आरोही श्रृंखला स्थिति: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 48: Line 48:
*{{cite web |title=Is the equivalence of the ascending chain condition and the maximum condition equivalent to the axiom of dependent choice? |url=https://math.stackexchange.com/q/1746921 }}
*{{cite web |title=Is the equivalence of the ascending chain condition and the maximum condition equivalent to the axiom of dependent choice? |url=https://math.stackexchange.com/q/1746921 }}


{{DEFAULTSORT:Ascending Chain Condition}}[[Category: क्रमविनिमेय बीजगणित]] [[Category: आदेश सिद्धांत]] [[Category: कल्याण]]
{{DEFAULTSORT:Ascending Chain Condition}}


 
[[Category:Created On 30/06/2023|Ascending Chain Condition]]
 
[[Category:Machine Translated Page|Ascending Chain Condition]]
[[Category: Machine Translated Page]]
[[Category:Pages with script errors|Ascending Chain Condition]]
[[Category:Created On 30/06/2023]]
[[Category:Templates Vigyan Ready|Ascending Chain Condition]]
[[Category:Vigyan Ready]]
[[Category:आदेश सिद्धांत|Ascending Chain Condition]]
[[Category:कल्याण|Ascending Chain Condition]]
[[Category:क्रमविनिमेय बीजगणित|Ascending Chain Condition]]

Latest revision as of 16:35, 7 July 2023

गणित में, आरोही श्रृंखला स्थिति (एसीसी) और अवरोही श्रृंखला स्थिति (डीसीसी) कुछ बीजीय संरचनाओं द्वारा संतुष्ट परिमितता गुण हैं, सबसे महत्वपूर्ण रूप से कुछ क्रमविनिमेय वलय में आदर्श।[1][2][3] इन स्थितियों ने डेविड हिल्बर्ट, एम्मी नोएथर और एमिल आर्टिन के कार्यों में क्रमविनिमेय वलय के संरचना सिद्धांत के विकास में महत्वपूर्ण भूमिका निभाई। शर्तों को स्वयं एक अमूर्त रूप में बताया जा सकता है ताकि वे किसी भी आंशिक रूप से ऑर्डर किए गए समुच्चय के लिए समझ में आ सकें। गेब्रियल और रेंटस्लर के कारण यह दृष्टिकोण अमूर्त बीजीय आयाम सिद्धांत में उपयोगी है।

परिभाषा

आंशिक रूप से क्रमबद्ध समुच्चय (पॉसमुच्चय) P को आरोही श्रृंखला स्थिति (एसीसी) को संतुष्ट करने के लिए कहा जाता है यदि कोई अनंत सख्ती से आरोही अनुक्रम नहीं है।

P के अवयवों का अस्तित्व है।[4] समान रूप से, प्रत्येक आरोही क्रम

P के अवयवों की संख्या अंततः स्थिर हो जाती है, जिसका अर्थ है कि धनात्मक पूर्णांक n उपस्थित है।

इसी प्रकार, यदि P के अवयवों की कोई अनंत अवरोही श्रृंखला नहीं है, तो P को अवरोही श्रृंखला स्थिति (डीसीसी) को संतुष्ट करने वाला कहा जाता है।[4] समान रूप से, प्रत्येक अशक्त अवरोही क्रम

P के अवयवों का अंतत: स्थिरीकरण होता है।

टिप्पणियाँ

  • आश्रित विकल्प के सिद्धांत को मानते हुए, (संभवतः अनंत) पॉसमुच्चय P पर अवरोही श्रृंखला स्थिति P के बराबर है जो अच्छी तरह से स्थापित है: P के प्रत्येक गैर-रिक्त उपसमुच्चय में न्यूनतम अवयव होता है (जिसे अल्पतम स्थिति या न्यूनतम स्थिति भी कहा जाता है)। एक पूरी तरह से व्यवस्थित समुच्चय जो अच्छी तरह से स्थापित हो, एक सुव्यवस्थित समुच्चय होता है।
  • इसी प्रकार, आरोही श्रृंखला की स्थिति P के विपरीत अच्छी तरह से स्थापित होने के बराबर है (फिर से, निर्भर विकल्प मानते हुए): P के प्रत्येक गैर-रिक्त उपसमुच्चय में अधिकतम अवयव (उच्चतम स्थिति या अधिकतम स्थिति) होता है।
  • प्रत्येक परिमित स्थिति आरोही और अवरोही दोनों श्रृंखला स्थितियों को संतुष्ट करती है और इस प्रकार दोनों अच्छी तरह से स्थापित और विपरीत रूप से अच्छी तरह से स्थापित होती है।

उदाहरण

वलय पर विचार करें

पूर्णांकों के प्रत्येक आदर्श में किसी संख्या के सभी गुणज शामिल होते हैं। उदाहरण के लिए आदर्श

के सभी गुणजों से मिलकर बना है। मान लीजिए

के सभी गुणजों से मिलकर बना आदर्श बनें। आदर्श , आदर्श के अंदर समाहित है क्योंकि का प्रत्येक गुणज भी का गुणज है। बदले में, आदर्श , आदर्श में निहित है, क्योंकि का प्रत्येक गुणज का गुणज है। हालाँकि, इस समय इससे बड़ा कोई आदर्श नहीं है; हमने पर "टॉप आउट" कर लिया है।

सामान्य तौर पर, यदि के आदर्श हैं जैसे कि इसमें समाहित है , में समाहित है, और इसी तरह, फिर कुछ है जिसके लिए सभी अर्थात् एक समय के बाद सभी आदर्श एक-दूसरे के बराबर हो जाते हैं। इसलिए, के आदर्श आरोही श्रृंखला स्थिति को संतुष्ट करते हैं, जहां आदर्शों को सेट समावेशन द्वारा क्रमबद्ध किया जाता है। अतः एक नोथेरियन वलय है।

यह भी देखें

टिप्पणियाँ

  1. Hazewinkel, Gubareni & Kirichenko (2004), p.6, Prop. 1.1.4.
  2. Fraleigh & Katz (1967), p. 366, Lemma 7.1
  3. Jacobson (2009), p. 142 and 147
  4. 4.0 4.1 Hazewinkel, Michiel. गणित का विश्वकोश. Kluwer. p. 580. ISBN 1-55608-010-7.

संदर्भ


बाहरी संबंध