अपने आप में सघन (डेन्स इन इटसेल्फ): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 3: Line 3:
[[सामान्य टोपोलॉजी]] में, एक उपसमुच्चय <math>A</math> [[टोपोलॉजिकल स्पेस]] को अपने आप में सघन कहा जाता है<ref>Steen & Seebach, p. 6</ref><ref>Engelking, p. 25</ref> या भीड़<ref>{{cite journal |last1=Levy |first1=Ronnie |last2=Porter |first2=Jack |title=सबमैक्सिमल स्पेस के संबंध में अरहांगेलस्की और कोलिन्स के दो प्रश्नों पर|journal=Topology Proceedings |date=1996 |volume=21 |pages=143–154 |url=http://topology.nipissingu.ca/tp/reprints/v21/tp21008.pdf}}</ref><ref>{{cite web |url=https://www.researchgate.net/publication/228597275_a-Scattered_spaces_II |last1=Dontchev |first1=Julian |last2=Ganster |first2=Maximilian |last3=Rose |first3=David |date=1977 |title=α-Scattered spaces II}}</ref>
[[सामान्य टोपोलॉजी]] में, एक उपसमुच्चय <math>A</math> [[टोपोलॉजिकल स्पेस]] को अपने आप में सघन कहा जाता है<ref>Steen & Seebach, p. 6</ref><ref>Engelking, p. 25</ref> या भीड़<ref>{{cite journal |last1=Levy |first1=Ronnie |last2=Porter |first2=Jack |title=सबमैक्सिमल स्पेस के संबंध में अरहांगेलस्की और कोलिन्स के दो प्रश्नों पर|journal=Topology Proceedings |date=1996 |volume=21 |pages=143–154 |url=http://topology.nipissingu.ca/tp/reprints/v21/tp21008.pdf}}</ref><ref>{{cite web |url=https://www.researchgate.net/publication/228597275_a-Scattered_spaces_II |last1=Dontchev |first1=Julian |last2=Ganster |first2=Maximilian |last3=Rose |first3=David |date=1977 |title=α-Scattered spaces II}}</ref>


अगर <math>A</math> कोई अलग बिंदु नहीं है.
यदि <math>A</math> कोई अलग बिंदु नहीं है.
 
समान रूप से, <math>A</math> यदि प्रत्येक बिंदु अपने आप में सघन है <math>A</math> का एक [[सीमा बिंदु]] है <math>A</math>.
समान रूप से, <math>A</math> यदि प्रत्येक बिंदु अपने आप में सघन है <math>A</math> का एक [[सीमा बिंदु]] है <math>A</math>.


Line 13: Line 14:


==उदाहरण==
==उदाहरण==
ऐसे समुच्चय का एक सरल उदाहरण जो अपने आप में सघन है लेकिन बंद नहीं है (और इसलिए पूर्ण समुच्चय नहीं है) अपरिमेय संख्याओं का समुच्चय है (जिसे [[वास्तविक संख्या]]ओं का उपसमुच्चय माना जाता है)। यह सेट अपने आप में सघन है क्योंकि प्रत्येक [[पड़ोस (गणित)]] में एक अपरिमेय संख्या होती है <math>x</math> इसमें कम से कम एक अन्य अपरिमेय संख्या शामिल है <math>y \neq x</math>. दूसरी ओर, अपरिमेय संख्याओं का समुच्चय बंद नहीं होता क्योंकि प्रत्येक परिमेय संख्या इसके [[समापन (टोपोलॉजी)]] में निहित होती है। इसी प्रकार, परिमेय संख्याओं का समुच्चय भी अपने आप में सघन है परंतु वास्तविक संख्याओं के स्थान में बंद नहीं है।
ऐसे समुच्चय का एक सरल उदाहरण जो अपने आप में सघन है किन्तु बंद नहीं है (और इसलिए पूर्ण समुच्चय नहीं है) अपरिमेय संख्याओं का समुच्चय है (जिसे [[वास्तविक संख्या]]ओं का उपसमुच्चय माना जाता है)। यह सेट अपने आप में सघन है क्योंकि प्रत्येक [[पड़ोस (गणित)]] में एक अपरिमेय संख्या होती है <math>x</math> इसमें कम से कम एक अन्य अपरिमेय संख्या सम्मिलित है <math>y \neq x</math>. दूसरी ओर, अपरिमेय संख्याओं का समुच्चय बंद नहीं होता क्योंकि प्रत्येक परिमेय संख्या इसके [[समापन (टोपोलॉजी)]] में निहित होती है। इसी प्रकार, परिमेय संख्याओं का समुच्चय भी अपने आप में सघन है परंतु वास्तविक संख्याओं के स्थान में बंद नहीं है।


उपरोक्त उदाहरण, अपरिमेय और तर्कसंगत, भी उनके टोपोलॉजिकल स्पेस में घने सेट हैं <math>\mathbb{R}</math>. एक उदाहरण के रूप में जो अपने आप में सघन है लेकिन अपने टोपोलॉजिकल स्पेस में सघन नहीं है, इस पर विचार करें <math>\mathbb{Q} \cap [0,1]</math>. यह सेट सघन नहीं है <math>\mathbb{R}</math> लेकिन अपने आप में सघन है.
उपरोक्त उदाहरण, अपरिमेय और तर्कसंगत, भी उनके टोपोलॉजिकल स्पेस में घने सेट हैं <math>\mathbb{R}</math>. एक उदाहरण के रूप में जो अपने आप में सघन है किन्तु अपने टोपोलॉजिकल स्पेस में सघन नहीं है, इस पर विचार करें <math>\mathbb{Q} \cap [0,1]</math>. यह सेट सघन नहीं है <math>\mathbb{R}</math> किन्तु अपने आप में सघन है.


==गुण==
==गुण==
किसी स्थान का एक एकल (गणित) उपसमुच्चय <math>X</math> कभी भी अपने आप में सघन नहीं हो सकता, क्योंकि उसमें उसका अद्वितीय बिंदु पृथक होता है।
किसी स्थान का एक एकल (गणित) उपसमुच्चय <math>X</math> कभी भी अपने आप में सघन नहीं हो सकता, क्योंकि उसमें उसका अद्वितीय बिंदु पृथक होता है।


किसी भी स्थान के अपने आप में सघन उपसमुच्चय समुच्चयों के मिलन के अंतर्गत बंद होते हैं।<ref>Engelking, 1.7.10, p. 59</ref> अपने आप में घने स्थान में, वे सभी खुले सेटों को शामिल करते हैं।<ref>Kuratowski, p. 78</ref> अपने आप में सघन T1 स्थान में|T<sub>1</sub> अंतरिक्ष में वे सभी घने सेट शामिल करते हैं।<ref>Kuratowski, p. 78</ref> हालाँकि, वे स्थान जो T नहीं हैं<sub>1</sub> इसमें घने उपसमुच्चय हो सकते हैं जो अपने आप में घने नहीं हैं: उदाहरण के लिए अंतरिक्ष में <math>X=\{a,b\}</math> [[अविवेकी टोपोलॉजी]] के साथ, सेट <math>A=\{a\}</math> घना है, लेकिन अपने आप में घना नहीं है।
किसी भी स्थान के अपने आप में सघन उपसमुच्चय समुच्चयों के मिलन के अंतर्गत बंद होते हैं।<ref>Engelking, 1.7.10, p. 59</ref> अपने आप में घने स्थान में, वे सभी खुले सेटों को सम्मिलित करते हैं।<ref>Kuratowski, p. 78</ref> अपने आप में सघन T1 स्थान में|T<sub>1</sub> अंतरिक्ष में वे सभी घने सेट सम्मिलित करते हैं।<ref>Kuratowski, p. 78</ref> चूँकि, वे स्थान जो T नहीं हैं<sub>1</sub> इसमें घने उपसमुच्चय हो सकते हैं जो अपने आप में घने नहीं हैं: उदाहरण के लिए अंतरिक्ष में <math>X=\{a,b\}</math> [[अविवेकी टोपोलॉजी]] के साथ, सेट <math>A=\{a\}</math> घना है, किन्तु अपने आप में घना नहीं है।


किसी भी सघन सेट का बंद होना एक आदर्श सेट है।<ref>Kuratowski, p. 77</ref>
किसी भी सघन सेट का बंद होना एक आदर्श सेट है।<ref>Kuratowski, p. 77</ref>


सामान्य तौर पर, दो सघन-स्वयं सेटों का प्रतिच्छेदन अपने-आप में सघन नहीं होता है। लेकिन एक सघन-स्वयं समुच्चय और एक खुले समुच्चय का प्रतिच्छेदन अपने आप में सघन-समुच्चय है।
सामान्यतः , दो सघन-स्वयं सेटों का प्रतिच्छेदन अपने-आप में सघन नहीं होता है। किन्तु एक सघन-स्वयं समुच्चय और एक खुले समुच्चय का प्रतिच्छेदन अपने आप में सघन-समुच्चय है।


==यह भी देखें==
==यह भी देखें==

Revision as of 19:01, 6 July 2023

सामान्य टोपोलॉजी में, एक उपसमुच्चय टोपोलॉजिकल स्पेस को अपने आप में सघन कहा जाता है[1][2] या भीड़[3][4]

यदि कोई अलग बिंदु नहीं है.

समान रूप से, यदि प्रत्येक बिंदु अपने आप में सघन है का एक सीमा बिंदु है .

इस प्रकार अपने आप में सघन है यदि और केवल यदि , कहाँ का व्युत्पन्न समुच्चय (गणित) है .

अपने आप में सघन बंद समुच्चय को पूर्ण समुच्चय कहा जाता है। (दूसरे शब्दों में, एक पूर्ण समुच्चय पृथक बिंदु के बिना एक बंद समुच्चय है।)

सघन समुच्चय की धारणा अपने आप में सघनता से असंबंधित है। यह कभी-कभी भ्रमित करने वाला हो सकता है, क्योंकि

उदाहरण

ऐसे समुच्चय का एक सरल उदाहरण जो अपने आप में सघन है किन्तु बंद नहीं है (और इसलिए पूर्ण समुच्चय नहीं है) अपरिमेय संख्याओं का समुच्चय है (जिसे वास्तविक संख्याओं का उपसमुच्चय माना जाता है)। यह सेट अपने आप में सघन है क्योंकि प्रत्येक पड़ोस (गणित) में एक अपरिमेय संख्या होती है इसमें कम से कम एक अन्य अपरिमेय संख्या सम्मिलित है . दूसरी ओर, अपरिमेय संख्याओं का समुच्चय बंद नहीं होता क्योंकि प्रत्येक परिमेय संख्या इसके समापन (टोपोलॉजी) में निहित होती है। इसी प्रकार, परिमेय संख्याओं का समुच्चय भी अपने आप में सघन है परंतु वास्तविक संख्याओं के स्थान में बंद नहीं है।

उपरोक्त उदाहरण, अपरिमेय और तर्कसंगत, भी उनके टोपोलॉजिकल स्पेस में घने सेट हैं . एक उदाहरण के रूप में जो अपने आप में सघन है किन्तु अपने टोपोलॉजिकल स्पेस में सघन नहीं है, इस पर विचार करें . यह सेट सघन नहीं है किन्तु अपने आप में सघन है.

गुण

किसी स्थान का एक एकल (गणित) उपसमुच्चय कभी भी अपने आप में सघन नहीं हो सकता, क्योंकि उसमें उसका अद्वितीय बिंदु पृथक होता है।

किसी भी स्थान के अपने आप में सघन उपसमुच्चय समुच्चयों के मिलन के अंतर्गत बंद होते हैं।[5] अपने आप में घने स्थान में, वे सभी खुले सेटों को सम्मिलित करते हैं।[6] अपने आप में सघन T1 स्थान में|T1 अंतरिक्ष में वे सभी घने सेट सम्मिलित करते हैं।[7] चूँकि, वे स्थान जो T नहीं हैं1 इसमें घने उपसमुच्चय हो सकते हैं जो अपने आप में घने नहीं हैं: उदाहरण के लिए अंतरिक्ष में अविवेकी टोपोलॉजी के साथ, सेट घना है, किन्तु अपने आप में घना नहीं है।

किसी भी सघन सेट का बंद होना एक आदर्श सेट है।[8]

सामान्यतः , दो सघन-स्वयं सेटों का प्रतिच्छेदन अपने-आप में सघन नहीं होता है। किन्तु एक सघन-स्वयं समुच्चय और एक खुले समुच्चय का प्रतिच्छेदन अपने आप में सघन-समुच्चय है।

यह भी देखें

टिप्पणियाँ

  1. Steen & Seebach, p. 6
  2. Engelking, p. 25
  3. Levy, Ronnie; Porter, Jack (1996). "सबमैक्सिमल स्पेस के संबंध में अरहांगेलस्की और कोलिन्स के दो प्रश्नों पर" (PDF). Topology Proceedings. 21: 143–154.
  4. Dontchev, Julian; Ganster, Maximilian; Rose, David (1977). "α-Scattered spaces II".
  5. Engelking, 1.7.10, p. 59
  6. Kuratowski, p. 78
  7. Kuratowski, p. 78
  8. Kuratowski, p. 77

संदर्भ

This article incorporates material from Dense in-itself on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.