चार्ज-पंप फेज-लॉक लूप: Difference between revisions

From Vigyanwiki
Line 8: Line 8:


== सीपी-पीएलएल के गणितीय मॉडल ==
== सीपी-पीएलएल के गणितीय मॉडल ==
'''फ्लॉयड''' एम. गार्डनर एफ द्वारा दूसरे क्रम के सीपी-पीएलएल के पहले रैखिक गणितीय मॉडल का सुझाव दिया गया था। 1980 में गार्डनर।<ref name="Gardner-1980" />1994 में एम. वैन पैमेल द्वारा वीसीओ अधिभार के बिना एक अरैखिक मॉडल का सुझाव दिया गया था <ref name="Paemel-1984">{{cite journal |author = M. van Paemel  
दूसरे क्रम के सीपी-पीएलएल के पहले रैखिक गणितीय मॉडल 1980 में एफ. गार्डनर द्वारा सुझाव दिया गया था। गार्डनर फ्लॉयड <ref name="Gardner-1980" /> 1994 में एम. वैन पैमेल द्वारा वीसीओ अधिभार के बिना एक अरैखिक मॉडल का सुझाव दिया गया था <ref name="Paemel-1984">{{cite journal |author = M. van Paemel  
|title = Analysis of a charge-pump pll: A new model  
|title = Analysis of a charge-pump pll: A new model  
| journal = IEEE Transactions on Communications | volume = 42 |issue=7 | pages = 2490–2498| year = 1994|doi = 10.1109/26.297861  
| journal = IEEE Transactions on Communications | volume = 42 |issue=7 | pages = 2490–2498| year = 1994|doi = 10.1109/26.297861  
}}</ref> और फिर एन. कुज़नेत्सोव एट अल द्वारा परिष्कृत किया गया। 2019 में।<ref name="Kuznetsov-2019-JDECP">{{cite journal |author = N. Kuznetsov, M. Yuldashev, R. Yuldashev, M. Blagov, E. Kudryashova, O. Kuznetsova, and T. Mokaev  
}}</ref> और फिर एन. कुज़नेत्सोव एट अल द्वारा परिष्कृत किया गया। 2019 में।<ref name="Kuznetsov-2019-JDECP">{{cite journal |author = N. Kuznetsov, M. Yuldashev, R. Yuldashev, M. Blagov, E. Kudryashova, O. Kuznetsova, and T. Mokaev  
|title = Comments on van Paemel's mathematical model of charge-pump phase-locked loop  
|title = Comments on van Paemel's mathematical model of charge-pump phase-locked loop  
| journal = Differential Equations and Control Processes | volume = 1 | pages = 109–120 | url=https://diffjournal.spbu.ru/pdf/19107-jdecp-kuznetsov.pdf| year = 2019}}</ref> वीसीओ अधिभार को ध्यान में रखते हुए सीपी-पीएलएल का बंद फॉर्म गणितीय मॉडल में व्युत्पन्न हुआ है।<ref name="KuznetsovYYBKKM-2020">{{cite journal |author = N. Kuznetsov, M. Yuldashev, R. Yuldashev, M. Blagov, E. Kudryashova, O. Kuznetsova, T. Mokaev |title = Charge pump phase-locked loop with phase-frequency detector: closed form mathematical model| issue=1468 | year = 2020 |volume = 1901|arxiv = 1901.01468}}</ref>
| journal = Differential Equations and Control Processes | volume = 1 | pages = 109–120 | url=https://diffjournal.spbu.ru/pdf/19107-jdecp-kuznetsov.pdf| year = 2019}}</ref> वीसीओ अधिभार को ध्यान में रखते हुए सीपी-पीएलएल का बंद रूप गणितीय मॉडल प्राप्त किया गया है।<ref name="KuznetsovYYBKKM-2020">{{cite journal |author = N. Kuznetsov, M. Yuldashev, R. Yuldashev, M. Blagov, E. Kudryashova, O. Kuznetsova, T. Mokaev |title = Charge pump phase-locked loop with phase-frequency detector: closed form mathematical model| issue=1468 | year = 2020 |volume = 1901|arxiv = 1901.01468}}</ref>  
सीपी-पीएलएल के ये गणितीय मॉडल होल्ड-इन रेंज के विश्लेषणात्मक अनुमान प्राप्त करने की अनुमति देते हैं
(इनपुट सिग्नल अवधि की अधिकतम सीमा
जैसे कि वहाँ एक बंद अवस्था मौजूद है जिस पर VCO अतिभारित नहीं है)
और पुल-इन रेंज (इनपुट सिग्नल अवधि की अधिकतम सीमा
होल्ड-इन रेंज के भीतर जैसे कि किसी भी प्रारंभिक अवस्था के लिए CP-PLL
लॉक अवस्था प्राप्त करता है)।<ref name="KuznetsovMYY-2020" />


सीपी-पीएलएल के ये गणितीय मॉडल होल्ड-इन रेंज (इनपुट सिग्नल अवधि की अधिकतम सीमा जैसे कि वहाँ एक बंद अवस्था मौजूद है जिस पर वीसीओ अतिभारित नहीं है) और पुल-इन रेंज (ए) के विश्लेषणात्मक अनुमान प्राप्त करने की अनुमति देते  हैं। होल्ड-इन रेंज के भीतर इनपुट सिग्नल अवधि की अधिकतम सीमा, जैसे कि किसी भी प्रारंभिक स्थिति के लिए सीपी-पीएलएल लॉक अवस्था प्राप्त कर लेता है)।<ref name="KuznetsovMYY-2020" />


 
=== दूसरे क्रम के सीपी-पीएलएल और गार्डनर का अनुमान का निरंतर समय रैखिक मॉडल ===
=== दूसरे क्रम के सीपी-पीएलएल का निरंतर समय रैखिक मॉडल और गार्डनर का अनुमान ===
गार्डनर का विश्लेषण निम्नलिखित सन्निकटन पर आधारित है<ref name=Gardner-1980/> समय अंतराल जिस पर संदर्भ संकेत की प्रत्येक अवधि पर पीएफडी गैर-शून्य अवस्था है
गार्डनर का विश्लेषण निम्नलिखित सन्निकटन पर आधारित है:<ref name=Gardner-1980/>समय अंतराल जिस पर संदर्भ सिग्नल की प्रत्येक अवधि पर पीएफडी गैर-शून्य अवस्था है
:<math>t_p = |\theta_e|/\omega_{\rm ref},\ \theta_e = \theta_{\rm ref} - \theta_{\rm vco}.</math>
:<math>t_p = |\theta_e|/\omega_{\rm ref},\ \theta_e = \theta_{\rm ref} - \theta_{\rm vco}.</math>
चार्ज-पंप पीडीएफ का औसत आउटपुट है
फिर चार्ज-पंप पीएफडी का औसत आउटपुट है
:<math>i_d = I_p \theta_e/2\pi</math>
:<math>i_d = I_p \theta_e/2\pi</math>
इसी स्थानांतरण समारोह के साथ
इसी स्थानांतरण कार्य के साथ
:<math>I_d(s) = I_p\theta_e(s)/2\pi</math>
:<math>I_d(s) = I_p\theta_e(s)/2\pi</math>
फ़िल्टर ट्रांसफर फ़ंक्शन का उपयोग करना <math>F(s) = R + \frac{1}{Cs}</math> और वीसीओ स्थानांतरण समारोह <math>\theta_{\rm vco}(s) = K_{\rm vco}I_d(s)F(s)/s</math> एक को दूसरे क्रम के CP-PLL का गार्डनर का रैखिक अनुमानित औसत मॉडल मिलता है
फ़िल्टर ट्रांसफर फ़ंक्शन का उपयोग करना <math>F(s) = R + \frac{1}{Cs}</math> और वीसीओ स्थानांतरण समारोह <math>\theta_{\rm vco}(s) = K_{\rm vco}I_d(s)F(s)/s</math> एक को दूसरे क्रम के सीपी-पीएलएल का गार्डनर का रैखिक अनुमानित औसत मॉडल मिलता है
:<math>
:<math>
\frac{\theta_e(s)}{\theta_{\rm ref}(s)} = \frac{2\pi s}{2\pi s + K_{\rm vco}I_p\left(R + \frac{1}{Cs}\right)}.
\frac{\theta_e(s)}{\theta_{\rm ref}(s)} = \frac{2\pi s}{2\pi s + K_{\rm vco}I_p\left(R + \frac{1}{Cs}\right)}.
</math>
</math>
1980 में, फ्लॉयड एम. गार्डनर|एफ. उपरोक्त तर्क के आधार पर गार्डनर ने अनुमान लगाया कि व्यावहारिक चार्ज-पंप पीएलएल की क्षणिक प्रतिक्रिया समकक्ष क्लासिकल पीएलएल की प्रतिक्रिया के लगभग समान होने की उम्मीद की जा सकती है।<ref name=Gardner-1980/>{{rp|1856}} (फ्लोयड एम. गार्डनर#चार्ज-पंप चरण-लॉक लूप्स पर गार्नर का अनुमान| सीपी-पीएलएल पर गार्डनर का अनुमान<ref name=2021-TCAS-KuznetsovMYY>{{cite journal
1980 में, एम. गार्डनर ने उपरोक्त तर्क के आधार पर अनुमान लगाया कि व्यावहारिक चार्ज-पंप पीएलएल की क्षणिक प्रतिक्रिया समकक्ष शास्त्रीय पीएलएल की प्रतिक्रिया के लगभग समान होने की उम्मीद की जा सकती है।<ref name=Gardner-1980/> '''1856''' (सीपी-पीएलएल पर गार्डनर का अनुमान फ्लोयड एम. गार्डनर#चार्ज-पंप चरण-लॉक लूप्स पर गार्नर का अनुमान| <ref name=2021-TCAS-KuznetsovMYY>{{cite journal
  | last1=Kuznetsov | first1=N.V.| last2=Matveev | first2=A.S.| last3=Yuldashev | first3=M.V.| last4=Yuldashev | first4=R.V.
  | last1=Kuznetsov | first1=N.V.| last2=Matveev | first2=A.S.| last3=Yuldashev | first3=M.V.| last4=Yuldashev | first4=R.V.
  | title=Nonlinear Analysis of Charge-Pump Phase-Locked Loop: The Hold-In and Pull-In Ranges | journal= IEEE Transactions on Circuits and Systems I: Regular Papers
  | title=Nonlinear Analysis of Charge-Pump Phase-Locked Loop: The Hold-In and Pull-In Ranges | journal= IEEE Transactions on Circuits and Systems I: Regular Papers
  | volume= 68| pages=4049–4061| doi=10.1109/TCSI.2021.3101529
  | volume= 68| pages=4049–4061| doi=10.1109/TCSI.2021.3101529
  | year=2021
  | year=2021
  | issue=10| doi-access=free}}</ref>).
  | issue=10| doi-access=free}}</ref>) गार्डनर के परिणामों के बाद, विलियम एफ. एगन (इलेक्ट्रिकल इंजीनियर) के साथ समानता से # टाइप II एपीएलएल की पुल-इन रेंज पर ईगन का अनुमान| टाइप 2 एपीएलएल की पुल-इन रेंज पर ईगन का अनुमान, अम्र एम. फहीम ने अपने में अनुमान लगाया किताब<ref name=2005-Fahim>{{cite book | first= Amr M. | last=Fahim | year = 2005| title = Clock Generators for SOC Processors: Circuits and Architecture | publisher = Kluwer Academic Publishers| location = Boston-Dordrecht-London }}</ref>{{rp|6}} कि एक अनंत पुल-इन (कैप्चर) रेंज रखने के लिए, सीपी-पीएलएल में लूप फ़िल्टर के लिए एक सक्रिय फ़िल्टर का उपयोग किया जाना चाहिए (फहीम-एगन का अनुमान II सीपी-पीएलएल के पुल-इन रेंज पर)।
गार्डनर के परिणामों के बाद, विलियम एफ. एगन (इलेक्ट्रिकल इंजीनियर) के साथ समानता से # टाइप II एपीएलएल की पुल-इन रेंज पर ईगन का अनुमान| टाइप 2 एपीएलएल की पुल-इन रेंज पर ईगन का अनुमान, अम्र एम. फहीम ने अपने में अनुमान लगाया किताब<ref name=2005-Fahim>{{cite book | first= Amr M. | last=Fahim | year = 2005| title = Clock Generators for SOC Processors: Circuits and Architecture | publisher = Kluwer Academic Publishers| location = Boston-Dordrecht-London }}</ref>{{rp|6}} कि एक अनंत पुल-इन (कैप्चर) रेंज रखने के लिए, CP-PLL में लूप फ़िल्टर के लिए एक सक्रिय फ़िल्टर का उपयोग किया जाना चाहिए (फहीम-एगन का अनुमान II CP-PLL के पुल-इन रेंज पर)।


===दूसरे क्रम के CP-PLL=== का निरंतर समय अरैखिक मॉडल
===दूसरे क्रम के सीपी-पीएलएल=== का निरंतर समय अरैखिक मॉडल
व्यापकता के नुकसान के बिना यह माना जाता है कि वीसीओ और रेफ संकेतों के अनुगामी किनारे होते हैं
व्यापकता के नुकसान के बिना यह माना जाता है कि वीसीओ और रेफ संकेतों के अनुगामी किनारे होते हैं
जब संबंधित चरण एक पूर्णांक संख्या तक पहुँचता है।
जब संबंधित चरण एक पूर्णांक संख्या तक पहुँचता है।
Line 88: Line 81:
यह मॉडल एक अरैखिक, गैर-स्वायत्त, असंतुलित, स्विचिंग सिस्टम है।
यह मॉडल एक अरैखिक, गैर-स्वायत्त, असंतुलित, स्विचिंग सिस्टम है।


===दूसरे क्रम के CP-PLL=== का असतत समय अरैखिक मॉडल
===दूसरे क्रम के सीपी-पीएलएल=== का असतत समय अरैखिक मॉडल
[[File:PDF time intervals.jpg|thumb|500px|पीएफडी गतिकी का समय अंतराल]]संदर्भ संकेत आवृत्ति को स्थिर माना जाता है:
[[File:PDF time intervals.jpg|thumb|500px|पीएफडी गतिकी का समय अंतराल]]संदर्भ संकेत आवृत्ति को स्थिर माना जाता है:
<math>
<math>
Line 123: Line 116:
</math>
</math>
यहाँ <math>p_k</math> एक सामान्यीकृत चरण बदलाव है और <math>u_k+1</math> VCO आवृत्ति का अनुपात है <math>\omega_{\rm vco}^{\text{free}} + K_{\rm vco}v_k</math> संदर्भ आवृत्ति के लिए <math>\frac{1}{T_{\rm ref}}</math>.
यहाँ <math>p_k</math> एक सामान्यीकृत चरण बदलाव है और <math>u_k+1</math> VCO आवृत्ति का अनुपात है <math>\omega_{\rm vco}^{\text{free}} + K_{\rm vco}v_k</math> संदर्भ आवृत्ति के लिए <math>\frac{1}{T_{\rm ref}}</math>.
अंत में, VCO अधिभार के बिना दूसरे क्रम CP-PLL का असतत-समय मॉडल<ref name=Kuznetsov-2019-JDECP/><ref name=KuznetsovMYY-2020>{{cite journal |author = N.V. Kuznetsov, A.S. Matveev, M.V. Yuldashev, R.V. Yuldashev  
अंत में, VCO अधिभार के बिना दूसरे क्रम सीपी-पीएलएल का असतत-समय मॉडल<ref name=Kuznetsov-2019-JDECP/><ref name=KuznetsovMYY-2020>{{cite journal |author = N.V. Kuznetsov, A.S. Matveev, M.V. Yuldashev, R.V. Yuldashev  
|title = Nonlinear analysis of charge-pump phase-locked loop: the hold-in and pull-in ranges  
|title = Nonlinear analysis of charge-pump phase-locked loop: the hold-in and pull-in ranges  
| journal = IFAC World Congress |year = 2020 |arxiv = 2005.00864  
| journal = IFAC World Congress |year = 2020 |arxiv = 2005.00864  
Line 161: Line 154:
   <math> (p_k>0, u_k<2\beta p_k-1)</math> या
   <math> (p_k>0, u_k<2\beta p_k-1)</math> या
<math>(p_k<0, u_k<\alpha-1)</math>,
<math>(p_k<0, u_k<\alpha-1)</math>,
फिर CP-PLL गतिकी के अतिरिक्त मामले
फिर सीपी-पीएलएल गतिकी के अतिरिक्त मामले
ध्यान में रखा जाना है।<ref name=KuznetsovYYBKKM-2020/>किसी भी पैरामीटर के लिए वीसीओ अधिभार वीसीओ और संदर्भ संकेतों के बीच पर्याप्त रूप से बड़े आवृत्ति अंतर के लिए हो सकता है।
ध्यान में रखा जाना है।<ref name=KuznetsovYYBKKM-2020/>किसी भी पैरामीटर के लिए वीसीओ अधिभार वीसीओ और संदर्भ संकेतों के बीच पर्याप्त रूप से बड़े आवृत्ति अंतर के लिए हो सकता है।
व्यवहार में VCO अधिभार से बचना चाहिए।
व्यवहार में VCO अधिभार से बचना चाहिए।

Revision as of 13:19, 4 July 2023

चार्ज-पंप चरण -लॉक लूप (सीपी-पीएलएल) चरण-आवृत्ति डिटेक्टर और वर्गाकार तरंग संकेतों के साथ चरण-लॉक लूप का एक संशोधन है।[1] सीपी-पीएलएल आने वाले संकेतों के चरण को त्वरित रूप से लॉक करने की अनुमति देता है, जिससे कम स्थिर अवस्था चरण त्रुटि प्राप्त होती है।[2]

चरण-आवृत्ति डिटेक्टर (पीएफडी)

चरण-आवृत्ति डिटेक्टर (पीएफडी) को संदर्भ (रेफ) और नियंत्रित (वीसीओ) संकेतों के अनुगामी किनारों से शुरू होता है।पीएफडी का आउटपुट सिग्नल में केवल तीन अवस्थाएँ हो सकती हैं: 0, , और . संदर्भ सिग्नल का पिछला किनारा पीएफडी को उच्च अवस्था में स्विच करने के लिए मजबूर करता है, जब तक कि वह पहले से ही अवस्था में न हो .वीसीओ सिग्नल का पिछला किनारा पीएफडी को निचले अवस्था में जाने के लिए मजबूर करता है, जब तक कि वह पहले से ही इस अवस्था में न हो .यदि दोनों अनुगामी किनारे एक ही समय में होते हैं, तो पीएफडी शून्य पर स्विच हो जाता है।

सीपी-पीएलएल के गणितीय मॉडल

दूसरे क्रम के सीपी-पीएलएल के पहले रैखिक गणितीय मॉडल 1980 में एफ. गार्डनर द्वारा सुझाव दिया गया था। गार्डनर फ्लॉयड [2] 1994 में एम. वैन पैमेल द्वारा वीसीओ अधिभार के बिना एक अरैखिक मॉडल का सुझाव दिया गया था [3] और फिर एन. कुज़नेत्सोव एट अल द्वारा परिष्कृत किया गया। 2019 में।[4] वीसीओ अधिभार को ध्यान में रखते हुए सीपी-पीएलएल का बंद रूप गणितीय मॉडल प्राप्त किया गया है।[5]

सीपी-पीएलएल के ये गणितीय मॉडल होल्ड-इन रेंज (इनपुट सिग्नल अवधि की अधिकतम सीमा जैसे कि वहाँ एक बंद अवस्था मौजूद है जिस पर वीसीओ अतिभारित नहीं है) और पुल-इन रेंज (ए) के विश्लेषणात्मक अनुमान प्राप्त करने की अनुमति देते हैं। होल्ड-इन रेंज के भीतर इनपुट सिग्नल अवधि की अधिकतम सीमा, जैसे कि किसी भी प्रारंभिक स्थिति के लिए सीपी-पीएलएल लॉक अवस्था प्राप्त कर लेता है)।[6]

दूसरे क्रम के सीपी-पीएलएल और गार्डनर का अनुमान का निरंतर समय रैखिक मॉडल

गार्डनर का विश्लेषण निम्नलिखित सन्निकटन पर आधारित है[2] समय अंतराल जिस पर संदर्भ संकेत की प्रत्येक अवधि पर पीएफडी गैर-शून्य अवस्था है

फिर चार्ज-पंप पीएफडी का औसत आउटपुट है

इसी स्थानांतरण कार्य के साथ

फ़िल्टर ट्रांसफर फ़ंक्शन का उपयोग करना और वीसीओ स्थानांतरण समारोह एक को दूसरे क्रम के सीपी-पीएलएल का गार्डनर का रैखिक अनुमानित औसत मॉडल मिलता है

1980 में, एम. गार्डनर ने उपरोक्त तर्क के आधार पर अनुमान लगाया कि व्यावहारिक चार्ज-पंप पीएलएल की क्षणिक प्रतिक्रिया समकक्ष शास्त्रीय पीएलएल की प्रतिक्रिया के लगभग समान होने की उम्मीद की जा सकती है।[2] 1856 (सीपी-पीएलएल पर गार्डनर का अनुमान फ्लोयड एम. गार्डनर#चार्ज-पंप चरण-लॉक लूप्स पर गार्नर का अनुमान| [7]) गार्डनर के परिणामों के बाद, विलियम एफ. एगन (इलेक्ट्रिकल इंजीनियर) के साथ समानता से # टाइप II एपीएलएल की पुल-इन रेंज पर ईगन का अनुमान| टाइप 2 एपीएलएल की पुल-इन रेंज पर ईगन का अनुमान, अम्र एम. फहीम ने अपने में अनुमान लगाया किताब[8]: 6  कि एक अनंत पुल-इन (कैप्चर) रेंज रखने के लिए, सीपी-पीएलएल में लूप फ़िल्टर के लिए एक सक्रिय फ़िल्टर का उपयोग किया जाना चाहिए (फहीम-एगन का अनुमान II सीपी-पीएलएल के पुल-इन रेंज पर)।

===दूसरे क्रम के सीपी-पीएलएल=== का निरंतर समय अरैखिक मॉडल व्यापकता के नुकसान के बिना यह माना जाता है कि वीसीओ और रेफ संकेतों के अनुगामी किनारे होते हैं जब संबंधित चरण एक पूर्णांक संख्या तक पहुँचता है। बता दें कि रेफ सिग्नल के पहले अनुगामी किनारे का समय उदाहरण इस रूप में परिभाषित किया गया है . पीएफडी अवस्था पीएफडी प्रारंभिक अवस्था द्वारा निर्धारित किया जाता है , VCO के प्रारंभिक चरण में बदलाव और रेफरी संकेत।

इनपुट करंट के बीच संबंध और आउटपुट वोल्टेज एक के लिए प्रतिरोधी और संधारित्र के आधार पर आनुपातिक रूप से एकीकृत (परिपूर्ण पीआई) फ़िल्टर निम्नानुसार है

कहाँ एक प्रतिरोध है, एक समाई है, और कैपेसिटर चार्ज है। नियंत्रण संकेत VCO आवृत्ति समायोजित करता है:

कहाँ VCO फ्री-रनिंग (मौन) आवृत्ति है (यानी के लिए ), VCO लाभ (संवेदनशीलता) है, और VCO चरण है। अंत में, सीपी-पीएलएल का निरंतर समय अरैखिक गणितीय मॉडल इस प्रकार है

निम्नलिखित असंतुलित टुकड़ा-वार निरंतर अरैखिकता के साथ

और प्रारंभिक शर्तें . यह मॉडल एक अरैखिक, गैर-स्वायत्त, असंतुलित, स्विचिंग सिस्टम है।

===दूसरे क्रम के सीपी-पीएलएल=== का असतत समय अरैखिक मॉडल

पीएफडी गतिकी का समय अंतराल

संदर्भ संकेत आवृत्ति को स्थिर माना जाता है:

कहाँ , और एक अवधि, आवृत्ति और संदर्भ संकेत का एक चरण है। होने देना . द्वारा निरूपित करें समय का पहला पल ऐसा कि पीएफडी आउटपुट शून्य हो जाता है (अगर , तब ) और तक VCO या Ref का पहला अनुगामी किनारा। आगे इसी बढ़ते क्रम और के लिए परिभाषित किया गया हैं। होने देना . फिर के लिए एक गैर-शून्य स्थिरांक है (). द्वारा निरूपित करें पीएफडी पल्स चौड़ाई (समय अंतराल की लंबाई, जहां पीएफडी आउटपुट गैर-शून्य स्थिर है), पीएफडी आउटपुट के संकेत से गुणा किया जाता है: अर्थात। के लिए और के लिए . यदि VCO ट्रेलिंग एज Ref ट्रेलिंग एज से पहले हिट करता है, तब और विपरीत अवस्था में हमारे पास है , अर्थात। दिखाता है कि कैसे एक सिग्नल दूसरे से पिछड़ जाता है। पीएफडी का शून्य उत्पादन अंतराल पर : के लिए . चर का परिवर्तन[9] को पैरामीटर की संख्या को दो तक कम करने की अनुमति देता है: यहाँ एक सामान्यीकृत चरण बदलाव है और VCO आवृत्ति का अनुपात है संदर्भ आवृत्ति के लिए . अंत में, VCO अधिभार के बिना दूसरे क्रम सीपी-पीएलएल का असतत-समय मॉडल[4][6]

कहाँ

इस असतत-समय के मॉडल में केवल एक ही स्थिर अवस्था है और होल्ड-इन और पुल-इन रेंज का अनुमान लगाने की अनुमति देता है।[6]

यदि VCO अतिभारित है, अर्थात शून्य है, या वही क्या है:

  या

, फिर सीपी-पीएलएल गतिकी के अतिरिक्त मामले ध्यान में रखा जाना है।[5]किसी भी पैरामीटर के लिए वीसीओ अधिभार वीसीओ और संदर्भ संकेतों के बीच पर्याप्त रूप से बड़े आवृत्ति अंतर के लिए हो सकता है। व्यवहार में VCO अधिभार से बचना चाहिए।

=== उच्च-क्रम सीपी-पीएलएल === के अरैखिक मॉडल उच्च-क्रम सीपी-पीएलएल के गैर-रैखिक गणितीय मॉडल की व्युत्पत्ति ट्रान्सेंडैंटल चरण समीकरणों की ओर ले जाती है जिन्हें विश्लेषणात्मक रूप से हल नहीं किया जा सकता है और शास्त्रीय निश्चित-बिंदु विधि या न्यूटन-रैफसन दृष्टिकोण जैसे संख्यात्मक दृष्टिकोण की आवश्यकता होती है।[10]


संदर्भ

  1. USA US3714463A, Jon M. Laune, "Digital frequency and/or phase detector charge pump", published 1973-01-30 
  2. 2.0 2.1 2.2 2.3 F. Gardner (1980). "चार्ज-पंप चरण-लॉक लूप". IEEE Transactions on Communications. 28 (11): 1849–1858. Bibcode:1980ITCom..28.1849G. doi:10.1109/TCOM.1980.1094619.
  3. M. van Paemel (1994). "Analysis of a charge-pump pll: A new model". IEEE Transactions on Communications. 42 (7): 2490–2498. doi:10.1109/26.297861.
  4. 4.0 4.1 N. Kuznetsov, M. Yuldashev, R. Yuldashev, M. Blagov, E. Kudryashova, O. Kuznetsova, and T. Mokaev (2019). "Comments on van Paemel's mathematical model of charge-pump phase-locked loop" (PDF). Differential Equations and Control Processes. 1: 109–120.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. 5.0 5.1 N. Kuznetsov, M. Yuldashev, R. Yuldashev, M. Blagov, E. Kudryashova, O. Kuznetsova, T. Mokaev (2020). "Charge pump phase-locked loop with phase-frequency detector: closed form mathematical model". 1901 (1468). arXiv:1901.01468. {{cite journal}}: Cite journal requires |journal= (help)CS1 maint: multiple names: authors list (link)
  6. 6.0 6.1 6.2 N.V. Kuznetsov, A.S. Matveev, M.V. Yuldashev, R.V. Yuldashev (2020). "Nonlinear analysis of charge-pump phase-locked loop: the hold-in and pull-in ranges". IFAC World Congress. arXiv:2005.00864.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. Kuznetsov, N.V.; Matveev, A.S.; Yuldashev, M.V.; Yuldashev, R.V. (2021). "Nonlinear Analysis of Charge-Pump Phase-Locked Loop: The Hold-In and Pull-In Ranges". IEEE Transactions on Circuits and Systems I: Regular Papers. 68 (10): 4049–4061. doi:10.1109/TCSI.2021.3101529.
  8. Fahim, Amr M. (2005). Clock Generators for SOC Processors: Circuits and Architecture. Boston-Dordrecht-London: Kluwer Academic Publishers.
  9. P. Curran, C. Bi, and O. Feely (2013). "चार्ज-पंप चरण-लॉक लूप की गतिशीलता". International Journal of Circuit Theory and Applications. 41 (11): 1109–1135. doi:10.1002/cta.1814. S2CID 3792988.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. C. Hedayat, A. Hachem, Y. Leduc, and G. Benbassat (1999). "Modeling and characterization of the 3rd order charge-pump PLL: a fully event-driven approach". Analog Integrated Circuits and Signal Processing. 19 (1): 25–45. doi:10.1023/A:1008326315191. S2CID 58204942.{{cite journal}}: CS1 maint: multiple names: authors list (link)