सघन रूप से परिभाषित ऑपरेटर: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (added Category:Vigyan Ready using HotCat) |
||
Line 52: | Line 52: | ||
[[Category:Template documentation pages|Documentation/doc]] | [[Category:Template documentation pages|Documentation/doc]] | ||
[[Category:Templates Vigyan Ready|Densely-Defined Operator]] | [[Category:Templates Vigyan Ready|Densely-Defined Operator]] | ||
[[Category:Vigyan Ready]] |
Revision as of 17:10, 7 July 2023
गणित में- विशेष रूप से, ऑपरेटर सिद्धांत में- सघन रूप से परिभाषित ऑपरेटर या आंशिक रूप से परिभाषित ऑपरेटर विशेष प्रकार का आंशिक रूप से परिभाषित फलन (गणित) है। टोपोलॉजी के अर्थ में, यह रैखिक ऑपरेटर है जिसे लगभग प्रत्येक स्थान पर परिभाषित किया जाता है। सघन रूप से परिभाषित ऑपरेटर प्रायः कार्यात्मक विश्लेषण में उन ऑपरेशनों के रूप में सामने आते हैं जिन्हें कोई उन वस्तुओं की तुलना में वस्तुओं के बड़े वर्ग पर प्रारम्भ किया जाता है जिनके लिए वे प्राथमिक रूप से "समझ में आते हैं"।
परिभाषा
सघन रूप से परिभाषित रैखिक संचालिका टोपोलॉजिकल वेक्टर स्पेस से, दूसरे को, रैखिक संचालिका है जिसे सघन समुच्चय रैखिक उप-स्थान पर परिभाषित किया गया है का मान लेता है लिखा हुआ कभी-कभी इसे इस प्रकार संक्षिप्त किया जाता है कि जब सन्दर्भ यह स्पष्ट करता है किसी फलन का समुच्चय-सैद्धांतिक डोमेन नहीं हो सकता है।
उदाहरण
स्थान पर विचार करें इकाई अंतराल पर परिभाषित सभी वास्तविक संख्या, निरंतर कार्यों के मान लीजिये, सभी निरंतर भिन्न-भिन्न कार्यों से युक्त उप-स्थान को दर्शाता है। लैस सर्वोच्च पैरामीटर के साथ ; यह बनाता है वास्तविक बानाच स्थान मेंविभेदक संचालिका द्वारा दिया गया:
दूसरी ओर, पैली-वीनर इंटीग्रल, सघन रूप से परिभाषित ऑपरेटर के निरंतर विस्तार का उदाहरण है। किसी अमूर्त वीनर स्थान में ऑपरेटर के सहायक के साथ प्राकृतिक निरंतर रैखिक ऑपरेटर (वास्तव में यह समावेशन है, और आइसोमेट्री है) से को जिसके अंतर्गत समतुल्य वर्ग में जाता है का में ऐसा दिखाया जा सकता है में सघन है चूंकि उपरोक्त समावेशन निरंतर है, इसलिए अद्वितीय निरंतर रैखिक विस्तार है समावेशन का संपूर्ण का यह विस्तार पैली-वीनर मानचित्र है।
यह भी देखें
- ब्लमबर्ग प्रमेय – Any real function on R admits a continuous restriction on a dense subset of R
- बंद ग्राफ़ प्रमेय (कार्यात्मक विश्लेषण)
- रैखिक विस्तार (रैखिक बीजगणित)
- आंशिक फलन
संदर्भ
- Renardy, Michael; Rogers, Robert C. (2004). An introduction to partial differential equations. Texts in Applied Mathematics 13 (Second ed.). New York: Springer-Verlag. pp. xiv+434. ISBN 0-387-00444-0. MR 2028503.