीं भी हो सकता है। यदि कोई अग्रबायसित है, तो साझा आउटपुट तार अग्रबायसित डायोड के इनपुट के अंदर एक छोटा अग्र विद्युत-दाब पात होगा।
डायोड तर्क गेट का प्रत्येक निविष्‍ट एक साझा तार तर्क निर्गम से जुड़े डायोड के माध्यम से जुड़ता है। डायोड के प्रत्येक निविष्‍ट और दिशा के विद्युत-दाब स्तर के आधार पर, प्रत्येक डायोड फॉरवर्ड-बायस्ड हो सकता है या नहीं भी हो सकता है। यदि कोई फॉरवर्ड-बायस्ड है, तो साझा निर्गम तार फॉरवर्ड-बायस्ड डायोड के निविष्‍ट के अंदर एक छोटा फॉरवर्ड वोल्टेज ड्रॉप होगा।


यदि कोई डायोड अग्रबायसित नहीं है तो कोई भी डायोड आउटपुट के लोड के लिए विद्युत् चालन (जैसे कि बाद का तार्किक चरण) प्रदान नहीं करेगा। इसलिए आउटपुट को अतिरिक्त रूप से एक विद्युत-दाब स्रोत से जुड़े ऊर्ध्व प्रतिरोधक या अधोकर्षक प्रतिरोधक की आवश्यकता होती है, ताकि आउटपुट शीघ्रता से<ref>The output load will have some capacitance (even if no capacitor is added, there will be some parasitic capacitance). When all diodes are reversed biased in a high impedance state, they will only provide a minuscule amount of reverse saturation current for draining the capacitance, thus it will take too long for the output voltage to fully transition. Diodes also have a reverse recovery time.</ref> संक्रमण कर सके और जब कोई डायोड अग्रबायसित न हो तो एक प्रबल परिचालक धारा प्रदान करे।
यदि कोई डायोड फॉरवर्ड-बायस्ड नहीं है तो कोई भी डायोड निर्गम के भार के लिए विद्युत् चालन (जैसे कि बाद का तर्क चरण) प्रदान नहीं करेगा। इसलिए निर्गम को अतिरिक्त रूप से एक विद्युत-दाब स्रोत से जुड़े ऊर्ध्व प्रतिरोधक या अधोकर्षक प्रतिरोधक की आवश्यकता होती है, जिससे निर्गम शीघ्रता से<ref>The output load will have some capacitance (even if no capacitor is added, there will be some parasitic capacitance). When all diodes are reversed biased in a high impedance state, they will only provide a minuscule amount of reverse saturation current for draining the capacitance, thus it will take too long for the output voltage to fully transition. Diodes also have a reverse recovery time.</ref> संक्रमण कर सके और जब कोई डायोड फॉरवर्ड-बायस्ड न हो तो एक प्रबल परिचालक धारा प्रदान करते है।


टिप्पणी: निम्नलिखित परिपथ में प्रत्येक गेट के लिए दो इनपुट होते हैं और इस प्रकार दो डायोड का उपयोग करते हैं, लेकिन अधिक इनपुट की स्वीकृति देने के लिए अधिक डायोड के साथ बढ़ाया जा सकता है। प्रत्येक गेट का कम से कम एक इनपुट एक प्रबल-पर्याप्त उच्च या निम्न विद्युत-दाब स्रोत से जुड़ा होना चाहिए। यदि सभी इनपुट एक प्रबल स्रोत से वियोजित हो जाते हैं, तो आउटपुट वैध विद्युत-दाब श्रेणी के अंदर नहीं आ सकता है।
टिप्पणी: निम्नलिखित परिपथ में प्रत्येक गेट के लिए दो निविष्‍ट होते हैं और इस प्रकार दो डायोड का उपयोग करते हैं, किंतु अधिक निविष्‍ट की स्वीकृति देने के लिए अधिक डायोड के साथ बढ़ाया जा सकता है। प्रत्येक गेट का कम से कम एक निविष्‍ट एक प्रबल-पर्याप्त उच्च या निम्न विद्युत-दाब स्रोत से जुड़ा होना चाहिए। यदि सभी निविष्‍ट एक प्रबल स्रोत से वियोजित हो जाते हैं, तो निर्गम वैध विद्युत-दाब श्रेणी के अंदर नहीं आ सकता है।


=== सक्रिय-उच्च OR तर्क गेट्स ===
=== सक्रिय-उच्च OR तर्क गेट्स ===
प्रत्येक इनपुट डायोड के एनोड से जुड़ता है। सभी कैथोड आउटपुट से जुड़े होते हैं, जिसमें एक अधोकर्षक प्रतिरोधक होता है।
प्रत्येक निविष्‍ट डायोड के एनोड से जुड़ता है। सभी कैथोड निर्गम से जुड़े होते हैं, जिसमें एक अधोकर्षक प्रतिरोधक होता है।


यदि कोई इनपुट अधिक है, तब इसका डायोड अग्रबायसित होगा और धारा का संचालन करेगा, और इस प्रकार आउटपुट विद्युत-दाब को उच्च<ref>The output will be pulled specifically to one forward voltage drop less than the lowest high input voltage. The designer must ensure this output voltage should still lie within the valid high range.</ref> आकर्षित करेगा।
यदि कोई निविष्‍ट अधिक है, तब इसका डायोड फॉरवर्ड-बायस्ड होगा और धारा का संचालन करेगा, और इस प्रकार निर्गम विद्युत-दाब को उच्च<ref>The output will be pulled specifically to one forward voltage drop less than the lowest high input voltage. The designer must ensure this output voltage should still lie within the valid high range.</ref> आकर्षित करेगा।


यदि सभी इनपुट कम होता हैं, तब सभी डायोड विपरीत अभिनत होंगे और इसलिए कोई भी धारा का संचालन नहीं करेगा। अधोकर्षक प्रतिरोधक शीघ्रता से आउटपुट विद्युत-दाब को कम कर देगा।
यदि सभी निविष्‍ट कम होता हैं, तब सभी डायोड विपरीत अभिनत होंगे और इसलिए कोई भी धारा का संचालन नहीं करेगा। अधोकर्षक प्रतिरोधक शीघ्रता से निर्गम विद्युत-दाब को कम कर देता है ।
[[File:Animated wired OR diode logic.gif|thumb|183x183px|डायोड परिपथ कार्यान्वयन OR सक्रिय-उच्च तर्क में।]]
[[File:Animated wired OR diode logic.gif|thumb|183x183px|डायोड परिपथ कार्यान्वयन OR सक्रिय-उच्च तर्क में।]]
संक्षेप में, यदि कोई इनपुट अधिक है तो आउटपुट उच्च होगा, लेकिन केवल तभी जब सभी इनपुट कम होंगे तो आउटपुट कम होगा:  
संक्षेप में यदि कोई निविष्‍ट अधिक है तो निर्गम उच्च होगा किंतु केवल तभी जब सभी निविष्‍ट कम होंगे तो निर्गम कम होगा:  
{| class="wikitable"
{| class="wikitable"
|+
|+
! colspan="2" |इनपुट
! colspan="2" |निविष्‍ट
!आउट्पुट
!आउट्पुट
|-
|-
Line 57: Line 57:
|उच्च
|उच्च
|}
|}
यह तार्किक या सक्रिय-उच्च तर्क के साथ-साथ तार्किक और सक्रिय-निम्न तर्क से समान है।
यह तर्क या सक्रिय-उच्च तर्क के साथ-साथ तर्क और सक्रिय-निम्न तर्क से समान है।


=== सक्रिय-उच्च AND तर्क गेट ===
=== सक्रिय-उच्च AND तर्क गेट ===
यह परिपथ पूर्व गेट को प्रतिबिंबित करता है: डायोड को प्रतिवर्त कर दिया जाता है ताकि प्रत्येक इनपुट डायोड के कैथोड से जुड़ जाए और सभी एनोड एक साथ आउटपुट से जुड़े हों, जिसमें एक ऊर्ध्व प्रतिरोधक होता है।
यह परिपथ पूर्व गेट को प्रतिबिंबित करता है: डायोड को प्रतिवर्त कर दिया जाता है जिससे प्रत्येक निविष्‍ट डायोड के कैथोड से जुड़ जाए और सभी एनोड एक साथ निर्गम से जुड़े हों, जिसमें एक ऊर्ध्व प्रतिरोधक होता है।


यदि कोई इनपुट कम है, तो इसका डायोड अग्रबायसित होगा और धारा का संचालन करेगा, और इस प्रकार आउटपुट विद्युत-दाब को कम<ref>The output will be pulled specifically to one forward voltage drop above the highest low input voltage. The designer must ensure this output voltage should still lie within the valid low range.</ref> आकर्षित करेगा।
यदि कोई निविष्‍ट कम है, तो इसका डायोड फॉरवर्ड-बायस्ड होगा और धारा का संचालन करेगा, और इस प्रकार निर्गम विद्युत-दाब को कम<ref>The output will be pulled specifically to one forward voltage drop above the highest low input voltage. The designer must ensure this output voltage should still lie within the valid low range.</ref> आकर्षित करेगा।


यदि सभी इनपुट अधिक हैं, तो सभी डायोड विपरीत अभिनत होंगे और इसलिए कोई भी धारा का संचालन नहीं करेगा। ऊर्ध्व प्रतिरोधक शीघ्रता से आउटपुट विद्युत-दाब को उच्च प्रभावित करेगा।
यदि सभी निविष्‍ट अधिक हैं, तो सभी डायोड विपरीत अभिनत होंगे और इसलिए कोई भी धारा का संचालन नहीं करेगा। ऊर्ध्व प्रतिरोधक शीघ्रता से निर्गम विद्युत-दाब को उच्च प्रभावित करेगा।
[[File:Animated wired AND diode logic.gif|thumb|डायोड परिपथ कार्यान्वयन AND सक्रिय-उच्च तर्क में। ध्यान दे: अनुरूप कार्यान्वयन में परिशुद्ध आउटपुट धाराएं +5V आपूर्ति से भिन्न होंगी।]]
[[File:Animated wired AND diode logic.gif|thumb|डायोड परिपथ कार्यान्वयन AND सक्रिय-उच्च तर्क में। ध्यान दे: अनुरूप कार्यान्वयन में परिशुद्ध निर्गम धाराएं +5V आपूर्ति से भिन्न होंगी।]]
संक्षेप में, यदि कोई इनपुट कम है, तो आउटपुट कम होगा, लेकिन केवल तभी जब सभी इनपुट उच्च होंगे, आउटपुट उच्च होगा:
संक्षेप में, यदि कोई निविष्‍ट कम है, तो निर्गम कम होगा, किंतु केवल तभी जब सभी निविष्‍ट उच्च होंगे और निर्गम उच्च होगा:
{| class="wikitable"
{| class="wikitable"
! colspan="2" |इनपुट
! colspan="2" |निविष्‍ट
!आउट्पुट
!आउट्पुट
|-
|-
Line 87: Line 87:
|उच्च
|उच्च
|}
|}
यह तार्किक और सक्रिय-उच्च तर्क के साथ-साथ तार्किक या सक्रिय-निम्न तर्क में संगत है।
यह तर्क और सक्रिय-उच्च तर्क के साथ-साथ तर्क या सक्रिय-निम्न तर्क में संगत है।


== वास्तविक डायोड तर्क ==
== वास्तविक डायोड तर्क ==
''मुख्य लेख: [[p-n]] [[डायोड का विस्तृत विवरण]], [[P-n जंक्शन का विवरण|P-n संयोजन का विवरण]], और [[शॉक्ले डायोड समीकरण]]''
''मुख्य लेख: [[p-n]] [[डायोड का विस्तृत विवरण]], [[P-n जंक्शन का विवरण|P-n संयोजन का विवरण]], और [[शॉक्ले डायोड समीकरण]]''


सरलता के लिए, डायोड को कभी-कभी अग्रबायसित और विपरीत अभिनत होने पर अनंत प्रतिरोध होने पर कोई विद्युत-दाब पात या प्रतिरोध नहीं माना जा सकता है। लेकिन वास्तविक डायोड शॉकली डायोड समीकरण द्वारा अधिकतम अनुमानित हैं, जिसमें एक अधिक जटिल घातीय धारा-विद्युत-दाब संबंध है जिसे डायोड नियम कहा जाता है।
सरलता के लिए, डायोड को कभी-कभी फॉरवर्ड-बायस्ड और विपरीत अभिनत होने पर अनंत प्रतिरोध होने पर कोई विद्युत-दाब पात या प्रतिरोध नहीं माना जा सकता है। किंतु वास्तविक डायोड शॉकली डायोड समीकरण द्वारा अधिकतम अनुमानित हैं, जिसमें एक अधिक जटिल घातीय धारा-विद्युत-दाब संबंध है जिसे डायोड नियम कहा जाता है।


डिजाइनरों को डायोड की विनिर्देश शीट पर निर्भर करना चाहिए, जो मुख्य रूप से एक या एक से अधिक अग्र धाराओं, एक विपरीत क्षरण धारा (या संतृप्ति धारा) पर अधिकतम अग्र विद्युत-दाब पात और अधिकतम विपरीत विद्युत-दाब जेनर या हिमस्खलन विघटन द्वारा सीमित प्रदान करता है। तापमान और प्रक्रिया भिन्नता के प्रभाव सामान्य रूप से सम्मिलित होते हैं। विशिष्ट उदाहरण:  
डिजाइनरों को डायोड की विनिर्देश शीट पर निर्भर करना चाहिए, जो मुख्य रूप से एक या एक से अधिक अग्र धाराओं एक विपरीत क्षरण धारा (या संतृप्ति धारा) पर अधिकतम अग्र विद्युत-दाब पात और अधिकतम विपरीत विद्युत-दाब जेनर या हिमस्खलन विघटन द्वारा सीमित प्रदान करता है। तापमान और प्रक्रिया भिन्नता के प्रभाव सामान्य रूप से सम्मिलित होते हैं। विशिष्ट उदाहरण:  


* जर्मेनियम डायोड:
* जर्मेनियम डायोड:
Line 106: Line 106:


=== अस्थायी प्रतिक्रिया ===
=== अस्थायी प्रतिक्रिया ===
डायोड की एक अस्थायी प्रतिक्रिया भी होती है जो समस्या का विषय हो सकती है। एनोड और कैथोड के बीच धारिता विपरीत विद्युत-दाब के व्युत्क्रमानुपाती होती है, जैसे-जैसे यह 0 वोल्ट और अग्रबायसित की ओर बढ़ती है।
डायोड की एक अस्थायी प्रतिक्रिया भी होती है जो समस्या का विषय हो सकती है। एनोड और कैथोड के बीच धारिता विपरीत विद्युत-दाब के व्युत्क्रमानुपाती होती है, जैसे-जैसे यह 0 वोल्ट और फॉरवर्ड-बायस्ड की ओर बढ़ती है।


एक पुनः प्राप्ति समस्या भी है: अग्रबायसित से विपरीत अभिनत में स्विच करने पर एक डायोड का धारा तुरंत कम नहीं होगी, क्योंकि इसके संग्रहित आवेश को निर्वहन करने में एक (t<sub>rr</sub> या प्रतीप पुनः प्राप्ति समय) सीमित समय लगता है।<ref>"Reverse Recovery Time". ''Analog Devices''. Archived from the original on 2023-01-18. Retrieved 2023-01-18.</ref> एक डायोड या गेट में, यदि दो या दो से अधिक इनपुट उच्च हैं और एक कम पर स्विच करता है, तो पुनः प्राप्ति की समस्या आउटपुट विद्युत-दाब में एक अल्पकालिक पतन का कारण बनेगी या उच्च रहने वाले डायोड में धारा बढ़ाएगी। यदि एक डायोड-प्रतिरोधान्तरित्र तर्क गेट समान निर्माण के एक प्रतिरोधान्तरित्र प्रतिवर्तित्र को संचालित करता है, तो प्रतिरोधान्तरित्र में एक समान संग्राही-आधार धारिता होगा जो प्रतिरोधान्तरित्र वृद्धि द्वारा प्रवर्धित होता है, जिससे यह व्यवधान को पार करने में बहुत मंद हो जाएगा। लेकिन जब डायोड बहुत मंद होता है, तो पुनः प्राप्ति समस्या का विषय बन जाती है:<blockquote>एक असामान्य डिजाइन में, जर्मेनियम प्रतिरोधान्तरित्र के साथ छोटे सेलेनियम डायोड चक्रिका का उपयोग किया गया था। बहुत मंद सेलेनियम डायोड के पुनर्प्राप्ति समय के कारण प्रतिवर्तित्र आउटपुट पर व्यवधान हो जाता है। यह प्रतिरोधान्तरित्र के उत्सर्जक-आधार संयोजन पर एक सेलेनियम डायोड लगाकर निर्धारित किया गया था जिससे यह लगता है कि यह एक सेलेनियम प्रतिरोधान्तरित्र था यदि कभी कोई हो सकता है।</blockquote>[[File:Diode approximation of Voltage vs Current.jpg|thumb|विद्युत-दाब बनाम धारा का डायोड वक्र]]
एक पुनः प्राप्ति समस्या भी है: फॉरवर्ड-बायस्ड से विपरीत अभिनत में स्विच करने पर एक डायोड का धारा तुरंत कम नहीं होगी, क्योंकि इसके संग्रहित आवेश को निर्वहन करने में एक (t<sub>rr</sub> या प्रतीप पुनः प्राप्ति समय) सीमित समय लगता है।<ref>"Reverse Recovery Time". ''Analog Devices''. Archived from the original on 2023-01-18. Retrieved 2023-01-18.</ref> एक डायोड या गेट में, यदि दो या दो से अधिक निविष्‍ट उच्च हैं और एक कम पर स्विच करता है, तो पुनः प्राप्ति की समस्या निर्गम विद्युत-दाब में एक अल्पकालिक पतन का कारण बनेगी या उच्च रहने वाले डायोड में धारा बढ़ाएगी। यदि एक डायोड-प्रतिरोधान्तरित्र तर्क गेट समान निर्माण के एक प्रतिरोधान्तरित्र प्रतिवर्तित्र को संचालित करता है, तो प्रतिरोधान्तरित्र में एक समान संग्राही-आधार धारिता होगा जो प्रतिरोधान्तरित्र वृद्धि द्वारा प्रवर्धित होता है, जिससे यह व्यवधान को पार करने में बहुत अस्पष्ट हो जाएगा। किंतु जब डायोड बहुत अस्पष्ट होता है, तो पुनः प्राप्ति समस्या का विषय बन जाती है:<blockquote>एक असामान्य डिजाइन में, जर्मेनियम प्रतिरोधान्तरित्र के साथ छोटे सेलेनियम डायोड चक्रिका का उपयोग किया गया था। बहुत अस्पष्ट सेलेनियम डायोड के पुनर्प्राप्ति समय के कारण प्रतिवर्तित्र निर्गम पर व्यवधान हो जाता है। यह प्रतिरोधान्तरित्र के उत्सर्जक-आधार संयोजन पर एक सेलेनियम डायोड लगाकर निर्धारित किया गया था जिससे यह लगता है कि यह एक सेलेनियम प्रतिरोधान्तरित्र था यदि कभी कोई हो सकता है।</blockquote>[[File:Diode approximation of Voltage vs Current.jpg|thumb|विद्युत-दाब बनाम धारा का डायोड वक्र]]


== विद्युत-दाब की हानि ==
== विद्युत-दाब की हानि ==
सक्रिय तार्किक गेट आउटपुट विद्युत-दाब को एक सटीक विद्युत-दाब परास के अंदर प्रदान करता है, परंतु उनके इनपुट विद्युत-दाब कुछ व्यापक मान्य इनपुट विद्युत-दाब परास के अंदर हों। इस स्तर का पुनःस्थापन अधिक सोपानित तार्किक चरणों की स्वीकृति देती है और रव को दूर करती है, जिससे बहुत बड़े पैमाने पर एकीकरण की सुविधा मिलती है।
सक्रिय तर्क गेट निर्गम विद्युत-दाब को एक परिशुद्ध विद्युत-दाब परास के अंदर प्रदान करता है, परंतु उनके निविष्‍ट विद्युत-दाब कुछ व्यापक मान्य निविष्‍ट विद्युत-दाब परास के अंदर हों। इस स्तर का पुनःस्थापन अधिक सोपानित तर्क चरणों की स्वीकृति देती है और रव को दूर करती है जिससे बहुत बड़े मापदंड पर एकीकरण की सुविधा मिलती है।


हालाँकि, निष्क्रिय डायोड तार्किक गेट्स के सोपानित होने पर निम्नलिखित विद्युत-दाब हानि को बढ़ाते हैं:
चूँकि, निष्क्रिय डायोड तर्क गेट्स के सोपानित होने पर निम्नलिखित विद्युत-दाब हानि को बढ़ाते हैं:


; अग्र विद्युत-दाब V<sub>F</sub> पात
; अग्र विद्युत-दाब V<sub>F</sub> पात
: [[File:Cascaded-AND-OR-diode-logic.svg|thumb|196x196px|सोपानित AND-OR गेट। उच्च 5V स्तर दो बार कम किया जाता है।<ref>Bigelow, Ken (2015), Diode logic, archived from the original 7 May 2021.</ref> OR डायोड का V<sub>F</sub> ~ 0.6 V गिर जाता है और AND का विपटलन OR के अधोकर्षण के साथ एक विद्युत-दाब उपकरण बनाता है।]]प्रत्येक OR गेट पर इनपुट किए गए उच्च विद्युत-दाब V<sub>F</sub> (सिलिकॉन में ~ 0.6 V, जर्मेनियम में ~ 0.3 V) से कम हो जाते हैं, जबकि प्रत्येक AND गेट पर इनपुट किए गए कम विद्युत-दाब V<sub>F</sub> द्वारा बढ़ाए जाते हैं।
: [[File:Cascaded-AND-OR-diode-logic.svg|thumb|196x196px|सोपानित AND-OR गेट। उच्च 5V स्तर दो बार कम किया जाता है।<ref>Bigelow, Ken (2015), Diode logic, archived from the original 7 May 2021.</ref> OR डायोड का V<sub>F</sub> ~ 0.6 V गिर जाता है और AND का विपटलन OR के अधोकर्षण के साथ एक विद्युत-दाब उपकरण बनाता है।]]प्रत्येक OR गेट पर निविष्‍ट किए गए उच्च विद्युत-दाब V<sub>F</sub> (सिलिकॉन में ~ 0.6 V, जर्मेनियम में ~ 0.3 V) से कम हो जाते हैं, जबकि प्रत्येक AND गेट पर निविष्‍ट किए गए कम विद्युत-दाब V<sub>F</sub> द्वारा बढ़ाए जाते हैं।


; स्रोत प्रतिरोध
; स्रोत प्रतिरोध
: एक विद्युत-दाब स्रोत का आउटपुट प्रतिरोध और बाद के गेट का ऊर्ध्व/अधोकर्षण प्रतिरोधक एक विद्युत-दाब व्यवधान बनाता है जो विद्युत-दाब के स्तर को दुर्बल करता है। यह OR गेट्स में उच्च विद्युत-दाब कम करता है और AND गेट्स में कम विद्युत-दाब बढ़ाता है।
: एक विद्युत-दाब स्रोत का निर्गम प्रतिरोध और बाद के गेट का ऊर्ध्व/अधोकर्षण प्रतिरोधक एक विद्युत-दाब व्यवधान बनाता है जो विद्युत-दाब के स्तर को दुर्बल करता है। यह OR गेट्स में उच्च विद्युत-दाब कम करता है और AND गेट्स में कम विद्युत-दाब बढ़ाता है।


इस प्रकार सोपानिक की व्यवहार्य मात्रा V<sub>F</sub> के मान और उच्च-निम्न विद्युत-दाब अंतर द्वारा सीमित होती है। विशेष डिजाइनों के साथ, कभी-कभी दो-चरण प्रणालियां प्राप्त की जाती हैं।विद्युत-दाब पात की क्षतिपूर्ति करने और अगले परिपथ लोड को संचालित करने के लिए पर्याप्त धारा प्रदान करने के लिए ऊर्ध्व प्रतिरोधों को नाममात्र उच्च विद्युत-दाब स्तर से अधिक आपूर्ति से जोड़ा जा सकता है। और इसी तरह अधोकर्षण प्रतिरोधों को आंशिक कम विद्युत-दाब से कम आपूर्ति से जोड़ा जा सकता है।
इस प्रकार सोपानिक की व्यवहार्य मात्रा V<sub>F</sub> के मान और उच्च-निम्न विद्युत-दाब अंतर द्वारा सीमित होती है। विशेष डिजाइनों के साथ, कभी-कभी दो-चरण प्रणालियां प्राप्त की जाती हैं। विद्युत-दाब पात की क्षतिपूर्ति करने और अगले परिपथ लोड को संचालित करने के लिए पर्याप्त धारा प्रदान करने के लिए ऊर्ध्व प्रतिरोधों को नाममात्र उच्च विद्युत-दाब स्तर से अधिक आपूर्ति से जोड़ा जा सकता है। और इसी तरह अधोकर्षण प्रतिरोधों को आंशिक कम विद्युत-दाब से कम आपूर्ति से जोड़ा जा सकता है।
== अनुप्रयोग ==
== अनुप्रयोग ==
ऐतिहासिक रूप से, प्रारम्भिक कंप्यूटरों के निर्माण में डायोड तर्क का बड़े पैमाने पर उपयोग किया गया था, क्योंकि अर्ध-चालक डायोड भारी और कीमती सक्रिय निर्वात नलिकाओ को बदल सकते थे। प्रतिरोधान्तरित्र के आविष्कार ने प्रतिरोधान्तरित्र को नलिकाओ को डायोड-प्रतिरोधान्तरित्र तर्क में सक्रिय तत्व के रूप में बदलने की स्वीकृति दी। चूंकि प्रारंभिक प्रतिरोधान्तरित्र विश्वसनीय नहीं थे, उदाहरण के लिए, D-17B मिसाइल मार्गदर्शन कंप्यूटर, मुख्य रूप से डायोड तर्क का उपयोग करता था और जब आवश्यक हो तो केवल प्रतिरोधान्तरित्र का उपयोग करता था। डायोड तर्क को लगभग पूरी तरह से बदलने के लिए प्रतिरोधान्तरित्र तेजी से उन्नत हुए थे। हालांकि, डायोड तर्क अभी भी कुछ आधुनिक उपयोग पाता है।
ऐतिहासिक रूप से, प्रारम्भिक कंप्यूटरों के निर्माण में डायोड तर्क का बड़े मापदंड पर उपयोग किया गया था, क्योंकि अर्ध-चालक डायोड भारी और कीमती सक्रिय निर्वात नलिकाओ को बदल सकते थे। प्रतिरोधान्तरित्र के आविष्कार ने प्रतिरोधान्तरित्र को नलिकाओ को डायोड-प्रतिरोधान्तरित्र तर्क में सक्रिय तत्व के रूप में बदलने की स्वीकृति दी। चूंकि प्रारंभिक प्रतिरोधान्तरित्र विश्वसनीय नहीं थे, उदाहरण के लिए, D-17B मिसाइल पथ-प्रदर्शन कंप्यूटर, मुख्य रूप से डायोड तर्क का उपयोग करता था और जब आवश्यक हो तो केवल प्रतिरोधान्तरित्र का उपयोग करता था। डायोड तर्क को लगभग पूरी तरह से बदलने के लिए प्रतिरोधान्तरित्र तेजी से उन्नत हुए थे। चूँकि, डायोड तर्क अभी भी कुछ आधुनिक उपयोग पाता है।


=== सक्रिय आउटपुट से सस्ता निष्क्रिय तर्क ===
=== सक्रिय निर्गम से सस्ता निष्क्रिय तर्क ===
पारंपरिक आईसी के कम-प्रतिबाधा कर्षापकर्ष आउटपुट को सीधे बाहरी परिपथिकी से नहीं जोड़ा जाना चाहिए, क्योंकि वे विद्युत और तल के बीच लघु परिपथ बना सकते हैं। हालाँकि, इस तरह के आउटपुट को निष्क्रिय AND या डायोड तार्किक गेट्स के इनपुट के रूप में उपयोग किया जा सकता है। यह सक्रिय तार्किक गेट्स को जोड़ने की कीमत से संरक्षित करता है।<ref>Integrated Circuits §Using diodes to combine outputs, Electronics Club, retrieved 27 November 2022.</ref> हालांकि, डायोड तार्किक विद्युत-दाब के स्तर को कम कर देगा और विकृत रव अस्वीकृति का परिणाम होगा, इसलिए डिजाइनरों को विफलताओं को प्रतिबंधित करने के लिए अंतराफलकीय तर्क वर्ग की विद्युत-दाब श्रेणी और सीमाओं के बारे में पता होना चाहिए।
पारंपरिक एकीकृत परिपथ के कम-प्रतिबाधा कर्षापकर्ष निर्गम को प्रत्यक्ष बाहरी परिपथिकी से नहीं जोड़ा जाना चाहिए, क्योंकि वे विद्युत और तल के बीच लघु परिपथ बना सकते हैं। चूँकि, इस तरह के निर्गम को निष्क्रिय AND या OR डायोड तर्क गेट्स के निविष्‍ट के रूप में उपयोग किया जा सकता है। यह सक्रिय तर्क गेट्स को जोड़ने की कीमत से संरक्षित करता है।<ref>Integrated Circuits §Using diodes to combine outputs, Electronics Club, retrieved 27 November 2022.</ref> चूँकि, डायोड तर्क विद्युत-दाब के स्तर को कम कर देगा और विकृत रव अस्वीकृति का परिणाम होगा, इसलिए डिजाइनरों को विफलताओं को प्रतिबंधित करने के लिए अंतराफलकीय तर्क वर्ग की विद्युत-दाब श्रेणी और सीमाओं के बारे में पता होना चाहिए।


=== मिकी माउस तर्क ===
=== मिकी माउस तर्क ===
डॉन लैनकेस्टर की सीएमओएस कुकबुक में वर्णित विनोदपूर्वक नामित "मिकी माउस तर्क" नियमित सीएमओएस 4000-श्रृंखला आईसी की सीमित क्षमताओं को बढ़ाने के लिए एक बहु-उपकरण के रूप में डायोड का उपयोग करने का सुझाव देता है, उदाहरण के लिए डायोड OR गेट का उपयोग करके अतिरिक्त इनपुट जोड़ने के लिए विभाजित करके-N प्रत्याक्रमण को विन्यास करने के लिए फ्लिप-फ्लॉप, या डायोड AND गेट प्रदान करता है।<ref>Lancaster, Don (1977). ''CMOS Cookbook'' (2nd ed.). USA: Howard W Sams & Co. pp. 242–245. ISBN <bdi>0 672-22459-3</bdi>.</ref> एक भिन्न दृष्टिकोण शैथिल्य और कार्यात्मक पूर्णता प्रदान करने के लिए श्मिट प्रतिक्रिया आईसी को प्रतिवर्त करने के साथ 1N914 डायोड की आपूर्ति रखने का सुझाव देता है।<ref>Wilson, Ray. "CMOS Mickey Mouse Logic". ''musicfromouterspace.com''. Archived from the original on 2022-09-16. Retrieved 2023-01-18.</ref>
डॉन लैनकेस्टर की सीएमओएस कुकबुक में वर्णित विनोदपूर्वक नामित "मिकी माउस तर्क" नियमित सीएमओएस 4000-श्रृंखला एकीकृत परिपथ की सीमित क्षमताओं को बढ़ाने के लिए एक बहु-उपकरण के रूप में डायोड का उपयोग करने का सुझाव देता है, उदाहरण के लिए डायोड OR गेट का उपयोग करके अतिरिक्त निविष्‍ट जोड़ने के लिए विभाजित करके-N प्रत्याक्रमण को विन्यास करने के लिए फ्लिप-फ्लॉप, या डायोड AND गेट प्रदान करता है।<ref>Lancaster, Don (1977). ''CMOS Cookbook'' (2nd ed.). USA: Howard W Sams & Co. pp. 242–245. ISBN <bdi>0 672-22459-3</bdi>.</ref> एक भिन्न दृष्टिकोण शैथिल्य और कार्यात्मक पूर्णता प्रदान करने के लिए श्मिट प्रतिक्रिया एकीकृत परिपथ को प्रतिवर्त करने के साथ 1N914 डायोड की आपूर्ति रखने का सुझाव देता है।<ref>Wilson, Ray. "CMOS Mickey Mouse Logic". ''musicfromouterspace.com''. Archived from the original on 2022-09-16. Retrieved 2023-01-18.</ref>


==== कोई महत्वपूर्ण व्यवधान ====
==== कोई महत्वपूर्ण व्यवधान ====
एक सक्रिय-निम्न या डायोड तार्किक गेट एक कीपैड द्वारा प्रत्येक स्विच पर डायोड युक्त होता है, जो सभी एक साझा ऊर्ध्व प्रतिरोधक से जुड़े होते हैं। जब कोई स्विच बंद नहीं होता है, तो ऊर्ध्व आउटपुट को उच्च रखता है। लेकिन जब किसी कुंजी का स्विच तल से जुड़ता है, तो आउटपुट कम हो जाता है। यह OR परिणाम एक बाधा संकेत के रूप में उपयोग किया जा सकता है यह इंगित करने के लिए कि कोई कुंजी दबाई गई है। फिर एक सूक्ष्‍म नियंत्रक विद्युत संरक्षण स्टैंडबाय (आपातोपयोगी) से जागृत हो सकता है और कुंजी आधारक को जांच कर सकता है यह निर्धारित करने के लिए कि किस कुंजी को विशेष रूप से दबाया गया था। [6]
एक सक्रिय-निम्न या डायोड तर्क गेट एक कीपैड द्वारा प्रत्येक स्विच पर डायोड युक्त होता है, जो सभी एक साझा ऊर्ध्व प्रतिरोधक से जुड़े होते हैं। जब कोई स्विच बंद नहीं होता है, तो ऊर्ध्व निर्गम को उच्च रखता है। किंतु जब किसी कुंजी का स्विच तल से जुड़ता है, तो निर्गम कम हो जाता है। यह OR परिणाम एक प्रतिबाधा संकेत के रूप में उपयोग किया जा सकता है यह इंगित करने के लिए कि कोई कुंजी को क्लिक किया जाता है। फिर एक सूक्ष्‍म नियंत्रक विद्युत संरक्षण स्टैंडबाय (आपातोपयोगी) से प्रदर्शित हो सकता है और कुंजी आधारक को जांच कर सकता है यह निर्धारित करने के लिए कि किस कुंजी को विशेष रूप से क्लिक किया गया था। [6]


== टनल डायोड ==
== टनल डायोड ==
1960 के दशक के समय तर्क परिपथ में टनल डायोड का उपयोग एक सक्रिय शोध विषय था। जब उस समय के प्रतिरोधान्तरित्र तर्क गेट्स की तुलना में, टनल डायोड ने बहुत अधिक गति की पेशकश की। अन्य डायोड प्रकारों के विपरीत, टनल डायोड ने प्रत्येक चरण में संकेतों के प्रवर्धन की संभावना की पेशकश की। एक टनल डायोड तर्क के संचालन सिद्धांत टनल डायोड केअभिनत और एक प्रभाव सीमा धारा पर इनपुट से धारा की आपूर्ति पर निर्भर करते हैं, दो अवस्थाओ के बीच डायोड को स्विच करने के लिए करते है। परिणामस्वरूप, टनल डायोड तर्क परिपथ प्रत्येक तार्किक संचालन के बाद डायोड को पुनः नियोजन करने के लिए एक साधन की आवश्यकता होती है। एक साधारण टनल डायोड गेट ने इनपुट और आउटपुट के बीच आंशिक वियोजन की पेशकश की और इसमें कम प्रशंसक और निर्गमी थे।अतिरिक्त टनल डायोड और अभिनत विद्युत की आपूर्ति के साथ अधिक जटिल गेट्स ने इनमें से कुछ सीमाओं को पार कर लिया। <ref>  ''Tunnel Diodes for Switching and Microwave Applications Technical Manual TD-30'', RCA 1963, (3rd Chapter) Switching </ref> असतत और एकीकृत परिपथ प्रतिरोधान्तरित्र की गति में अग्रिम और प्रतिरोधान्तरित्र प्रवर्धकों की अधिक लगभग एक पक्षीय प्रकृति ने टनल डायोड गेट को पीछे छोड़ दिया और इसका उपयोग अब आधुनिक कंप्यूटरों में नहीं किया जाता है।
1960 के दशक के समय तर्क परिपथ में टनल डायोड का उपयोग एक सक्रिय शोध विषय था। जब उस समय के प्रतिरोधान्तरित्र तर्क गेट्स की तुलना में, टनल डायोड ने बहुत अधिक गति की प्रस्तुति की थी । अन्य डायोड प्रकारों के विपरीत, टनल डायोड ने प्रत्येक चरण में संकेतों के प्रवर्धन की संभावना की प्रस्तुति की थी। एक टनल डायोड तर्क के संचालन सिद्धांत टनल डायोड के अभिनत और एक प्रभाव सीमा धारा पर निविष्‍ट से धारा की आपूर्ति पर निर्भर करते हैं, दो अवस्थाओ के बीच डायोड को स्विच करने के लिए करते है। परिणामस्वरूप टनल डायोड तर्क परिपथ प्रत्येक तर्क संचालन के बाद डायोड को पुनः नियोजन करने के लिए एक साधन की आवश्यकता होती है। एक साधारण टनल डायोड गेट ने निविष्‍ट और निर्गम के बीच आंशिक वियोजन की प्रस्तुति की और इसमें कम प्रशंसक और निर्गमी थे।अतिरिक्त टनल डायोड और अभिनत विद्युत की आपूर्ति के साथ अधिक जटिल गेट्स ने इनमें से कुछ सीमाओं को पार कर लिया था। <ref name=":0">  ''Tunnel Diodes for Switching and Microwave Applications Technical Manual TD-30'', RCA 1963, (3rd Chapter) Switching </ref> असतत और एकीकृत परिपथ प्रतिरोधान्तरित्र की गति में अग्रिम और प्रतिरोधान्तरित्र प्रवर्धकों की अधिक लगभग एक पक्षीय प्रकृति ने टनल डायोड गेट को पीछे छोड़ दिया और इसका उपयोग आधुनिक कंप्यूटरों में नहीं किया जाता है।  
 
== यह भी देखें                                         ==
== यह भी देखें ==
* डायोड आधारक
* डायोड आधारक
* प्रतिरोधान्तरित्र-प्रतिरोधान्तरित्र तर्क
* प्रतिरोधान्तरित्र-प्रतिरोधान्तरित्र तर्क
Line 151: Line 150:


{{Logic Families}}
{{Logic Families}}
[[Category: तर्क परिवार]]


[[Category: Machine Translated Page]]
[[Category:Collapse templates]]
[[Category:Commons category link is locally defined]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:तर्क परिवार]]

Latest revision as of 21:02, 5 July 2023

डायोड तर्क (या डायोड-प्रतिरोधक तर्क) डायोड और प्रतिरोधक के साथ AND और OR तर्क गेट्स (द्वार) का निर्माण करता है।

सक्रिय उपकरण (प्रारम्भिक कंप्यूटरों में निर्वात नलिका, फिर डायोड-प्रतिरोधान्तरित्र तर्क में प्रतिरोधान्तरित्र) अतिरिक्त रूप से विद्युत-दाब स्तर पुनःस्थापन के लिए कार्यात्मक पूर्णता और प्रवर्धन के लिए तर्क अंतर्वर्तन (NOT) प्रदान करने के लिए आवश्यक है जो एकल डायोड तर्क प्रदान नहीं कर सकता है।

डायोड तर्क में सरल एनकोडर एक एकल उच्च निविष्‍ट के लिए 3-बिट बाइनरी अनुक्रमणिका निर्गम करता है।

चूंकि प्रत्येक डायोड तर्क चरण के साथ विद्युत-दाब का स्तर दुर्बल होता है डायोड तर्क की उपयोगिता को सीमित करते हुए कई चरणों को आसानी से सोपानित नहीं किया जा सकता है। चूँकि डायोड तर्क में केवल सरल निष्क्रिय घटकों का उपयोग करने का लाभ होता है।

अनुभव

तर्क गेट्स

तर्क गेट बूलियन बीजगणित का मूल्यांकन करते हैं, सामान्य रूप से समानांतर या श्रृंखला में जुड़े तर्क निविष्‍ट गेट्स नियंत्रित इलेक्ट्रॉनिक स्विच का उपयोग करते हैं। डायोड तर्क केवल OR और AND को प्रयुक्त कर सकता है, क्योंकि प्रतिवर्तित्र (गेट नहीं) को एक सक्रिय उपकरण की आवश्यकता होती है।

तर्क विद्युत-दाब स्तर

मुख्य लेख: तर्क स्तर § 2-स्तरीय तर्क

बाइनरी तर्क विद्युत-दाब सिग्नल के दो अलग-अलग तर्क स्तरों का उपयोग करता है जिन्हें उच्च और निम्न लेबल किया जा सकता है। इस तर्क में, +5 वोल्ट के समीप विद्युत-दाब अधिक हैं, और 0 वोल्ट (क्षेत्र) के समीप विद्युत-दाब कम होता हैं। विद्युत-दाब का परिशुद्ध परिमाण महत्वपूर्ण नहीं है, परंतु निविष्‍ट पर्याप्त प्रबल स्रोत गेट्स संचालित हों जिससे निर्गम विद्युत-दाब अलग-अलग श्रेणी के अंदर होंते है।

सक्रिय-उच्च या धनात्मक तर्क के लिए, उच्च तर्क 1 (सत्य) का प्रतिनिधित्व करता है और निम्न तर्क 0 (असत्य) का प्रतिनिधित्व करता है। चूँकि, उच्च या निम्न के लिए तर्क 1 और तर्क 0 का समनुदेशन यादृच्छिक होता है और सक्रिय-निम्न या ऋणात्मक तर्क में प्रतिवर्त है, जहां निम्न तर्क 1 होता है जबकि उच्च तर्क 0 होता है। निम्नलिखित डायोड तर्क गेट सक्रिय-उच्च या सक्रिय-निम्न तर्क दोनों में कार्य करते हैं, चूँकि वे जिस तर्क प्रकार्य को प्रयुक्त करते हैं, वह इस बात पर निर्भर करता है कि किस विद्युत-दाब स्तर को सक्रिय माना जाता है। सक्रिय-उच्च और सक्रिय-निम्न के बीच स्विचिंग सामान्य रूप से अधिक सक्षम तर्क डिजाइन प्राप्त करने के लिए उपयोग किया जाता है।

डायोड बायसन

फॉरवर्ड-बायस्ड डायोड में कम प्रतिबाधा होती है, जो एक छोटे विद्युत-दाब पात के साथ लघु परिपथ का अनुमान लगाती है, जबकि विपरीत अभिनत डायोड में विवृत परिपथ का अनुमान लगाते हुए बहुत अधिक प्रतिबाधा होती है। डायोड का प्रतीक तीर पारंपरिक धारा प्रवाह की फॉरवर्ड-बायस्ड दिशा को दर्शाता है।

डायोड AND और OR तर्क गेट

डायोड तर्क गेट का प्रत्येक निविष्‍ट एक साझा तार तर्क निर्गम से जुड़े डायोड के माध्यम से जुड़ता है। डायोड के प्रत्येक निविष्‍ट और दिशा के विद्युत-दाब स्तर के आधार पर, प्रत्येक डायोड फॉरवर्ड-बायस्ड हो सकता है या नहीं भी हो सकता है। यदि कोई फॉरवर्ड-बायस्ड है, तो साझा निर्गम तार फॉरवर्ड-बायस्ड डायोड के निविष्‍ट के अंदर एक छोटा फॉरवर्ड वोल्टेज ड्रॉप होगा।

यदि कोई डायोड फॉरवर्ड-बायस्ड नहीं है तो कोई भी डायोड निर्गम के भार के लिए विद्युत् चालन (जैसे कि बाद का तर्क चरण) प्रदान नहीं करेगा। इसलिए निर्गम को अतिरिक्त रूप से एक विद्युत-दाब स्रोत से जुड़े ऊर्ध्व प्रतिरोधक या अधोकर्षक प्रतिरोधक की आवश्यकता होती है, जिससे निर्गम शीघ्रता से[1] संक्रमण कर सके और जब कोई डायोड फॉरवर्ड-बायस्ड न हो तो एक प्रबल परिचालक धारा प्रदान करते है।

टिप्पणी: निम्नलिखित परिपथ में प्रत्येक गेट के लिए दो निविष्‍ट होते हैं और इस प्रकार दो डायोड का उपयोग करते हैं, किंतु अधिक निविष्‍ट की स्वीकृति देने के लिए अधिक डायोड के साथ बढ़ाया जा सकता है। प्रत्येक गेट का कम से कम एक निविष्‍ट एक प्रबल-पर्याप्त उच्च या निम्न विद्युत-दाब स्रोत से जुड़ा होना चाहिए। यदि सभी निविष्‍ट एक प्रबल स्रोत से वियोजित हो जाते हैं, तो निर्गम वैध विद्युत-दाब श्रेणी के अंदर नहीं आ सकता है।

सक्रिय-उच्च OR तर्क गेट्स

प्रत्येक निविष्‍ट डायोड के एनोड से जुड़ता है। सभी कैथोड निर्गम से जुड़े होते हैं, जिसमें एक अधोकर्षक प्रतिरोधक होता है।

यदि कोई निविष्‍ट अधिक है, तब इसका डायोड फॉरवर्ड-बायस्ड होगा और धारा का संचालन करेगा, और इस प्रकार निर्गम विद्युत-दाब को उच्च[2] आकर्षित करेगा।

यदि सभी निविष्‍ट कम होता हैं, तब सभी डायोड विपरीत अभिनत होंगे और इसलिए कोई भी धारा का संचालन नहीं करेगा। अधोकर्षक प्रतिरोधक शीघ्रता से निर्गम विद्युत-दाब को कम कर देता है ।

डायोड परिपथ कार्यान्वयन OR सक्रिय-उच्च तर्क में।

संक्षेप में यदि कोई निविष्‍ट अधिक है तो निर्गम उच्च होगा किंतु केवल तभी जब सभी निविष्‍ट कम होंगे तो निर्गम कम होगा:

निविष्‍ट आउट्पुट
निम्न निम्न निम्न
निम्न उच्च उच्च
उच्च निम्न उच्च
उच्च उच्च उच्च

यह तर्क या सक्रिय-उच्च तर्क के साथ-साथ तर्क और सक्रिय-निम्न तर्क से समान है।

सक्रिय-उच्च AND तर्क गेट

यह परिपथ पूर्व गेट को प्रतिबिंबित करता है: डायोड को प्रतिवर्त कर दिया जाता है जिससे प्रत्येक निविष्‍ट डायोड के कैथोड से जुड़ जाए और सभी एनोड एक साथ निर्गम से जुड़े हों, जिसमें एक ऊर्ध्व प्रतिरोधक होता है।

यदि कोई निविष्‍ट कम है, तो इसका डायोड फॉरवर्ड-बायस्ड होगा और धारा का संचालन करेगा, और इस प्रकार निर्गम विद्युत-दाब को कम[3] आकर्षित करेगा।

यदि सभी निविष्‍ट अधिक हैं, तो सभी डायोड विपरीत अभिनत होंगे और इसलिए कोई भी धारा का संचालन नहीं करेगा। ऊर्ध्व प्रतिरोधक शीघ्रता से निर्गम विद्युत-दाब को उच्च प्रभावित करेगा।

डायोड परिपथ कार्यान्वयन AND सक्रिय-उच्च तर्क में। ध्यान दे: अनुरूप कार्यान्वयन में परिशुद्ध निर्गम धाराएं +5V आपूर्ति से भिन्न होंगी।

संक्षेप में, यदि कोई निविष्‍ट कम है, तो निर्गम कम होगा, किंतु केवल तभी जब सभी निविष्‍ट उच्च होंगे और निर्गम उच्च होगा:

निविष्‍ट आउट्पुट
निम्न निम्न निम्न
निम्न उच्च निम्न
उच्च निम्न निम्न
उच्च उच्च उच्च

यह तर्क और सक्रिय-उच्च तर्क के साथ-साथ तर्क या सक्रिय-निम्न तर्क में संगत है।

वास्तविक डायोड तर्क

मुख्य लेख: p-n डायोड का विस्तृत विवरण, P-n संयोजन का विवरण, और शॉक्ले डायोड समीकरण

सरलता के लिए, डायोड को कभी-कभी फॉरवर्ड-बायस्ड और विपरीत अभिनत होने पर अनंत प्रतिरोध होने पर कोई विद्युत-दाब पात या प्रतिरोध नहीं माना जा सकता है। किंतु वास्तविक डायोड शॉकली डायोड समीकरण द्वारा अधिकतम अनुमानित हैं, जिसमें एक अधिक जटिल घातीय धारा-विद्युत-दाब संबंध है जिसे डायोड नियम कहा जाता है।

डिजाइनरों को डायोड की विनिर्देश शीट पर निर्भर करना चाहिए, जो मुख्य रूप से एक या एक से अधिक अग्र धाराओं एक विपरीत क्षरण धारा (या संतृप्ति धारा) पर अधिकतम अग्र विद्युत-दाब पात और अधिकतम विपरीत विद्युत-दाब जेनर या हिमस्खलन विघटन द्वारा सीमित प्रदान करता है। तापमान और प्रक्रिया भिन्नता के प्रभाव सामान्य रूप से सम्मिलित होते हैं। विशिष्ट उदाहरण:

  • जर्मेनियम डायोड:
  • 10 एमए = 1 वोल्ट @ 0 से 85 डिग्री सेल्सियस पर अधिकतम अग्र विद्युत-दाब[4]
  • 15 वोल्ट = 100 माइक्रोऐंपियर @ 85 ° C पर अधिकतम प्रतीप क्षरण धारा
  • सिलिकॉन डायोड:
  • 10 एमए = 1 वोल्ट @ 0 से 125 डिग्री सेल्सियस पर अधिकतम अग्र विद्युत-दाब[5]
  • 15 वोल्ट = 1 माइक्रोऐंपियर @ 85 ° C पर अधिकतम प्रतीप क्षरण धारा


अस्थायी प्रतिक्रिया

डायोड की एक अस्थायी प्रतिक्रिया भी होती है जो समस्या का विषय हो सकती है। एनोड और कैथोड के बीच धारिता विपरीत विद्युत-दाब के व्युत्क्रमानुपाती होती है, जैसे-जैसे यह 0 वोल्ट और फॉरवर्ड-बायस्ड की ओर बढ़ती है।

एक पुनः प्राप्ति समस्या भी है: फॉरवर्ड-बायस्ड से विपरीत अभिनत में स्विच करने पर एक डायोड का धारा तुरंत कम नहीं होगी, क्योंकि इसके संग्रहित आवेश को निर्वहन करने में एक (trr या प्रतीप पुनः प्राप्ति समय) सीमित समय लगता है।[6] एक डायोड या गेट में, यदि दो या दो से अधिक निविष्‍ट उच्च हैं और एक कम पर स्विच करता है, तो पुनः प्राप्ति की समस्या निर्गम विद्युत-दाब में एक अल्पकालिक पतन का कारण बनेगी या उच्च रहने वाले डायोड में धारा बढ़ाएगी। यदि एक डायोड-प्रतिरोधान्तरित्र तर्क गेट समान निर्माण के एक प्रतिरोधान्तरित्र प्रतिवर्तित्र को संचालित करता है, तो प्रतिरोधान्तरित्र में एक समान संग्राही-आधार धारिता होगा जो प्रतिरोधान्तरित्र वृद्धि द्वारा प्रवर्धित होता है, जिससे यह व्यवधान को पार करने में बहुत अस्पष्ट हो जाएगा। किंतु जब डायोड बहुत अस्पष्ट होता है, तो पुनः प्राप्ति समस्या का विषय बन जाती है:

एक असामान्य डिजाइन में, जर्मेनियम प्रतिरोधान्तरित्र के साथ छोटे सेलेनियम डायोड चक्रिका का उपयोग किया गया था। बहुत अस्पष्ट सेलेनियम डायोड के पुनर्प्राप्ति समय के कारण प्रतिवर्तित्र निर्गम पर व्यवधान हो जाता है। यह प्रतिरोधान्तरित्र के उत्सर्जक-आधार संयोजन पर एक सेलेनियम डायोड लगाकर निर्धारित किया गया था जिससे यह लगता है कि यह एक सेलेनियम प्रतिरोधान्तरित्र था यदि कभी कोई हो सकता है।

विद्युत-दाब बनाम धारा का डायोड वक्र

विद्युत-दाब की हानि

सक्रिय तर्क गेट निर्गम विद्युत-दाब को एक परिशुद्ध विद्युत-दाब परास के अंदर प्रदान करता है, परंतु उनके निविष्‍ट विद्युत-दाब कुछ व्यापक मान्य निविष्‍ट विद्युत-दाब परास के अंदर हों। इस स्तर का पुनःस्थापन अधिक सोपानित तर्क चरणों की स्वीकृति देती है और रव को दूर करती है जिससे बहुत बड़े मापदंड पर एकीकरण की सुविधा मिलती है।

चूँकि, निष्क्रिय डायोड तर्क गेट्स के सोपानित होने पर निम्नलिखित विद्युत-दाब हानि को बढ़ाते हैं:

अग्र विद्युत-दाब VF पात
सोपानित AND-OR गेट। उच्च 5V स्तर दो बार कम किया जाता है।[7] OR डायोड का VF ~ 0.6 V गिर जाता है और AND का विपटलन OR के अधोकर्षण के साथ एक विद्युत-दाब उपकरण बनाता है।
प्रत्येक OR गेट पर निविष्‍ट किए गए उच्च विद्युत-दाब VF (सिलिकॉन में ~ 0.6 V, जर्मेनियम में ~ 0.3 V) से कम हो जाते हैं, जबकि प्रत्येक AND गेट पर निविष्‍ट किए गए कम विद्युत-दाब VF द्वारा बढ़ाए जाते हैं।
स्रोत प्रतिरोध
एक विद्युत-दाब स्रोत का निर्गम प्रतिरोध और बाद के गेट का ऊर्ध्व/अधोकर्षण प्रतिरोधक एक विद्युत-दाब व्यवधान बनाता है जो विद्युत-दाब के स्तर को दुर्बल करता है। यह OR गेट्स में उच्च विद्युत-दाब कम करता है और AND गेट्स में कम विद्युत-दाब बढ़ाता है।

इस प्रकार सोपानिक की व्यवहार्य मात्रा VF के मान और उच्च-निम्न विद्युत-दाब अंतर द्वारा सीमित होती है। विशेष डिजाइनों के साथ, कभी-कभी दो-चरण प्रणालियां प्राप्त की जाती हैं। विद्युत-दाब पात की क्षतिपूर्ति करने और अगले परिपथ लोड को संचालित करने के लिए पर्याप्त धारा प्रदान करने के लिए ऊर्ध्व प्रतिरोधों को नाममात्र उच्च विद्युत-दाब स्तर से अधिक आपूर्ति से जोड़ा जा सकता है। और इसी तरह अधोकर्षण प्रतिरोधों को आंशिक कम विद्युत-दाब से कम आपूर्ति से जोड़ा जा सकता है।

अनुप्रयोग

ऐतिहासिक रूप से, प्रारम्भिक कंप्यूटरों के निर्माण में डायोड तर्क का बड़े मापदंड पर उपयोग किया गया था, क्योंकि अर्ध-चालक डायोड भारी और कीमती सक्रिय निर्वात नलिकाओ को बदल सकते थे। प्रतिरोधान्तरित्र के आविष्कार ने प्रतिरोधान्तरित्र को नलिकाओ को डायोड-प्रतिरोधान्तरित्र तर्क में सक्रिय तत्व के रूप में बदलने की स्वीकृति दी। चूंकि प्रारंभिक प्रतिरोधान्तरित्र विश्वसनीय नहीं थे, उदाहरण के लिए, D-17B मिसाइल पथ-प्रदर्शन कंप्यूटर, मुख्य रूप से डायोड तर्क का उपयोग करता था और जब आवश्यक हो तो केवल प्रतिरोधान्तरित्र का उपयोग करता था। डायोड तर्क को लगभग पूरी तरह से बदलने के लिए प्रतिरोधान्तरित्र तेजी से उन्नत हुए थे। चूँकि, डायोड तर्क अभी भी कुछ आधुनिक उपयोग पाता है।

सक्रिय निर्गम से सस्ता निष्क्रिय तर्क

पारंपरिक एकीकृत परिपथ के कम-प्रतिबाधा कर्षापकर्ष निर्गम को प्रत्यक्ष बाहरी परिपथिकी से नहीं जोड़ा जाना चाहिए, क्योंकि वे विद्युत और तल के बीच लघु परिपथ बना सकते हैं। चूँकि, इस तरह के निर्गम को निष्क्रिय AND या OR डायोड तर्क गेट्स के निविष्‍ट के रूप में उपयोग किया जा सकता है। यह सक्रिय तर्क गेट्स को जोड़ने की कीमत से संरक्षित करता है।[8] चूँकि, डायोड तर्क विद्युत-दाब के स्तर को कम कर देगा और विकृत रव अस्वीकृति का परिणाम होगा, इसलिए डिजाइनरों को विफलताओं को प्रतिबंधित करने के लिए अंतराफलकीय तर्क वर्ग की विद्युत-दाब श्रेणी और सीमाओं के बारे में पता होना चाहिए।

मिकी माउस तर्क

डॉन लैनकेस्टर की सीएमओएस कुकबुक में वर्णित विनोदपूर्वक नामित "मिकी माउस तर्क" नियमित सीएमओएस 4000-श्रृंखला एकीकृत परिपथ की सीमित क्षमताओं को बढ़ाने के लिए एक बहु-उपकरण के रूप में डायोड का उपयोग करने का सुझाव देता है, उदाहरण के लिए डायोड OR गेट का उपयोग करके अतिरिक्त निविष्‍ट जोड़ने के लिए विभाजित करके-N प्रत्याक्रमण को विन्यास करने के लिए फ्लिप-फ्लॉप, या डायोड AND गेट प्रदान करता है।[9] एक भिन्न दृष्टिकोण शैथिल्य और कार्यात्मक पूर्णता प्रदान करने के लिए श्मिट प्रतिक्रिया एकीकृत परिपथ को प्रतिवर्त करने के साथ 1N914 डायोड की आपूर्ति रखने का सुझाव देता है।[10]

कोई महत्वपूर्ण व्यवधान

एक सक्रिय-निम्न या डायोड तर्क गेट एक कीपैड द्वारा प्रत्येक स्विच पर डायोड युक्त होता है, जो सभी एक साझा ऊर्ध्व प्रतिरोधक से जुड़े होते हैं। जब कोई स्विच बंद नहीं होता है, तो ऊर्ध्व निर्गम को उच्च रखता है। किंतु जब किसी कुंजी का स्विच तल से जुड़ता है, तो निर्गम कम हो जाता है। यह OR परिणाम एक प्रतिबाधा संकेत के रूप में उपयोग किया जा सकता है यह इंगित करने के लिए कि कोई कुंजी को क्लिक किया जाता है। फिर एक सूक्ष्‍म नियंत्रक विद्युत संरक्षण स्टैंडबाय (आपातोपयोगी) से प्रदर्शित हो सकता है और कुंजी आधारक को जांच कर सकता है यह निर्धारित करने के लिए कि किस कुंजी को विशेष रूप से क्लिक किया गया था। [6]

टनल डायोड

1960 के दशक के समय तर्क परिपथ में टनल डायोड का उपयोग एक सक्रिय शोध विषय था। जब उस समय के प्रतिरोधान्तरित्र तर्क गेट्स की तुलना में, टनल डायोड ने बहुत अधिक गति की प्रस्तुति की थी । अन्य डायोड प्रकारों के विपरीत, टनल डायोड ने प्रत्येक चरण में संकेतों के प्रवर्धन की संभावना की प्रस्तुति की थी। एक टनल डायोड तर्क के संचालन सिद्धांत टनल डायोड के अभिनत और एक प्रभाव सीमा धारा पर निविष्‍ट से धारा की आपूर्ति पर निर्भर करते हैं, दो अवस्थाओ के बीच डायोड को स्विच करने के लिए करते है। परिणामस्वरूप टनल डायोड तर्क परिपथ प्रत्येक तर्क संचालन के बाद डायोड को पुनः नियोजन करने के लिए एक साधन की आवश्यकता होती है। एक साधारण टनल डायोड गेट ने निविष्‍ट और निर्गम के बीच आंशिक वियोजन की प्रस्तुति की और इसमें कम प्रशंसक और निर्गमी थे।अतिरिक्त टनल डायोड और अभिनत विद्युत की आपूर्ति के साथ अधिक जटिल गेट्स ने इनमें से कुछ सीमाओं को पार कर लिया था। [11] असतत और एकीकृत परिपथ प्रतिरोधान्तरित्र की गति में अग्रिम और प्रतिरोधान्तरित्र प्रवर्धकों की अधिक लगभग एक पक्षीय प्रकृति ने टनल डायोड गेट को पीछे छोड़ दिया और इसका उपयोग आधुनिक कंप्यूटरों में नहीं किया जाता है।

यह भी देखें

  • डायोड आधारक
  • प्रतिरोधान्तरित्र-प्रतिरोधान्तरित्र तर्क
  • तारयुक्त तर्क संयोजन

संदर्भ

  1. The output load will have some capacitance (even if no capacitor is added, there will be some parasitic capacitance). When all diodes are reversed biased in a high impedance state, they will only provide a minuscule amount of reverse saturation current for draining the capacitance, thus it will take too long for the output voltage to fully transition. Diodes also have a reverse recovery time.
  2. The output will be pulled specifically to one forward voltage drop less than the lowest high input voltage. The designer must ensure this output voltage should still lie within the valid high range.
  3. The output will be pulled specifically to one forward voltage drop above the highest low input voltage. The designer must ensure this output voltage should still lie within the valid low range.
  4. More realistically the germanium forward voltage might be 0.25 to 0.4 volts but this is often not specified.
  5. The silicon leakage current might be much lower, possibly 1 to 100 nanoamps.
  6. "Reverse Recovery Time". Analog Devices. Archived from the original on 2023-01-18. Retrieved 2023-01-18.
  7. Bigelow, Ken (2015), Diode logic, archived from the original 7 May 2021.
  8. Integrated Circuits §Using diodes to combine outputs, Electronics Club, retrieved 27 November 2022.
  9. Lancaster, Don (1977). CMOS Cookbook (2nd ed.). USA: Howard W Sams & Co. pp. 242–245. ISBN 0 672-22459-3.
  10. Wilson, Ray. "CMOS Mickey Mouse Logic". musicfromouterspace.com. Archived from the original on 2022-09-16. Retrieved 2023-01-18.
  11. Tunnel Diodes for Switching and Microwave Applications Technical Manual TD-30, RCA 1963, (3rd Chapter) Switching


बाहरी संबंध