स्थानत: संहत समष्टि: Difference between revisions
(Created page with "टोपोलॉजी और गणित की संबंधित शाखाओं में, एक टोपोलॉजिकल स्पेस को...") |
No edit summary |
||
Line 1: | Line 1: | ||
[[टोपोलॉजी]] और गणित की संबंधित शाखाओं में, एक [[टोपोलॉजिकल स्पेस]] को स्थानीय रूप से | [[टोपोलॉजी]] और गणित की संबंधित शाखाओं में, एक [[टोपोलॉजिकल स्पेस]] को '''स्थानीय रूप से सघन''' कहा जाता है, यदि सामान्यतः कहें तो, स्पेस का प्रत्येक छोटा भाग [[ सघन स्थान | सघन स्पेस]] के एक छोटे भाग जैसा दिखता है। अधिक स्पष्ट रूप से, यह एक टोपोलॉजिकल स्पेस है जिसमें प्रत्येक बिंदु का एक सघन नेबरहुड (गणित) होता है। | ||
[[गणितीय विश्लेषण]] में स्थानीय रूप से | [[गणितीय विश्लेषण]] में स्थानीय रूप से सघन स्पेस जो [[हॉसडॉर्फ़ स्थान|हॉसडॉर्फ़]] स्पेस हैं, विशेष रुचि रखते हैं; इन्हें एलसीएच स्पेस के रूप में संक्षिप्त किया गया है।{{sfn|Folland|1999|loc=Sec. 4.5|p=131}} | ||
==औपचारिक परिभाषा== | ==औपचारिक परिभाषा== | ||
एक्स को टपॉलजी का मूल्य रहने दें। | एक्स को टपॉलजी का मूल्य रहने दें। सामान्यतः एक्स को 'स्थानीय रूप से सघन' कहा जाता है यदि एक्स के प्रत्येक बिंदु एक्स में एक सघन [[पड़ोस (टोपोलॉजी)|निकट (टोपोलॉजी)]] है, अर्थात, एक ओपन सेट यू और एक सघन सेट के उपस्थित है, जैसे कि <math>x\in U\subseteq K</math>. | ||
अन्य सामान्य परिभाषाएँ हैं: यदि ''X'' हॉसडॉर्फ | अन्य सामान्य परिभाषाएँ हैं: यदि ''X'' हॉसडॉर्फ स्पेस (या पूर्व-नियमित) है जिससे वे सभी समतुल्य हैं। किन्तु वे सामान्यतः समकक्ष नहीं हैं: | ||
:1. ''X'' के प्रत्येक बिंदु का एक सघन | :1. ''X'' के प्रत्येक बिंदु का एक सघन निकट (टोपोलॉजी) है। | ||
:2. ''X'' के प्रत्येक बिंदु का एक [[बंद सेट]] | :2. ''X'' के प्रत्येक बिंदु का एक [[बंद सेट]] सघन निकट है। | ||
:2′. ''X'' के प्रत्येक बिंदु का | :2′. ''X'' के प्रत्येक बिंदु का निकट [[अपेक्षाकृत सघन]] है। | ||
:2″. ''X'' के प्रत्येक बिंदु पर अपेक्षाकृत सघन | :2″. ''X'' के प्रत्येक बिंदु पर अपेक्षाकृत सघन निकट का [[स्थानीय आधार]] है। | ||
:3. ''X'' के प्रत्येक बिंदु पर सघन | :3. ''X'' के प्रत्येक बिंदु पर सघन निकट का एक स्थानीय आधार है। | ||
:4. ''X'' के प्रत्येक बिंदु पर बंद सघन | :4. ''X'' के प्रत्येक बिंदु पर बंद सघन निकट का एक स्थानीय आधार है। | ||
:5. ''X'' हॉसडॉर्फ है और पिछली | :5. ''X'' हॉसडॉर्फ है और पिछली नियमो में से किसी भी (या समकक्ष, सभी) को संतुष्ट करता है। | ||
नियमो के बीच तार्किक संबंध:<ref name="Gompa1992">{{cite journal |last1=Gompa |first1=Raghu |title=What is "locally compact"? |journal=Pi Mu Epsilon Journal |date=Spring 1992 |volume=9 |issue=6 |pages=390–392 |url=http://www.pme-math.org/journal/issues/PMEJ.Vol.9.No.6.pdf |archive-url=https://web.archive.org/web/20150910073727/http://www.pme-math.org/journal/issues/PMEJ.Vol.9.No.6.pdf |archive-date=2015-09-10 |url-status=live |jstor=24340250}}</ref> | |||
* प्रत्येक | * प्रत्येक नियम का तात्पर्य (1) है। | ||
* | *नियमें (2), (2′), (2″) समतुल्य हैं। | ||
*स्थिति (2), (3) में से कोई भी दूसरे का तात्पर्य नहीं है। | *स्थिति (2), (3) में से कोई भी दूसरे का तात्पर्य नहीं है। | ||
* | * नियम (4) का तात्पर्य (2) और (3) से है। | ||
* सघनता का तात्पर्य | * सघनता का तात्पर्य नियमो (1) और (2) से है, किन्तु (3) या (4) से नहीं है। | ||
नियम (1) संभवतः सबसे अधिक उपयोग की जाने वाली परिभाषा है, क्योंकि यह सबसे कम प्रतिबंधात्मक है और जब एक्स हॉसडॉर्फ स्पेस है तो अन्य इसके बराबर हैं। यह तुल्यता इस तथ्य का परिणाम है कि हॉसडॉर्फ रिक्त स्पेस के सघन उपसमुच्चय बंद हैं, और सघन रिक्त स्पेस के बंद उपसमूह सघन हैं। संतोषजनक स्पेस (1) को कभी-कभी 'भी कहा जाता है {{visible anchor|स्थानीय रूप से अशक्त सघन}},<ref>{{cite book |last1=Breuckmann |first1=Tomas |last2=Kudri |first2=Soraya |last3=Aygün |first3=Halis |title=सॉफ्ट कार्यप्रणाली और यादृच्छिक सूचना प्रणाली|date=2004 |publisher=Springer |pages=638–644 |chapter=About Weakly Locally Compact Spaces |doi=10.1007/978-3-540-44465-7_79|isbn=978-3-540-22264-4 }}</ref> क्योंकि वे यहां की सबसे अशक्त परिस्थितियों को भी संतुष्ट करते हैं। | |||
जैसा कि उन्हें अपेक्षाकृत | जैसा कि उन्हें अपेक्षाकृत सघन सेट के संदर्भ में परिभाषित किया गया है, (2), (2'), (2) को संतुष्ट करने वाले स्थानों को विशेष रूप से स्थानीय रूप से अपेक्षाकृत सघन कहा जा सकता है।<ref>{{citation|first=Eva |last=Lowen-Colebunders|title=On the convergence of closed and compact sets|journal=[[Pacific Journal of Mathematics]]|volume=108|issue=1|pages=133–140|year= 1983|doi=10.2140/pjm.1983.108.133 |url=https://projecteuclid.org/download/pdf_1/euclid.pjm/1102720477|mr=709705|zbl=0522.54003|s2cid=55084221 |doi-access=free}}</ref><ref>{{Cite arXiv <!-- unsupported parameter |url=https://arxiv.org/pdf/2002.05943.pdf |archive-url=https://web.archive.org/web/20220107165043/https://arxiv.org/pdf/2002.05943.pdf |archive-date=2022-01-07 |url-status=live --> |eprint=2002.05943 |last1=Bice |first1=Tristan |last2=Kubiś |first2=Wiesław |title=सेमीलैटिस सबबेस के लिए वॉलमैन द्वैत|year=2020 |class=math.GN}}</ref> स्टीन और सीबैक <ref>Steen & Seebach, p. 20</ref> कॉल (2), (2'), (2) संपत्ति (1) के विपरीत दृढ़ता से स्थानीय रूप से सघन, जिसे वे ''स्थानीय रूप से सघन'' कहते हैं। | ||
रिक्त | रिक्त स्पेस संतोषजनक स्थिति (4) बिल्कुल हैं {{visible anchor|स्थानीय रूप से सघन नियमित}} रिक्त स्थान.{{sfn|Kelley|1975|loc=ch. 5, Theorem 17, p. 146}}<ref name="Gompa1992"></ref> वास्तव में, ऐसा स्पेस नियमित है, क्योंकि प्रत्येक बिंदु पर बंद निकट का एक स्थानीय आधार होता है। इसके विपरीत, एक नियमित स्थानीय रूप से सघन स्पेस में एक बिंदु मान लीजिए <math>x</math> एक सघन निकट <math>K</math> है . नियमितता से, एक इच्छानुसार निकट दिया गया <math>U</math> का <math>x</math>, एक बंद निकट है <math>V</math> का <math>x</math> में निहित <math>K\cap U</math> और <math>V</math> एक सघन सेट में एक बंद सेट के रूप में सघन है। | ||
उदाहरण के लिए, | उदाहरण के लिए, नियम (5) का उपयोग बॉर्बकी में किया जाता है।<ref>{{cite book|last1=Bourbaki|first1=Nicolas|title=सामान्य टोपोलॉजी, भाग I|date=1989|publisher=Springer-Verlag|location=Berlin|isbn=3-540-19374-X|edition=reprint of the 1966}}</ref> कोई भी स्पेस जो स्थानीय रूप से सघन है (नियम (1) के अर्थ में) और हॉसडॉर्फ स्वचालित रूप से उपरोक्त सभी नियमो को पूरा करता है। चूंकि अधिकांश अनुप्रयोगों में स्थानीय रूप से सघन स्पेस भी हॉसडॉर्फ हैं, इसलिए ये स्थानीय रूप से सघन हॉसडॉर्फ (एलसीएच) स्पेस वे स्पेस होंगे जिनके बारे में यह लेख मुख्य रूप से चिंतित है। | ||
== उदाहरण और प्रति उदाहरण == | == उदाहरण और प्रति उदाहरण == | ||
=== | === सघन हॉसडॉर्फ रिक्त स्थान === | ||
प्रत्येक | प्रत्येक सघन हॉसडॉर्फ स्पेस स्थानीय रूप से सघन भी है, और सघन स्पेस के कई उदाहरण लेख सघन स्पेस में पाए जा सकते हैं। | ||
यहाँ हम केवल उल्लेख करते हैं: | यहाँ हम केवल उल्लेख करते हैं: | ||
* [[इकाई अंतराल]] [0,1]; | * [[इकाई अंतराल]] [0,1]; | ||
Line 39: | Line 40: | ||
* [[हिल्बर्ट क्यूब]]. | * [[हिल्बर्ट क्यूब]]. | ||
=== स्थानीय रूप से | === स्थानीय रूप से सघन हॉसडॉर्फ स्पेस जो सघन नहीं हैं === | ||
*[[ यूक्लिडियन स्थान ]] | *[[ यूक्लिडियन स्थान | यूक्लिडियन स्पेस]] R<sup><var>n</var></sup> (और विशेष रूप से वास्तविक रेखा आर) हेइन-बोरेल प्रमेय के परिणामस्वरूप स्थानीय रूप से सघन हैं। | ||
*[[टोपोलॉजिकल मैनिफोल्ड]] | *[[टोपोलॉजिकल मैनिफोल्ड]] यूक्लिडियन रिक्त स्पेस के स्थानीय गुणों को साझा करते हैं और इसलिए सभी स्थानीय रूप से सघन भी होते हैं। इसमें [[लंबी लाइन (टोपोलॉजी)]] जैसे [[ परा-सुसंहत ]] मैनिफ़ोल्ड भी सम्मिलित हैं। | ||
*सभी अलग-अलग | *सभी अलग-अलग स्पेस स्थानीय रूप से सघन और हॉसडॉर्फ हैं (वे केवल [[0 (संख्या)]]-आयामी मैनिफोल्ड हैं)। ये केवल तभी सघन होते हैं जब वे परिमित होंते है। | ||
*स्थानीय रूप से | *स्थानीय रूप से सघन हॉसडॉर्फ स्पेस के सभी ओपन उपसमुच्चय या [[बंद उपसमुच्चय]] [[सबस्पेस टोपोलॉजी]] में स्थानीय रूप से सघन होते हैं। यह यूक्लिडियन रिक्त स्पेस के स्थानीय रूप से सघन उपसमुच्चय के कई उदाहरण प्रदान करता है, जैसे [[यूनिट डिस्क]] (या तो ओपन या बंद संस्करण) है। | ||
* | *स्पेस Q<sub>''p''</sub> पी-एडिक संख्या स्थानीय रूप से सघन है, क्योंकि यह कैंटर सेट माइनस एक पॉइंट के लिए [[होम्योमॉर्फिक]] है। इस प्रकार स्थानीय रूप से सघन स्पेस पी-एडिक विश्लेषण में उतने ही उपयोगी हैं जितने मौलिक गणितीय विश्लेषण में होते है। | ||
=== हॉसडॉर्फ़ | === हॉसडॉर्फ़ स्पेस जो स्थानीय रूप से सघन नहीं हैं === | ||
जैसा कि निम्नलिखित अनुभाग में बताया गया है, यदि हॉसडॉर्फ़ | जैसा कि निम्नलिखित अनुभाग में बताया गया है, यदि हॉसडॉर्फ़ स्पेस स्थानीय रूप से सघन है, तो यह [[टाइकोनोफ़ स्थान|टाइकोनोफ़]] स्पेस भी है। इस कारण से, हॉसडॉर्फ़ रिक्त स्पेस के उदाहरण जो स्थानीय रूप से सघन होने में विफल रहते हैं क्योंकि वे टाइकोनॉफ़ स्पेस नहीं हैं, टाइकोनॉफ़ स्पेस को समर्पित लेख में पाए जा सकते हैं। | ||
* परिमेय संख्याओं का | किन्तु टाइकोनोफ़ रिक्त स्पेस के ऐसे उदाहरण भी हैं जो स्थानीय रूप से सघन होने में विफल रहते हैं, जैसे: | ||
* | |||
* परिमेय संख्याओं का स्पेस Q (R से टोपोलॉजी से संपन्न), क्योंकि किसी भी निकट में एक अपरिमेय संख्या के अनुरूप एक [[कॉची अनुक्रम]] होता है, जिसका Q में कोई अभिसरण अनुवर्ती नहीं होता है; | |||
* उपस्पेस <math>\{(0, 0)\} \cup ((0, \infty) \times \mathbf{R})</math> का <math>\mathbf{R}^2</math>, चूंकि मूल में कोई सघन निकट नहीं है; | |||
* वास्तविक संख्याओं के सेट आर पर [[निचली सीमा टोपोलॉजी]] या [[ऊपरी सीमा टोपोलॉजी]] (एकतरफा सीमाओं के अध्ययन में उपयोगी); | * वास्तविक संख्याओं के सेट आर पर [[निचली सीमा टोपोलॉजी]] या [[ऊपरी सीमा टोपोलॉजी]] (एकतरफा सीमाओं के अध्ययन में उपयोगी); | ||
* कोई भी | * कोई भी T<sub>0</sub>, इसलिए हॉसडॉर्फ, [[टोपोलॉजिकल वेक्टर स्पेस]] जो अनंत-[[आयाम]] है, जैसे अनंत-आयामी [[ हिल्बर्ट स्थान | हिल्बर्ट स्पेस]] है। | ||
पहले दो उदाहरण दिखाते हैं कि स्थानीय रूप से सघन स्पेस के सबसेट को स्थानीय रूप से सघन होने की आवश्यकता नहीं है, जो पिछले अनुभाग में ओपन और बंद सबसेट के विपरीत है।अंतिम उदाहरण पिछले अनुभाग में यूक्लिडियन रिक्त स्पेस के विपरीत है; अधिक विशिष्ट होने के लिए, हॉसडॉर्फ टोपोलॉजिकल वेक्टर स्पेस स्थानीय रूप से सघन होता है यदि और केवल यदि यह परिमित-आयामी है (जिस स्थिति में यह एक यूक्लिडियन स्पेस है)। | |||
यह उदाहरण सघन स्पेस के उदाहरण के रूप में हिल्बर्ट क्यूब से भी भिन्न है; इसमें कोई विरोधाभास नहीं है क्योंकि घन हिल्बर्ट स्पेस में किसी भी बिंदु का निकट नहीं हो सकता है। | |||
यह उदाहरण | |||
===गैर-हॉसडॉर्फ उदाहरण=== | ===गैर-हॉसडॉर्फ उदाहरण=== | ||
* परिमेय संख्या Q का [[एक-बिंदु संघनन]] संहत है और इसलिए इंद्रियों (1) और (2) में स्थानीय रूप से संहत है | * परिमेय संख्या Q का [[एक-बिंदु संघनन]] संहत है और इसलिए इंद्रियों (1) और (2) में स्थानीय रूप से संहत है किन्तु यह इंद्रियों (3) या (4) में स्थानीय रूप से संहत नहीं है। | ||
* किसी भी अनंत सेट पर [[विशेष बिंदु टोपोलॉजी]] इंद्रियों (1) और (3) में स्थानीय रूप से | * किसी भी अनंत सेट पर [[विशेष बिंदु टोपोलॉजी]] इंद्रियों (1) और (3) में स्थानीय रूप से सघन होती है, किन्तु इंद्रियों (2) या (4) में नहीं, क्योंकि किसी भी निकट का बंद होना संपूर्ण स्पेस है, जो गैर-सघन है। | ||
* उपरोक्त दो उदाहरणों का [[असंयुक्त संघ (टोपोलॉजी)]] अर्थ (1) में स्थानीय रूप से सघन है, | * उपरोक्त दो उदाहरणों का [[असंयुक्त संघ (टोपोलॉजी)]] अर्थ (1) में स्थानीय रूप से सघन है, किन्तु अर्थ (2), (3) या (4) में नहीं है। | ||
* वास्तविक रेखा पर सही क्रम की टोपोलॉजी इंद्रियों (1) और (3) में स्थानीय रूप से | * वास्तविक रेखा पर सही क्रम की टोपोलॉजी इंद्रियों (1) और (3) में स्थानीय रूप से सघन है, किन्तु इंद्रियों (2) या (4) में नहीं, क्योंकि किसी भी निकट का बंद होना संपूर्ण गैर-सघन स्पेस है। | ||
* सिएरपिंस्की | * सिएरपिंस्की स्पेस स्थानीय रूप से इंद्रियों (1), (2) और (3) में सघन है, और साथ ही सघन भी है, किन्तु यह हॉसडॉर्फ या नियमित (या यहां तक कि प्रीरेगुलर) नहीं है, इसलिए यह इंद्रियों (4) या में स्थानीय रूप से सघन नहीं है। (5). सिएरपिंस्की स्पेस की अनगिनत प्रतियों का असंयुक्त संघ एक गैर-सघन स्पेस है जो अभी भी इंद्रियों (1), (2) और (3) में स्थानीय रूप से सघन है, किन्तु (4) या (5) में नहीं है। | ||
* अधिक सामान्यतः, [[बहिष्कृत बिंदु टोपोलॉजी]] इंद्रियों (1), (2) और (3) में स्थानीय रूप से | * अधिक सामान्यतः, [[बहिष्कृत बिंदु टोपोलॉजी]] इंद्रियों (1), (2) और (3) में स्थानीय रूप से सघन है, और सघन है, किन्तु इंद्रियों (4) या (5) में स्थानीय रूप से सघन नहीं है। | ||
* अनंत सेट पर [[सहपरिमित टोपोलॉजी]] इंद्रियों (1), (2), और (3) में स्थानीय रूप से | * अनंत सेट पर [[सहपरिमित टोपोलॉजी]] इंद्रियों (1), (2), और (3) में स्थानीय रूप से सघन है, और सघन भी है, किन्तु यह हॉसडॉर्फ या नियमित नहीं है इसलिए यह इंद्रियों (4) या में स्थानीय रूप से (5) सघन नहीं है . | ||
* कम से कम दो तत्वों वाले सेट पर [[अविवेकी टोपोलॉजी]] स्थानीय रूप से इंद्रियों (1), (2), (3), और (4) में | * कम से कम दो तत्वों वाले सेट पर [[अविवेकी टोपोलॉजी]] स्थानीय रूप से इंद्रियों (1), (2), (3), और (4) में सघन है, और सघन भी है, किन्तु यह हॉसडॉर्फ नहीं है इसलिए यह स्थानीय रूप से सघन नहीं है अर्थ में (5) है. | ||
===उदाहरणों के सामान्य वर्ग=== | ===उदाहरणों के सामान्य वर्ग=== | ||
* [[अलेक्जेंडर टोपोलॉजी]] वाला प्रत्येक | * [[अलेक्जेंडर टोपोलॉजी]] वाला प्रत्येक स्पेस इंद्रियों (1) और (3) में स्थानीय रूप से सघन है।<ref>{{cite arXiv |last1=Speer |first1=Timothy |title=अलेक्जेंड्रोफ़ स्पेस का एक संक्षिप्त अध्ययन|eprint=0708.2136 |class=math.GN |date=16 August 2007}}Theorem 5</ref> | ||
== गुण == | == गुण == | ||
प्रत्येक स्थानीय रूप से | प्रत्येक स्थानीय रूप से सघन [[पूर्व नियमित स्थान|पूर्व नियमित स्पेस]] , वास्तव में, [[पूरी तरह से नियमित स्थान|पूरी तरह से नियमित]] स्पेस है।{{sfn|Schechter|1996|loc=17.14(d), p. 460}}<ref>{{cite web |title=सामान्य टोपोलॉजी - स्थानीय रूप से कॉम्पैक्ट प्रो रेगुलर स्पेस पूरी तरह से नियमित है|url=https://math.stackexchange.com/questions/4503299 |website=Mathematics Stack Exchange}}</ref> इसका तात्पर्य यह है कि प्रत्येक स्थानीय रूप से सघन हॉसडॉर्फ़ स्पेस एक टाइकोनॉफ़ स्पेस है।{{sfn|Willard|1970|loc=theorem 19.3, p.136}} चूंकि सीधी नियमितता या तो पूर्व-नियमितता (जो सामान्यतः अशक्त होती है) या पूर्ण नियमितता (जो सामान्यतः सशक्त होती है) की तुलना में अधिक परिचित स्थिति है, स्थानीय रूप से सघन प्रीरेगुलर रिक्त स्पेस को सामान्यतः गणितीय साहित्य में स्थानीय रूप से सघन नियमित स्पेस के रूप में संदर्भित किया जाता है। इसी प्रकार स्थानीय रूप से सघन टाइकोनॉफ रिक्त स्पेस को सामान्यतः स्थानीय रूप से सघन हॉसडॉर्फ रिक्त स्पेस के रूप में संदर्भित किया जाता है। | ||
प्रत्येक स्थानीय रूप से सघन नियमित स्थान, विशेष रूप से प्रत्येक स्थानीय रूप से सघन हॉसडॉर्फ स्थान, एक [[बाहर जगह|बाहर स्थान]] है।{{sfn|Kelley|1975|loc=Theorem 34, p. 200}}{{sfn|Schechter|1996|loc=Theorem 20.18, p. 538}} अर्थात्, बेयर श्रेणी प्रमेय का निष्कर्ष यह है: कहीं भी घने उपसमुच्चय के प्रत्येक [[गणनीय]] संघ का [[आंतरिक (टोपोलॉजी)]] ओपन नहीं है। | |||
स्थानीय रूप से सघन हॉसडॉर्फ स्पेस Y का एक [[ उपस्थान (टोपोलॉजी) | उपस्पेस (टोपोलॉजी)]] X स्थानीय रूप से सघन है यदि और केवल यदि X स्थानीय रूप से Y में बंद है (अर्थात, Y का). विशेष रूप से, स्थानीय रूप से सघन हॉसडॉर्फ स्पेस में प्रत्येक बंद सेट और प्रत्येक ओपन सेट स्थानीय रूप से सघन है। इसके अलावा, एक परिणाम के रूप में, स्थानीय रूप से सघन हॉसडॉर्फ स्पेस Y का एक [[सघन (टोपोलॉजी)]] उप-स्पेस अभी भी Y में [[स्थानीय रूप से बंद]] होना चाहिए, चूँकि इसका विपरीत (तर्क) सामान्य रूप से मान्य नहीं है। | |||
स्थानीय रूप से | हॉसडॉर्फ परिकल्पना के बिना, इनमें से कुछ परिणाम स्थानीय रूप से सघन की अशक्त धारणाओं के साथ टूट जाते हैं। [[कमजोर रूप से स्थानीय रूप से कॉम्पैक्ट|अशक्त रूप से स्थानीय रूप से सघन]] स्पेस (उपरोक्त परिभाषाओं में स्थिति (1)) में प्रत्येक बंद सेट अशक्त रूप से स्थानीय रूप से सघन है। किन्तु अशक्त स्थानीय रूप से सघन स्पेस में प्रत्येक ओपन सेट अशक्त रूप से स्थानीय रूप से सघन नहीं होता है। उदाहरण के लिए, एक-बिंदु संघनन <math>\Q^*</math> तर्कसंगत संख्याओं का <math>\Q</math> सघन है, और इसलिए स्थानीय रूप से अशक्त रूप से सघन है। किन्तु इसमें सम्मिलित है <math>\Q</math> एक ओपन सेट के रूप में जो अशक्त रूप से स्थानीय रूप से सघन नहीं है। | ||
स्थानीय रूप से सघन हॉसडॉर्फ रिक्त स्पेस के [[भागफल स्थान (टोपोलॉजी)|भागफल स्पेस (टोपोलॉजी)]] सघन रूप से उत्पन्न स्पेस हैं। | |||
इसके विपरीत, प्रत्येक सघन रूप से उत्पन्न हॉसडॉर्फ़ स्पेस कुछ स्थानीय रूप से सघन हॉसडॉर्फ़ स्पेस का भागफल है। | |||
इसके विपरीत, प्रत्येक | |||
स्थानीय रूप से | स्थानीय रूप से सघन स्पेस पर परिभाषित कार्यों के लिए, स्थानीय समान अभिसरण सघन अभिसरण के समान है। | ||
=== अनंत पर बिंदु === | === अनंत पर बिंदु === | ||
यह खंड स्थानीय रूप से | यह खंड स्थानीय रूप से सघन स्थानों के [[संघनन (गणित)]] का पता लगाता है। प्रत्येक सघन स्पेस का अपना सघनीकरण होता है। इसलिए सामान्यतः से बचने के लिए नीचे यह माना गया है कि स्पेस X सघन नहीं है। | ||
चूँकि प्रत्येक स्थानीय रूप से | चूँकि प्रत्येक स्थानीय रूप से सघन हॉसडॉर्फ़ स्पेस <math>b(X)</math> स्टोन-सेच कॉम्पेक्टिफिकेशन का उपयोग करता है। किन्तु वास्तव में, स्थानीय रूप से सघन मामले में एक सरल विधि उपलब्ध है; एक-बिंदु कॉम्पेक्टिफिकेशन एक्स को सघन हॉसडॉर्फ स्पेस में एम्बेड करेगा <math>a(X)</math> सिर्फ एक अतिरिक्त अंक के साथ. (एक-बिंदु संघनन को अन्य स्थानों पर लागू किया जा सकता है, किन्तु <math>a(X)</math> हॉसडॉर्फ़ होगा यदि और केवल यदि एक्स स्थानीय रूप से सघन और हॉसडॉर्फ़ है।) इस प्रकार स्थानीय रूप से सघन हॉसडॉर्फ़ रिक्त स्पेस को सघन हॉसडॉर्फ़ रिक्त स्पेस के ओपन उपसमुच्चय के रूप में वर्णित किया जा सकता है। | ||
(एक-बिंदु संघनन को अन्य स्थानों पर लागू किया जा सकता है, | |||
इस प्रकार स्थानीय रूप से | |||
सहज रूप से, अतिरिक्त बिंदु <math>a(X)</math> अनंत पर एक बिंदु के रूप में सोचा जा सकता है। | सहज रूप से, अतिरिक्त बिंदु <math>a(X)</math> अनंत पर एक बिंदु के रूप में सोचा जा सकता है। अनंत के बिंदु को ''X'' के प्रत्येक सघन उपसमुच्चय के बाहर स्थित माना जाना चाहिए। इस विचार का उपयोग करके स्थानीय रूप से सघन हॉसडॉर्फ स्थानों में अनंत की ओर प्रवृत्ति के बारे में कई सहज धारणाएं तैयार की जा सकती हैं। उदाहरण के लिए, एक सतत फलन (टोपोलॉजी) [[वास्तविक संख्या]] या [[जटिल संख्या]] मूल्यवान [[फ़ंक्शन (गणित)|फलन (गणित)]] ''एफ'' [[डोमेन (फ़ंक्शन)|डोमेन (फलन)]] ''एक्स'' के साथ कहा जाता है कि यदि कोई [[सकारात्मक संख्या]] दी जाती है तो ''अनंत पर विलुप्त हो जाती है'' ''ई'', ''एक्स'' का एक सघन उपसमुच्चय ''के'' इस प्रकार है <math>|f(x)| < e</math> जब भी [[बिंदु (ज्यामिति)]] x K के बाहर स्थित होता है। यह परिभाषा किसी भी टोपोलॉजिकल स्पेस X के लिए समझ में आती है। यदि <math>a(X) = X \cup \{ \infty \}</math> जहाँ <math>g(\infty) = 0.</math> | ||
अनंत के बिंदु को ''X'' के प्रत्येक सघन उपसमुच्चय के बाहर स्थित माना जाना चाहिए। | |||
इस विचार का उपयोग करके स्थानीय रूप से | |||
उदाहरण के लिए, एक सतत | |||
=== गेलफैंड प्रतिनिधित्व === | === गेलफैंड प्रतिनिधित्व === | ||
स्थानीय रूप से | स्थानीय रूप से सघन हॉसडॉर्फ़ स्पेस एक्स के लिए, सेट <math>C_0(X)</math> एक्स पर सभी निरंतर जटिल-मूल्य वाले फलन जो अनंत पर विलुप्त हो जाते हैं, एक क्रमविनिमेय [[सी-स्टार बीजगणित]] है | सी *-बीजगणित वास्तव में, प्रत्येक क्रमविनिमेय C*-बीजगणित [[समरूपी]] है <math>C_0(X)</math> कुछ [[अद्वितीय (गणित)]] ([[होमियोमोर्फिज्म]] [[तक]]) के लिए स्थानीय रूप से सघन हॉसडॉर्फ स्पेस एक्स इसे [[गेलफैंड प्रतिनिधित्व]] का उपयोग करके दिखाया गया है। | ||
=== [[स्थानीय रूप से सघन समूह]] === | === [[स्थानीय रूप से सघन समूह]] === | ||
[[टोपोलॉजिकल समूह]] | [[टोपोलॉजिकल समूह]] के अध्ययन में स्थानीय सघनता की धारणा महत्वपूर्ण है क्योंकि प्रत्येक हॉसडॉर्फ स्थानीय रूप से सघन समूह जी में प्राकृतिक [[माप सिद्धांत]] होता है जिसे हार माप कहा जाता है जो g पर परिभाषित [[अभिन्न]] मापनीय कार्यों की अनुमति देता है। लेब्सग्यू वास्तविक रेखा पर मापता है <math>\R</math> इसका एक विशेष स्थिति है. | ||
लेब्सग्यू वास्तविक रेखा पर मापता है <math>\R</math> इसका एक विशेष | |||
[[टोपोलॉजिकल एबेलियन समूह]] ए का [[पोंट्रीगिन दोहरी]] स्थानीय रूप से | [[टोपोलॉजिकल एबेलियन समूह]] ए का [[पोंट्रीगिन दोहरी]] स्थानीय रूप से सघन है यदि और केवल यदि ए स्थानीय रूप से सघन है। अधिक स्पष्ट रूप से, पोंट्रीगिन द्वंद्व स्थानीय रूप से सघन एबेलियन समूहों के [[श्रेणी सिद्धांत]] के एक स्व-[[द्वैत (श्रेणी सिद्धांत)]] को परिभाषित करता है। स्थानीय रूप से सघन एबेलियन समूहों का अध्ययन [[हार्मोनिक विश्लेषण]] की नींव है, एक ऐसा क्षेत्र जो तब से गैर-एबेलियन स्थानीय रूप से सघन समूहों तक फैल गया है। | ||
अधिक | |||
स्थानीय रूप से | |||
== यह भी देखें == | == यह भी देखें == | ||
* {{annotated link| | * {{annotated link|सघन समूह}} | ||
* {{annotated link| | * {{annotated link|एफ. रिज़्ज़ का प्रमेय}} | ||
* {{annotated link| | * {{annotated link|स्थानीय रूप से सघन क्षेत्र}} | ||
* {{annotated link| | * {{annotated link|स्थानीय रूप से सघन क्वांटम समूह}} | ||
* {{annotated link| | * {{annotated link|स्थानीय रूप से सघन समूह}} | ||
* {{annotated link|σ- | * {{annotated link|σ-कॉम्पैक्ट स्पेस}} | ||
* [[कोर-कॉम्पैक्ट स्पेस]] | * [[कोर-कॉम्पैक्ट स्पेस|कोर-सघन स्पेस]] | ||
== उद्धरण == | == उद्धरण == | ||
{{reflist}} | {{reflist}} | ||
== संदर्भ == | |||
== संदर्भ == | |||
{{refbegin}} | {{refbegin}} | ||
*{{cite book| last1=Folland | first1=Gerald B.| author-link=Gerald Folland | title=Real Analysis: Modern Techniques and Their Applications | publisher=[[Wiley (publisher)|John Wiley & Sons]] | url=https://www.wiley.com/en-us/Real+Analysis%3A+Modern+Techniques+and+Their+Applications%2C+2nd+Edition-p-9780471317166| year=1999 | edition=2nd | isbn=978-0-471-31716-6 }} | *{{cite book| last1=Folland | first1=Gerald B.| author-link=Gerald Folland | title=Real Analysis: Modern Techniques and Their Applications | publisher=[[Wiley (publisher)|John Wiley & Sons]] | url=https://www.wiley.com/en-us/Real+Analysis%3A+Modern+Techniques+and+Their+Applications%2C+2nd+Edition-p-9780471317166| year=1999 | edition=2nd | isbn=978-0-471-31716-6 }} |
Revision as of 10:09, 6 July 2023
टोपोलॉजी और गणित की संबंधित शाखाओं में, एक टोपोलॉजिकल स्पेस को स्थानीय रूप से सघन कहा जाता है, यदि सामान्यतः कहें तो, स्पेस का प्रत्येक छोटा भाग सघन स्पेस के एक छोटे भाग जैसा दिखता है। अधिक स्पष्ट रूप से, यह एक टोपोलॉजिकल स्पेस है जिसमें प्रत्येक बिंदु का एक सघन नेबरहुड (गणित) होता है।
गणितीय विश्लेषण में स्थानीय रूप से सघन स्पेस जो हॉसडॉर्फ़ स्पेस हैं, विशेष रुचि रखते हैं; इन्हें एलसीएच स्पेस के रूप में संक्षिप्त किया गया है।[1]
औपचारिक परिभाषा
एक्स को टपॉलजी का मूल्य रहने दें। सामान्यतः एक्स को 'स्थानीय रूप से सघन' कहा जाता है यदि एक्स के प्रत्येक बिंदु एक्स में एक सघन निकट (टोपोलॉजी) है, अर्थात, एक ओपन सेट यू और एक सघन सेट के उपस्थित है, जैसे कि .
अन्य सामान्य परिभाषाएँ हैं: यदि X हॉसडॉर्फ स्पेस (या पूर्व-नियमित) है जिससे वे सभी समतुल्य हैं। किन्तु वे सामान्यतः समकक्ष नहीं हैं:
- 1. X के प्रत्येक बिंदु का एक सघन निकट (टोपोलॉजी) है।
- 2. X के प्रत्येक बिंदु का एक बंद सेट सघन निकट है।
- 2′. X के प्रत्येक बिंदु का निकट अपेक्षाकृत सघन है।
- 2″. X के प्रत्येक बिंदु पर अपेक्षाकृत सघन निकट का स्थानीय आधार है।
- 3. X के प्रत्येक बिंदु पर सघन निकट का एक स्थानीय आधार है।
- 4. X के प्रत्येक बिंदु पर बंद सघन निकट का एक स्थानीय आधार है।
- 5. X हॉसडॉर्फ है और पिछली नियमो में से किसी भी (या समकक्ष, सभी) को संतुष्ट करता है।
नियमो के बीच तार्किक संबंध:[2]
- प्रत्येक नियम का तात्पर्य (1) है।
- नियमें (2), (2′), (2″) समतुल्य हैं।
- स्थिति (2), (3) में से कोई भी दूसरे का तात्पर्य नहीं है।
- नियम (4) का तात्पर्य (2) और (3) से है।
- सघनता का तात्पर्य नियमो (1) और (2) से है, किन्तु (3) या (4) से नहीं है।
नियम (1) संभवतः सबसे अधिक उपयोग की जाने वाली परिभाषा है, क्योंकि यह सबसे कम प्रतिबंधात्मक है और जब एक्स हॉसडॉर्फ स्पेस है तो अन्य इसके बराबर हैं। यह तुल्यता इस तथ्य का परिणाम है कि हॉसडॉर्फ रिक्त स्पेस के सघन उपसमुच्चय बंद हैं, और सघन रिक्त स्पेस के बंद उपसमूह सघन हैं। संतोषजनक स्पेस (1) को कभी-कभी 'भी कहा जाता है स्थानीय रूप से अशक्त सघन,[3] क्योंकि वे यहां की सबसे अशक्त परिस्थितियों को भी संतुष्ट करते हैं।
जैसा कि उन्हें अपेक्षाकृत सघन सेट के संदर्भ में परिभाषित किया गया है, (2), (2'), (2) को संतुष्ट करने वाले स्थानों को विशेष रूप से स्थानीय रूप से अपेक्षाकृत सघन कहा जा सकता है।[4][5] स्टीन और सीबैक [6] कॉल (2), (2'), (2) संपत्ति (1) के विपरीत दृढ़ता से स्थानीय रूप से सघन, जिसे वे स्थानीय रूप से सघन कहते हैं।
रिक्त स्पेस संतोषजनक स्थिति (4) बिल्कुल हैं स्थानीय रूप से सघन नियमित रिक्त स्थान.[7][2] वास्तव में, ऐसा स्पेस नियमित है, क्योंकि प्रत्येक बिंदु पर बंद निकट का एक स्थानीय आधार होता है। इसके विपरीत, एक नियमित स्थानीय रूप से सघन स्पेस में एक बिंदु मान लीजिए एक सघन निकट है . नियमितता से, एक इच्छानुसार निकट दिया गया का , एक बंद निकट है का में निहित और एक सघन सेट में एक बंद सेट के रूप में सघन है।
उदाहरण के लिए, नियम (5) का उपयोग बॉर्बकी में किया जाता है।[8] कोई भी स्पेस जो स्थानीय रूप से सघन है (नियम (1) के अर्थ में) और हॉसडॉर्फ स्वचालित रूप से उपरोक्त सभी नियमो को पूरा करता है। चूंकि अधिकांश अनुप्रयोगों में स्थानीय रूप से सघन स्पेस भी हॉसडॉर्फ हैं, इसलिए ये स्थानीय रूप से सघन हॉसडॉर्फ (एलसीएच) स्पेस वे स्पेस होंगे जिनके बारे में यह लेख मुख्य रूप से चिंतित है।
उदाहरण और प्रति उदाहरण
सघन हॉसडॉर्फ रिक्त स्थान
प्रत्येक सघन हॉसडॉर्फ स्पेस स्थानीय रूप से सघन भी है, और सघन स्पेस के कई उदाहरण लेख सघन स्पेस में पाए जा सकते हैं।
यहाँ हम केवल उल्लेख करते हैं:
- इकाई अंतराल [0,1];
- कैंटर सेट;
- हिल्बर्ट क्यूब.
स्थानीय रूप से सघन हॉसडॉर्फ स्पेस जो सघन नहीं हैं
- यूक्लिडियन स्पेस Rn (और विशेष रूप से वास्तविक रेखा आर) हेइन-बोरेल प्रमेय के परिणामस्वरूप स्थानीय रूप से सघन हैं।
- टोपोलॉजिकल मैनिफोल्ड यूक्लिडियन रिक्त स्पेस के स्थानीय गुणों को साझा करते हैं और इसलिए सभी स्थानीय रूप से सघन भी होते हैं। इसमें लंबी लाइन (टोपोलॉजी) जैसे परा-सुसंहत मैनिफ़ोल्ड भी सम्मिलित हैं।
- सभी अलग-अलग स्पेस स्थानीय रूप से सघन और हॉसडॉर्फ हैं (वे केवल 0 (संख्या)-आयामी मैनिफोल्ड हैं)। ये केवल तभी सघन होते हैं जब वे परिमित होंते है।
- स्थानीय रूप से सघन हॉसडॉर्फ स्पेस के सभी ओपन उपसमुच्चय या बंद उपसमुच्चय सबस्पेस टोपोलॉजी में स्थानीय रूप से सघन होते हैं। यह यूक्लिडियन रिक्त स्पेस के स्थानीय रूप से सघन उपसमुच्चय के कई उदाहरण प्रदान करता है, जैसे यूनिट डिस्क (या तो ओपन या बंद संस्करण) है।
- स्पेस Qp पी-एडिक संख्या स्थानीय रूप से सघन है, क्योंकि यह कैंटर सेट माइनस एक पॉइंट के लिए होम्योमॉर्फिक है। इस प्रकार स्थानीय रूप से सघन स्पेस पी-एडिक विश्लेषण में उतने ही उपयोगी हैं जितने मौलिक गणितीय विश्लेषण में होते है।
हॉसडॉर्फ़ स्पेस जो स्थानीय रूप से सघन नहीं हैं
जैसा कि निम्नलिखित अनुभाग में बताया गया है, यदि हॉसडॉर्फ़ स्पेस स्थानीय रूप से सघन है, तो यह टाइकोनोफ़ स्पेस भी है। इस कारण से, हॉसडॉर्फ़ रिक्त स्पेस के उदाहरण जो स्थानीय रूप से सघन होने में विफल रहते हैं क्योंकि वे टाइकोनॉफ़ स्पेस नहीं हैं, टाइकोनॉफ़ स्पेस को समर्पित लेख में पाए जा सकते हैं।
किन्तु टाइकोनोफ़ रिक्त स्पेस के ऐसे उदाहरण भी हैं जो स्थानीय रूप से सघन होने में विफल रहते हैं, जैसे:
- परिमेय संख्याओं का स्पेस Q (R से टोपोलॉजी से संपन्न), क्योंकि किसी भी निकट में एक अपरिमेय संख्या के अनुरूप एक कॉची अनुक्रम होता है, जिसका Q में कोई अभिसरण अनुवर्ती नहीं होता है;
- उपस्पेस का , चूंकि मूल में कोई सघन निकट नहीं है;
- वास्तविक संख्याओं के सेट आर पर निचली सीमा टोपोलॉजी या ऊपरी सीमा टोपोलॉजी (एकतरफा सीमाओं के अध्ययन में उपयोगी);
- कोई भी T0, इसलिए हॉसडॉर्फ, टोपोलॉजिकल वेक्टर स्पेस जो अनंत-आयाम है, जैसे अनंत-आयामी हिल्बर्ट स्पेस है।
पहले दो उदाहरण दिखाते हैं कि स्थानीय रूप से सघन स्पेस के सबसेट को स्थानीय रूप से सघन होने की आवश्यकता नहीं है, जो पिछले अनुभाग में ओपन और बंद सबसेट के विपरीत है।अंतिम उदाहरण पिछले अनुभाग में यूक्लिडियन रिक्त स्पेस के विपरीत है; अधिक विशिष्ट होने के लिए, हॉसडॉर्फ टोपोलॉजिकल वेक्टर स्पेस स्थानीय रूप से सघन होता है यदि और केवल यदि यह परिमित-आयामी है (जिस स्थिति में यह एक यूक्लिडियन स्पेस है)।
यह उदाहरण सघन स्पेस के उदाहरण के रूप में हिल्बर्ट क्यूब से भी भिन्न है; इसमें कोई विरोधाभास नहीं है क्योंकि घन हिल्बर्ट स्पेस में किसी भी बिंदु का निकट नहीं हो सकता है।
गैर-हॉसडॉर्फ उदाहरण
- परिमेय संख्या Q का एक-बिंदु संघनन संहत है और इसलिए इंद्रियों (1) और (2) में स्थानीय रूप से संहत है किन्तु यह इंद्रियों (3) या (4) में स्थानीय रूप से संहत नहीं है।
- किसी भी अनंत सेट पर विशेष बिंदु टोपोलॉजी इंद्रियों (1) और (3) में स्थानीय रूप से सघन होती है, किन्तु इंद्रियों (2) या (4) में नहीं, क्योंकि किसी भी निकट का बंद होना संपूर्ण स्पेस है, जो गैर-सघन है।
- उपरोक्त दो उदाहरणों का असंयुक्त संघ (टोपोलॉजी) अर्थ (1) में स्थानीय रूप से सघन है, किन्तु अर्थ (2), (3) या (4) में नहीं है।
- वास्तविक रेखा पर सही क्रम की टोपोलॉजी इंद्रियों (1) और (3) में स्थानीय रूप से सघन है, किन्तु इंद्रियों (2) या (4) में नहीं, क्योंकि किसी भी निकट का बंद होना संपूर्ण गैर-सघन स्पेस है।
- सिएरपिंस्की स्पेस स्थानीय रूप से इंद्रियों (1), (2) और (3) में सघन है, और साथ ही सघन भी है, किन्तु यह हॉसडॉर्फ या नियमित (या यहां तक कि प्रीरेगुलर) नहीं है, इसलिए यह इंद्रियों (4) या में स्थानीय रूप से सघन नहीं है। (5). सिएरपिंस्की स्पेस की अनगिनत प्रतियों का असंयुक्त संघ एक गैर-सघन स्पेस है जो अभी भी इंद्रियों (1), (2) और (3) में स्थानीय रूप से सघन है, किन्तु (4) या (5) में नहीं है।
- अधिक सामान्यतः, बहिष्कृत बिंदु टोपोलॉजी इंद्रियों (1), (2) और (3) में स्थानीय रूप से सघन है, और सघन है, किन्तु इंद्रियों (4) या (5) में स्थानीय रूप से सघन नहीं है।
- अनंत सेट पर सहपरिमित टोपोलॉजी इंद्रियों (1), (2), और (3) में स्थानीय रूप से सघन है, और सघन भी है, किन्तु यह हॉसडॉर्फ या नियमित नहीं है इसलिए यह इंद्रियों (4) या में स्थानीय रूप से (5) सघन नहीं है .
- कम से कम दो तत्वों वाले सेट पर अविवेकी टोपोलॉजी स्थानीय रूप से इंद्रियों (1), (2), (3), और (4) में सघन है, और सघन भी है, किन्तु यह हॉसडॉर्फ नहीं है इसलिए यह स्थानीय रूप से सघन नहीं है अर्थ में (5) है.
उदाहरणों के सामान्य वर्ग
- अलेक्जेंडर टोपोलॉजी वाला प्रत्येक स्पेस इंद्रियों (1) और (3) में स्थानीय रूप से सघन है।[9]
गुण
प्रत्येक स्थानीय रूप से सघन पूर्व नियमित स्पेस , वास्तव में, पूरी तरह से नियमित स्पेस है।[10][11] इसका तात्पर्य यह है कि प्रत्येक स्थानीय रूप से सघन हॉसडॉर्फ़ स्पेस एक टाइकोनॉफ़ स्पेस है।[12] चूंकि सीधी नियमितता या तो पूर्व-नियमितता (जो सामान्यतः अशक्त होती है) या पूर्ण नियमितता (जो सामान्यतः सशक्त होती है) की तुलना में अधिक परिचित स्थिति है, स्थानीय रूप से सघन प्रीरेगुलर रिक्त स्पेस को सामान्यतः गणितीय साहित्य में स्थानीय रूप से सघन नियमित स्पेस के रूप में संदर्भित किया जाता है। इसी प्रकार स्थानीय रूप से सघन टाइकोनॉफ रिक्त स्पेस को सामान्यतः स्थानीय रूप से सघन हॉसडॉर्फ रिक्त स्पेस के रूप में संदर्भित किया जाता है।
प्रत्येक स्थानीय रूप से सघन नियमित स्थान, विशेष रूप से प्रत्येक स्थानीय रूप से सघन हॉसडॉर्फ स्थान, एक बाहर स्थान है।[13][14] अर्थात्, बेयर श्रेणी प्रमेय का निष्कर्ष यह है: कहीं भी घने उपसमुच्चय के प्रत्येक गणनीय संघ का आंतरिक (टोपोलॉजी) ओपन नहीं है।
स्थानीय रूप से सघन हॉसडॉर्फ स्पेस Y का एक उपस्पेस (टोपोलॉजी) X स्थानीय रूप से सघन है यदि और केवल यदि X स्थानीय रूप से Y में बंद है (अर्थात, Y का). विशेष रूप से, स्थानीय रूप से सघन हॉसडॉर्फ स्पेस में प्रत्येक बंद सेट और प्रत्येक ओपन सेट स्थानीय रूप से सघन है। इसके अलावा, एक परिणाम के रूप में, स्थानीय रूप से सघन हॉसडॉर्फ स्पेस Y का एक सघन (टोपोलॉजी) उप-स्पेस अभी भी Y में स्थानीय रूप से बंद होना चाहिए, चूँकि इसका विपरीत (तर्क) सामान्य रूप से मान्य नहीं है।
हॉसडॉर्फ परिकल्पना के बिना, इनमें से कुछ परिणाम स्थानीय रूप से सघन की अशक्त धारणाओं के साथ टूट जाते हैं। अशक्त रूप से स्थानीय रूप से सघन स्पेस (उपरोक्त परिभाषाओं में स्थिति (1)) में प्रत्येक बंद सेट अशक्त रूप से स्थानीय रूप से सघन है। किन्तु अशक्त स्थानीय रूप से सघन स्पेस में प्रत्येक ओपन सेट अशक्त रूप से स्थानीय रूप से सघन नहीं होता है। उदाहरण के लिए, एक-बिंदु संघनन तर्कसंगत संख्याओं का सघन है, और इसलिए स्थानीय रूप से अशक्त रूप से सघन है। किन्तु इसमें सम्मिलित है एक ओपन सेट के रूप में जो अशक्त रूप से स्थानीय रूप से सघन नहीं है।
स्थानीय रूप से सघन हॉसडॉर्फ रिक्त स्पेस के भागफल स्पेस (टोपोलॉजी) सघन रूप से उत्पन्न स्पेस हैं।
इसके विपरीत, प्रत्येक सघन रूप से उत्पन्न हॉसडॉर्फ़ स्पेस कुछ स्थानीय रूप से सघन हॉसडॉर्फ़ स्पेस का भागफल है।
स्थानीय रूप से सघन स्पेस पर परिभाषित कार्यों के लिए, स्थानीय समान अभिसरण सघन अभिसरण के समान है।
अनंत पर बिंदु
यह खंड स्थानीय रूप से सघन स्थानों के संघनन (गणित) का पता लगाता है। प्रत्येक सघन स्पेस का अपना सघनीकरण होता है। इसलिए सामान्यतः से बचने के लिए नीचे यह माना गया है कि स्पेस X सघन नहीं है।
चूँकि प्रत्येक स्थानीय रूप से सघन हॉसडॉर्फ़ स्पेस स्टोन-सेच कॉम्पेक्टिफिकेशन का उपयोग करता है। किन्तु वास्तव में, स्थानीय रूप से सघन मामले में एक सरल विधि उपलब्ध है; एक-बिंदु कॉम्पेक्टिफिकेशन एक्स को सघन हॉसडॉर्फ स्पेस में एम्बेड करेगा सिर्फ एक अतिरिक्त अंक के साथ. (एक-बिंदु संघनन को अन्य स्थानों पर लागू किया जा सकता है, किन्तु हॉसडॉर्फ़ होगा यदि और केवल यदि एक्स स्थानीय रूप से सघन और हॉसडॉर्फ़ है।) इस प्रकार स्थानीय रूप से सघन हॉसडॉर्फ़ रिक्त स्पेस को सघन हॉसडॉर्फ़ रिक्त स्पेस के ओपन उपसमुच्चय के रूप में वर्णित किया जा सकता है।
सहज रूप से, अतिरिक्त बिंदु अनंत पर एक बिंदु के रूप में सोचा जा सकता है। अनंत के बिंदु को X के प्रत्येक सघन उपसमुच्चय के बाहर स्थित माना जाना चाहिए। इस विचार का उपयोग करके स्थानीय रूप से सघन हॉसडॉर्फ स्थानों में अनंत की ओर प्रवृत्ति के बारे में कई सहज धारणाएं तैयार की जा सकती हैं। उदाहरण के लिए, एक सतत फलन (टोपोलॉजी) वास्तविक संख्या या जटिल संख्या मूल्यवान फलन (गणित) एफ डोमेन (फलन) एक्स के साथ कहा जाता है कि यदि कोई सकारात्मक संख्या दी जाती है तो अनंत पर विलुप्त हो जाती है ई, एक्स का एक सघन उपसमुच्चय के इस प्रकार है जब भी बिंदु (ज्यामिति) x K के बाहर स्थित होता है। यह परिभाषा किसी भी टोपोलॉजिकल स्पेस X के लिए समझ में आती है। यदि जहाँ
गेलफैंड प्रतिनिधित्व
स्थानीय रूप से सघन हॉसडॉर्फ़ स्पेस एक्स के लिए, सेट एक्स पर सभी निरंतर जटिल-मूल्य वाले फलन जो अनंत पर विलुप्त हो जाते हैं, एक क्रमविनिमेय सी-स्टार बीजगणित है | सी *-बीजगणित वास्तव में, प्रत्येक क्रमविनिमेय C*-बीजगणित समरूपी है कुछ अद्वितीय (गणित) (होमियोमोर्फिज्म तक) के लिए स्थानीय रूप से सघन हॉसडॉर्फ स्पेस एक्स इसे गेलफैंड प्रतिनिधित्व का उपयोग करके दिखाया गया है।
स्थानीय रूप से सघन समूह
टोपोलॉजिकल समूह के अध्ययन में स्थानीय सघनता की धारणा महत्वपूर्ण है क्योंकि प्रत्येक हॉसडॉर्फ स्थानीय रूप से सघन समूह जी में प्राकृतिक माप सिद्धांत होता है जिसे हार माप कहा जाता है जो g पर परिभाषित अभिन्न मापनीय कार्यों की अनुमति देता है। लेब्सग्यू वास्तविक रेखा पर मापता है इसका एक विशेष स्थिति है.
टोपोलॉजिकल एबेलियन समूह ए का पोंट्रीगिन दोहरी स्थानीय रूप से सघन है यदि और केवल यदि ए स्थानीय रूप से सघन है। अधिक स्पष्ट रूप से, पोंट्रीगिन द्वंद्व स्थानीय रूप से सघन एबेलियन समूहों के श्रेणी सिद्धांत के एक स्व-द्वैत (श्रेणी सिद्धांत) को परिभाषित करता है। स्थानीय रूप से सघन एबेलियन समूहों का अध्ययन हार्मोनिक विश्लेषण की नींव है, एक ऐसा क्षेत्र जो तब से गैर-एबेलियन स्थानीय रूप से सघन समूहों तक फैल गया है।
यह भी देखें
- सघन समूह – Topological group with compact topology
- एफ. रिज़्ज़ का प्रमेय
- स्थानीय रूप से सघन क्षेत्र
- स्थानीय रूप से सघन क्वांटम समूह
- स्थानीय रूप से सघन समूह
- σ-कॉम्पैक्ट स्पेस
- कोर-सघन स्पेस
उद्धरण
- ↑ Folland 1999, p. 131, Sec. 4.5.
- ↑ 2.0 2.1 Gompa, Raghu (Spring 1992). "What is "locally compact"?" (PDF). Pi Mu Epsilon Journal. 9 (6): 390–392. JSTOR 24340250. Archived (PDF) from the original on 2015-09-10.
- ↑ Breuckmann, Tomas; Kudri, Soraya; Aygün, Halis (2004). "About Weakly Locally Compact Spaces". सॉफ्ट कार्यप्रणाली और यादृच्छिक सूचना प्रणाली. Springer. pp. 638–644. doi:10.1007/978-3-540-44465-7_79. ISBN 978-3-540-22264-4.
- ↑ Lowen-Colebunders, Eva (1983), "On the convergence of closed and compact sets", Pacific Journal of Mathematics, 108 (1): 133–140, doi:10.2140/pjm.1983.108.133, MR 0709705, S2CID 55084221, Zbl 0522.54003
- ↑ Bice, Tristan; Kubiś, Wiesław (2020). "सेमीलैटिस सबबेस के लिए वॉलमैन द्वैत". arXiv:2002.05943 [math.GN].
- ↑ Steen & Seebach, p. 20
- ↑ Kelley 1975, ch. 5, Theorem 17, p. 146.
- ↑ Bourbaki, Nicolas (1989). सामान्य टोपोलॉजी, भाग I (reprint of the 1966 ed.). Berlin: Springer-Verlag. ISBN 3-540-19374-X.
- ↑ Speer, Timothy (16 August 2007). "अलेक्जेंड्रोफ़ स्पेस का एक संक्षिप्त अध्ययन". arXiv:0708.2136 [math.GN].Theorem 5
- ↑ Schechter 1996, 17.14(d), p. 460.
- ↑ "सामान्य टोपोलॉजी - स्थानीय रूप से कॉम्पैक्ट प्रो रेगुलर स्पेस पूरी तरह से नियमित है". Mathematics Stack Exchange.
- ↑ Willard 1970, theorem 19.3, p.136.
- ↑ Kelley 1975, Theorem 34, p. 200.
- ↑ Schechter 1996, Theorem 20.18, p. 538.
संदर्भ
- Folland, Gerald B. (1999). Real Analysis: Modern Techniques and Their Applications (2nd ed.). John Wiley & Sons. ISBN 978-0-471-31716-6.
- Kelley, John (1975). General Topology. Springer. ISBN 978-0387901251.
- Munkres, James (1999). Topology (2nd ed.). Prentice Hall. ISBN 978-0131816299.
- Schechter, Eric (1996). Handbook of Analysis and Its Foundations. San Diego, CA: Academic Press. ISBN 978-0-12-622760-4. OCLC 175294365.
- Steen, Lynn Arthur; Seebach, J. Arthur Jr. (1995) [1978]. Counterexamples in Topology (Dover reprint of 1978 ed.). Berlin, New York: Springer-Verlag. ISBN 978-0-486-68735-3. MR 0507446.
- Willard, Stephen (1970). General Topology. Addison-Wesley. ISBN 978-0486434797.