गॉसियन तर्कसंगत: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Complex number with rational components}} | {{Short description|Complex number with rational components}} | ||
गणित में, गॉसियन परिमेय संख्या p + qi रूप की [[जटिल संख्या]] है जहाँ p और q दोनों परिमेय संख्याएँ हैं। सभी गाऊसी परिमेय का समुच्चय गाऊसी परिमेय क्षेत्र (गणित) बनाता है जिसे Q(i) कहा जाता है, जो परिमेय Q के क्षेत्र में [[काल्पनिक संख्या]] ''i'' को जोड़कर प्राप्त किया जाता है। | गणित में, '''गॉसियन परिमेय''' संख्या p + qi रूप की [[जटिल संख्या]] है जहाँ p और q दोनों परिमेय संख्याएँ हैं। सभी गाऊसी परिमेय का समुच्चय गाऊसी परिमेय क्षेत्र (गणित) बनाता है जिसे Q(i) कहा जाता है, जो परिमेय Q के क्षेत्र में [[काल्पनिक संख्या]] ''i'' को जोड़कर प्राप्त किया जाता है। | ||
==क्षेत्र के गुण== | ==क्षेत्र के गुण== | ||
गाऊसी परिमेय का क्षेत्र बीजगणितीय संख्या क्षेत्र का उदाहरण प्रदान करता है, जो [[द्विघात क्षेत्र]] और [[साइक्लोटोमिक क्षेत्र]] दोनों है (चूंकि i एकता का चौथा मूल है) सभी द्विघात क्षेत्रों की तरह यह क्रम दो के गैलोज़ समूह [[चक्रीय समूह]] के साथ 'Q' का [[गैलोज़ विस्तार]] है, इस स्थितियों में [[जटिल संयुग्मन]] द्वारा उत्पन्न होता है, और इस प्रकार [[कंडक्टर (बीजगणितीय संख्या सिद्धांत)]] 4 के साथ ' | इसी प्रकार से गाऊसी परिमेय का क्षेत्र बीजगणितीय संख्या क्षेत्र का उदाहरण प्रदान करता है, जो [[द्विघात क्षेत्र]] और [[साइक्लोटोमिक क्षेत्र]] दोनों है (चूंकि i एकता का चौथा मूल है) सभी द्विघात क्षेत्रों की तरह यह क्रम दो के गैलोज़ समूह [[चक्रीय समूह]] के साथ 'Q' का [[गैलोज़ विस्तार]] है, इस स्थितियों में [[जटिल संयुग्मन]] द्वारा उत्पन्न होता है, और इस प्रकार [[कंडक्टर (बीजगणितीय संख्या सिद्धांत)]] 4 के साथ 'Q' का [[एबेलियन विस्तार]] है।<ref>[[Ian Stewart (mathematician)|Ian Stewart]], [[David O. Tall]], ''Algebraic Number Theory'', [[Chapman and Hall]], 1979, {{ISBN|0-412-13840-9}}. Chap.3.</ref> | ||
सामान्यतः साइक्लोटोमिक क्षेत्रों की तरह, गाऊसी परिमेय का क्षेत्र न तो क्रमित क्षेत्र है और न ही पूर्ण स्थान (मीट्रिक स्थान के रूप में) गॉसियन पूर्णांक Z[i] Q(i) के पूर्णांकों का वलय बनाते हैं। सभी गाऊसी परिमेय का समुच्चय [[गणनीय समुच्चय]] है। | सामान्यतः साइक्लोटोमिक क्षेत्रों की तरह, गाऊसी परिमेय का क्षेत्र न तो क्रमित क्षेत्र है और न ही पूर्ण स्थान (मीट्रिक स्थान के रूप में) गॉसियन पूर्णांक Z[i] Q(i) के पूर्णांकों का वलय बनाते हैं। सभी गाऊसी परिमेय का समुच्चय [[गणनीय समुच्चय]] है। | ||
गॉसियन परिमेय का क्षेत्र भी प्राकृतिक [[आधार (रैखिक बीजगणित)]] के साथ Q | इसी प्रकार गॉसियन परिमेय का क्षेत्र भी प्राकृतिक [[आधार (रैखिक बीजगणित)]] <math>\{1, i\}</math> के साथ Q द्वि-आयामी [[सदिश स्थल|सदिश स्थान]] है. | ||
==फोर्ड क्षेत्र== | ==फोर्ड क्षेत्र== | ||
[[फोर्ड सर्कल]] की अवधारणा को तर्क संगत संख्याओं से गाऊसी तर्क संगत तक सामान्यीकृत किया जा सकता है, जिससे फोर्ड क्षेत्र मिलते हैं। इस निर्माण में, जटिल संख्याओं को त्रि-आयामी यूक्लिडियन | [[फोर्ड सर्कल]] की अवधारणा को तर्क संगत संख्याओं से गाऊसी तर्क संगत तक सामान्यीकृत किया जा सकता है, जिससे फोर्ड क्षेत्र मिलते हैं। इस निर्माण में, जटिल संख्याओं को त्रि-आयामी यूक्लिडियन स्पेस में एक विमान के रूप में एम्बेडेड किया जाता है, और इस विमान में प्रत्येक गाऊसी तर्क संगत बिंदु के लिए उस बिंदु पर विमान के स्पर्शरेखा वाले गोले का निर्माण किया जाता है। <math>P/Q</math> के रूप में न्यूनतम शब्दों में दर्शाए गए गॉसियन परिमेय के लिए, इस गोले की त्रिज्या <math>1/q\bar q</math> होनी चाहिए, जहां <math>\bar q</math> के जटिल संयुग्म का प्रतिनिधित्व करता है। परिणामी गोले <math>|Pq-pQ|=1</math> के साथ गॉसियन परिमेय <math>P/Q</math> और <math>p/q</math> के जोड़े के लिए [[स्पर्शरेखा]] हैं अन्यथा वे एक दूसरे को नहीं प्रतिच्छेद हैं।<ref>{{citation|title=Wonders of Numbers: Adventures in Mathematics, Mind, and Meaning|first=Clifford A.|last=Pickover|authorlink=Clifford A. Pickover|publisher=Oxford University Press|year=2001|isbn=9780195348002|contribution=Chapter 103. Beauty and Gaussian Rational Numbers|pages=243–246|url=https://books.google.com/books?id=52N0JJBspM0C&pg=PA243}}.</ref><ref>{{citation|year=2015|arxiv=1503.00813|title=Ford Circles and Spheres|first=Sam|last=Northshield|bibcode=2015arXiv150300813N}}.</ref> | ||
Revision as of 11:46, 6 July 2023
गणित में, गॉसियन परिमेय संख्या p + qi रूप की जटिल संख्या है जहाँ p और q दोनों परिमेय संख्याएँ हैं। सभी गाऊसी परिमेय का समुच्चय गाऊसी परिमेय क्षेत्र (गणित) बनाता है जिसे Q(i) कहा जाता है, जो परिमेय Q के क्षेत्र में काल्पनिक संख्या i को जोड़कर प्राप्त किया जाता है।
क्षेत्र के गुण
इसी प्रकार से गाऊसी परिमेय का क्षेत्र बीजगणितीय संख्या क्षेत्र का उदाहरण प्रदान करता है, जो द्विघात क्षेत्र और साइक्लोटोमिक क्षेत्र दोनों है (चूंकि i एकता का चौथा मूल है) सभी द्विघात क्षेत्रों की तरह यह क्रम दो के गैलोज़ समूह चक्रीय समूह के साथ 'Q' का गैलोज़ विस्तार है, इस स्थितियों में जटिल संयुग्मन द्वारा उत्पन्न होता है, और इस प्रकार कंडक्टर (बीजगणितीय संख्या सिद्धांत) 4 के साथ 'Q' का एबेलियन विस्तार है।[1]
सामान्यतः साइक्लोटोमिक क्षेत्रों की तरह, गाऊसी परिमेय का क्षेत्र न तो क्रमित क्षेत्र है और न ही पूर्ण स्थान (मीट्रिक स्थान के रूप में) गॉसियन पूर्णांक Z[i] Q(i) के पूर्णांकों का वलय बनाते हैं। सभी गाऊसी परिमेय का समुच्चय गणनीय समुच्चय है।
इसी प्रकार गॉसियन परिमेय का क्षेत्र भी प्राकृतिक आधार (रैखिक बीजगणित) के साथ Q द्वि-आयामी सदिश स्थान है.
फोर्ड क्षेत्र
फोर्ड सर्कल की अवधारणा को तर्क संगत संख्याओं से गाऊसी तर्क संगत तक सामान्यीकृत किया जा सकता है, जिससे फोर्ड क्षेत्र मिलते हैं। इस निर्माण में, जटिल संख्याओं को त्रि-आयामी यूक्लिडियन स्पेस में एक विमान के रूप में एम्बेडेड किया जाता है, और इस विमान में प्रत्येक गाऊसी तर्क संगत बिंदु के लिए उस बिंदु पर विमान के स्पर्शरेखा वाले गोले का निर्माण किया जाता है। के रूप में न्यूनतम शब्दों में दर्शाए गए गॉसियन परिमेय के लिए, इस गोले की त्रिज्या होनी चाहिए, जहां के जटिल संयुग्म का प्रतिनिधित्व करता है। परिणामी गोले के साथ गॉसियन परिमेय और के जोड़े के लिए स्पर्शरेखा हैं अन्यथा वे एक दूसरे को नहीं प्रतिच्छेद हैं।[2][3]
संदर्भ
- ↑ Ian Stewart, David O. Tall, Algebraic Number Theory, Chapman and Hall, 1979, ISBN 0-412-13840-9. Chap.3.
- ↑ Pickover, Clifford A. (2001), "Chapter 103. Beauty and Gaussian Rational Numbers", Wonders of Numbers: Adventures in Mathematics, Mind, and Meaning, Oxford University Press, pp. 243–246, ISBN 9780195348002.
- ↑ Northshield, Sam (2015), Ford Circles and Spheres, arXiv:1503.00813, Bibcode:2015arXiv150300813N.