ब्राउनियन सतह: Difference between revisions

From Vigyanwiki
 
No edit summary
Line 1: Line 1:
[[File:Brownian surface.png|thumb|त्रि-आयामी ब्राउनियन सतह का एकल अहसास]]एक ब्राउनियन सतह एक [[ [[भग्न]] परिदृश्य ]] है जो एक फ्रैक्टल एलिवेशन फंक्शन (गणित) के माध्यम से उत्पन्न होता है।<ref name=Russ >{{cite book|title=भग्न सतहें, खंड 1|first=John C.|last=Russ|year=1994|isbn=0-306-44702-9|page=167|url=https://books.google.com/books?id=qDQjyuuDRxUC&dq=%22brownian+surface%22&pg=PA167}}</ref><ref name=xie>{{cite book|title=रॉक यांत्रिकी में भग्न|first=Heping|last=Xie|year=1993|isbn=90-5410-133-4|page=73|url=https://books.google.com/books?id=lXElMU9_tIMC&dq=%22brownian+surface%22&pg=PA73}}</ref><ref>{{cite book|title=भग्न विकास घटना|first=Tamás|last=Vicsek|year=1992|isbn=981-02-0668-2|page=40|url=https://books.google.com/books?id=InnD-GTUi0gC&dq=%22brownian+surface%22&pg=PA40}}</ref>
[[File:Brownian surface.png|thumb|त्रि-आयामी ब्राउनियन सतह का एकल अहसास]]'''ब्राउनियन सतह''' फ्रैक्टल सतह है जो फ्रैक्टल एलिवेशन फंक्शन के माध्यम से उत्पन्न होता है।<ref name=Russ >{{cite book|title=भग्न सतहें, खंड 1|first=John C.|last=Russ|year=1994|isbn=0-306-44702-9|page=167|url=https://books.google.com/books?id=qDQjyuuDRxUC&dq=%22brownian+surface%22&pg=PA167}}</ref><ref name=xie>{{cite book|title=रॉक यांत्रिकी में भग्न|first=Heping|last=Xie|year=1993|isbn=90-5410-133-4|page=73|url=https://books.google.com/books?id=lXElMU9_tIMC&dq=%22brownian+surface%22&pg=PA73}}</ref><ref>{{cite book|title=भग्न विकास घटना|first=Tamás|last=Vicsek|year=1992|isbn=981-02-0668-2|page=40|url=https://books.google.com/books?id=InnD-GTUi0gC&dq=%22brownian+surface%22&pg=PA40}}</ref>
[[एक प्रकार कि गति]] का नाम ब्राउनियन गति के नाम पर रखा गया है।
[[एक प्रकार कि गति|ब्राउनियन सतह]] का नाम ब्राउनियन गति के नाम पर रखा गया है।


== उदाहरण ==
== उदाहरण ==
उदाहरण के लिए, त्रि-आयामी मामले में, जहां दो चर X और Y निर्देशांक के रूप में दिए गए हैं, किन्हीं दो बिंदुओं (x<sub>1</sub>, और<sub>1</sub>) और (एक्स<sub>2</sub>, और<sub>2</sub>) को माध्य या अपेक्षित मान के लिए सेट किया जा सकता है जो (x<sub>1</sub>, और<sub>1</sub>) और (एक्स<sub>2</sub>, और<sub>2</sub>).<ref name=Russ />हालाँकि, एलिवेशन फ़ंक्शन को परिभाषित करने के कई तरीके हैं। उदाहरण के लिए, [[आंशिक ब्राउनियन गति]] चर का उपयोग किया जा सकता है, या अधिक प्राकृतिक दिखने वाली सतहों को प्राप्त करने के लिए विभिन्न रोटेशन फ़ंक्शंस का उपयोग किया जा सकता है।<ref name=xie />
उदाहरण के लिए, त्रि-आयामी मामले में, जहां दो चर X और Y निर्देशांक के रूप में दिए गए हैं, किन्हीं दो बिंदुओं (x<sub>1</sub>, और<sub>1</sub>) और (एक्स<sub>2</sub>, और<sub>2</sub>) को माध्य या अपेक्षित मान के लिए सेट किया जा सकता है जो (x<sub>1</sub>, और<sub>1</sub>) और (एक्स<sub>2</sub>, और<sub>2</sub>).<ref name=Russ />हालाँकि, एलिवेशन फ़ंक्शन को परिभाषित करने के कई तरीके हैं। उदाहरण के लिए, [[आंशिक ब्राउनियन गति]] चर का उपयोग किया जा सकता है, या अधिक प्राकृतिक दिखने वाली सतहों को प्राप्त करने के लिए विभिन्न रोटेशन फ़ंक्शंस का उपयोग किया जा सकता है।<ref name=xie />


== आंशिक ब्राउनियन सतहों का निर्माण ==
== आंशिक ब्राउनियन सतहों का निर्माण ==

Revision as of 17:00, 1 July 2023

त्रि-आयामी ब्राउनियन सतह का एकल अहसास

ब्राउनियन सतह फ्रैक्टल सतह है जो फ्रैक्टल एलिवेशन फंक्शन के माध्यम से उत्पन्न होता है।[1][2][3]

ब्राउनियन सतह का नाम ब्राउनियन गति के नाम पर रखा गया है।

उदाहरण

उदाहरण के लिए, त्रि-आयामी मामले में, जहां दो चर X और Y निर्देशांक के रूप में दिए गए हैं, किन्हीं दो बिंदुओं (x1, और1) और (एक्स2, और2) को माध्य या अपेक्षित मान के लिए सेट किया जा सकता है जो (x1, और1) और (एक्स2, और2).[1]हालाँकि, एलिवेशन फ़ंक्शन को परिभाषित करने के कई तरीके हैं। उदाहरण के लिए, आंशिक ब्राउनियन गति चर का उपयोग किया जा सकता है, या अधिक प्राकृतिक दिखने वाली सतहों को प्राप्त करने के लिए विभिन्न रोटेशन फ़ंक्शंस का उपयोग किया जा सकता है।[2]

आंशिक ब्राउनियन सतहों का निर्माण

फ्रैक्शनल ब्राउनियन सतहों की कुशल पीढ़ी महत्वपूर्ण चुनौतियों का सामना करती है।[4] चूंकि ब्राउनियन सतह गैर-स्थिर सहप्रसरण फलन के साथ गॉसियन प्रक्रिया का प्रतिनिधित्व करती है, चोल्स्की अपघटन विधि का उपयोग कर सकते हैं। स्टीन की विधि एक अधिक कुशल विधि है,[5] जो परिपत्र एम्बेडिंग दृष्टिकोण का उपयोग करके एक सहायक स्थिर गॉसियन प्रक्रिया उत्पन्न करता है और फिर वांछित गैर-स्थिर गॉसियन प्रक्रिया प्राप्त करने के लिए इस सहायक प्रक्रिया को समायोजित करता है। नीचे दिया गया आंकड़ा खुरदरापन या हर्स्ट पैरामीटर के विभिन्न मूल्यों के लिए भिन्नात्मक ब्राउनियन सतहों के तीन विशिष्ट अहसास दिखाता है। हर्स्ट पैरामीटर हमेशा शून्य और एक के बीच होता है, चिकनी सतहों के अनुरूप मान एक के करीब होता है। इन सतहों को स्टीन की विधि के Matlab कार्यान्वयन का उपयोग करके उत्पन्न किया गया था।

हर्स्ट पैरामीटर के विभिन्न मूल्यों के लिए आंशिक ब्राउनियन सतहें। पैरामीटर जितना बड़ा होगा, सतह उतनी ही चिकनी होगी।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Russ, John C. (1994). भग्न सतहें, खंड 1. p. 167. ISBN 0-306-44702-9.
  2. 2.0 2.1 Xie, Heping (1993). रॉक यांत्रिकी में भग्न. p. 73. ISBN 90-5410-133-4.
  3. Vicsek, Tamás (1992). भग्न विकास घटना. p. 40. ISBN 981-02-0668-2.
  4. Kroese, D.P.; Botev, Z.I. (2015). "स्थानिक प्रक्रिया पीढ़ी". Lectures on Stochastic Geometry, Spatial Statistics and Random Fields, Volume II: Analysis, Modeling and Simulation of Complex Structures, Springer-Verlag, Berlin: 369–404. arXiv:1308.0399. Bibcode:2013arXiv1308.0399K. doi:10.1007/978-3-319-10064-7_12.
  5. Stein, M. L. (2002). "आंशिक ब्राउनियन गति का तेज़ और सटीक अनुकरण". Journal of Computational and Graphical Statistics. 11 (3): 587–599. doi:10.1198/106186002466. S2CID 121718378.