ट्विस्टेड नीमेटिक क्षेत्र प्रभाव: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Type of thin-film-transistor liquid-crystal display technology}} File:TN-LCD-Prototype-MS-201kB.png|thumb|300px|right|ट्विस्टेड नि...")
 
No edit summary
Line 1: Line 1:
{{Short description|Type of thin-film-transistor liquid-crystal display technology}}
{{Short description|Type of thin-film-transistor liquid-crystal display technology}}
[[File:TN-LCD-Prototype-MS-201kB.png|thumb|300px|right|ट्विस्टेड निमैटिक फील्ड-इफ़ेक्ट पर आधारित एक शुरुआती एलसीडी प्रोटोटाइप वाली घड़ी]]मुड़ नीमैटिक प्रभाव ('टीएन-प्रभाव') एक मुख्य प्रौद्योगिकी सफलता थी जिसने [[लिक्विड क्रिस्टल डिस्प्ले]] को व्यावहारिक बना दिया। पहले के प्रदर्शनों के विपरीत, TN-कोशिकाओं को संचालन के लिए प्रवाहित होने के लिए करंट की आवश्यकता नहीं होती थी और बैटरी के साथ उपयोग के लिए उपयुक्त कम ऑपरेटिंग वोल्टेज का उपयोग किया जाता था। टीएन-इफेक्ट डिस्प्ले की शुरूआत ने डिस्प्ले क्षेत्र में उनके तेजी से विस्तार का नेतृत्व किया, अधिकांश इलेक्ट्रॉनिक्स के लिए अखंड [[प्रकाश उत्सर्जक डायोड]] और [[कैथोड रे ट्यूब]] जैसी अन्य सामान्य तकनीकों को जल्दी से बाहर कर दिया। 1990 के दशक तक, टीएन-प्रभाव एलसीडी पोर्टेबल इलेक्ट्रॉनिक्स में काफी हद तक सार्वभौमिक थे, हालांकि तब से, एलसीडी के कई अनुप्रयोगों ने टीएन-प्रभाव के विकल्प को अपनाया जैसे कि [[आईपीएस पैनल]]|इन-प्लेन स्विचिंग (आईपीएस) या लिक्विड-क्रिस्टल डिस्प्ले#वर्टिकल अलाइनमेंट (वीए) (वीए)।
[[File:TN-LCD-Prototype-MS-201kB.png|thumb|300px|right|ट्विस्टेड निमैटिक फील्ड-इफ़ेक्ट पर आधारित एक शुरुआती एलसीडी प्रोटोटाइप वाली घड़ी]]'''मुड़ नीमेटिक क्षेत्र प्रभाव''' (टीएन-इफ़ेक्ट) एक मुख्य प्रौद्योगिकी सफलता थी जिसने [[लिक्विड क्रिस्टल डिस्प्ले|एलसीडी]] को व्यावहारिक बना दिया। पहले के डिस्प्ले के विपरीत, टीएन-सेल को संचालन के लिए करंट प्रवाहित करने की आवश्यकता नहीं होती थी और बैटरी के साथ उपयोग के लिए उपयुक्त कम ऑपरेटिंग वोल्टेज का उपयोग किया जाता था। टीएन-इफेक्ट डिस्प्ले की शुरूआत से डिस्प्ले क्षेत्र में उनका तेजी से विस्तार हुआ, जिससे अधिकांश इलेक्ट्रॉनिक्स के लिए मोनोलिथिक एलईडी और सीआरटी जैसी अन्य सामान्य प्रौद्योगिकियों को तेजी से आगे बढ़ाया गया। 1990 के दशक तक, टीएन-प्रभाव एलसीडी पोर्टेबल इलेक्ट्रॉनिक्स में काफी हद तक सार्वभौमिक थे, हालांकि तब से, एलसीडी के कई अनुप्रयोगों ने टीएन-प्रभाव के विकल्प जैसे इन-प्लेन स्विचिंग (आईपीएस) या वर्टिकल एलाइनमेंट (वीए) को अपनाया।


चित्र जानकारी के बिना कई मोनोक्रोम अल्फ़ान्यूमेरिकल डिस्प्ले अभी भी TN LCD का उपयोग करते हैं।
चित्र जानकारी के बिना कई मोनोक्रोम अल्फ़ान्यूमेरिकल डिस्प्ले अभी भी टीएन एलसीडी का उपयोग करते हैं।


टीएन डिस्प्ले तेजी से पिक्सेल प्रतिक्रिया समय और अन्य एलसीडी डिस्प्ले प्रौद्योगिकी की तुलना में कम स्मियरिंग से लाभान्वित होते हैं, लेकिन विशेष रूप से लंबवत दिशा में खराब रंग प्रजनन और सीमित देखने वाले कोणों से ग्रस्त हैं। रंग पूरी तरह से उलटने के बिंदु पर बदल जाएगा, जब एक ऐसे कोण पर देखा जाएगा जो प्रदर्शन के लंबवत नहीं है।
टीएन डिस्प्ले तेज पिक्सेल प्रतिक्रिया समय और अन्य एलसीडी डिस्प्ले तकनीक की तुलना में कम धुंधलापन से लाभान्वित होता है, लेकिन खराब रंग प्रजनन और सीमित देखने के कोण से पीड़ित होता है, खासकर ऊर्ध्वाधर दिशा में। जब किसी ऐसे कोण से देखा जाएगा जो डिस्प्ले के लंबवत नहीं है, तो रंग संभवतः पूरी तरह उलटने की स्थिति तक बदल जाएंगे।


== विवरण ==
== विवरण ==
मुड़ नीमैटिक प्रभाव एक लागू विद्युत क्षेत्र की कार्रवाई के तहत विभिन्न आदेशित आणविक विन्यासों के बीच लिक्विड क्रिस्टल अणुओं के सटीक नियंत्रित पुनर्संरेखण पर आधारित है। यह कम बिजली की खपत और कम परिचालन वोल्टेज के साथ हासिल किया जाता है। लागू क्षेत्र में लिक्विड क्रिस्टल अणुओं के संरेखण की अंतर्निहित घटना को फ्रेडरिक्सज़ संक्रमण कहा जाता है और 1927 में रूसी भौतिक विज्ञानी [[वसेवोलॉड फ्रेडरिक]] द्वारा खोजा गया था।
ट्विस्टेड नेमेटिक प्रभाव एक लागू विद्युत क्षेत्र की कार्रवाई के तहत विभिन्न क्रमबद्ध आणविक विन्यासों के बीच लिक्विड क्रिस्टल अणुओं के सटीक नियंत्रित पुनर्संरेखण पर आधारित है। यह कम बिजली की खपत और कम ऑपरेटिंग वोल्टेज पर हासिल किया जाता है। लागू क्षेत्र में लिक्विड क्रिस्टल अणुओं के संरेखण की अंतर्निहित घटना को फ़्रेडरिक्स संक्रमण कहा जाता है और इसकी खोज 1927 में रूसी भौतिक विज्ञानी [[वसेवोलॉड फ्रेडरिक]] ने की थी।


[[File:TN-LCD-schematic-MS-208kB.png|thumb|600px|right|एक TN लिक्विड क्रिस्टल सेल का विस्फोटित दृश्य जो राज्यों को एक बंद स्थिति (बाएं), और एक चालू स्थिति के साथ लागू वोल्टेज (दाएं) में दिखा रहा है]]दाईं ओर दिए गए चित्र सामान्य रूप से सफेद मोड में काम कर रहे एक मुड़ नीमैटिक [[ इलेक्ट्रो-ऑप्टिक न्यूनाधिक ]] लिक्विड क्रिस्टल डिस्प्ले के सिंगल पिक्चर एलिमेंट (पिक्सेल) की ऑफ और ऑन-स्टेट दोनों को दिखाते हैं, यानी एक ऐसा मोड जिसमें प्रकाश तब प्रसारित होता है जब लिक्विड क्रिस्टल पर कोई विद्युत क्षेत्र लागू नहीं होता है।
[[File:TN-LCD-schematic-MS-208kB.png|thumb|600px|right|एक TN लिक्विड क्रिस्टल सेल का विस्फोटित दृश्य जो राज्यों को एक बंद स्थिति (बाएं), और एक चालू स्थिति के साथ लागू वोल्टेज (दाएं) में दिखा रहा है]]दाईं ओर के चित्र "सामान्य रूप से सफेद" मोड में काम कर रहे एक ट्विस्टेड नेमैटिक लाइट मॉड्यूलेटर लिक्विड क्रिस्टल डिस्प्ले के एकल चित्र तत्व (पिक्सेल) की ऑफ और ऑन-स्थिति दोनों को दिखाते हैं, यानी, एक ऐसा मोड जिसमें प्रकाश प्रसारित होता है लिक्विड क्रिस्टल पर कोई विद्युत क्षेत्र लागू नहीं होता है।


ऑफ स्टेट में, यानी, जब कोई विद्युत क्षेत्र लागू नहीं होता है, नेमैटिक लिक्विड क्रिस्टल अणुओं का एक मुड़ विन्यास (उर्फ हेलिकल स्ट्रक्चर या हेलिक्स) दो ग्लास प्लेटों के बीच बनता है, आकृति में जी, जो कई स्पेसर्स द्वारा अलग किए जाते हैं और लेपित होते हैं पारदर्शी इलेक्ट्रोड, ई<sub>1</sub> और ई<sub>2</sub>. इलेक्ट्रोड स्वयं संरेखण परतों (दिखाया नहीं गया) के साथ लेपित होते हैं जो तरल क्रिस्टल को 90 डिग्री तक घुमाते हैं जब कोई बाहरी क्षेत्र मौजूद नहीं होता है (बाएं आरेख)। यदि एलसीडी के सामने उचित ध्रुवीकरण (लगभग आधा) वाला प्रकाश स्रोत चमकता है, तो प्रकाश पहले ध्रुवीकरण, पी से गुजरेगा<sub>2</sub> और लिक्विड क्रिस्टल में, जहां इसे पेचदार संरचना द्वारा घुमाया जाता है। प्रकाश को तब दूसरे ध्रुवीकरणकर्ता, पी से गुजरने के लिए ठीक से ध्रुवीकृत किया जाता है<sub>1</sub>, पहले के 90° पर सेट करें। प्रकाश तब कोशिका के पीछे से होकर गुजरता है और छवि, I, पारदर्शी दिखाई देती है।
ऑफ स्थिति में, यानी, जब कोई विद्युत क्षेत्र लागू नहीं किया जाता है, तो दो ग्लास प्लेटों, जी के बीच चित्र में जी, नेमैटिक लिक्विड क्रिस्टल अणुओं का एक मुड़ विन्यास (उर्फ हेलिकल संरचना या हेलिक्स) बनता है, जो कई स्पेसर्स द्वारा अलग किए जाते हैं और लेपित होते हैं। पारदर्शी इलेक्ट्रोड, E1 और E2। इलेक्ट्रोड स्वयं संरेखण परतों से लेपित होते हैं (दिखाए नहीं गए) जो तरल क्रिस्टल को 90 डिग्री तक घुमाते हैं जब कोई बाहरी क्षेत्र मौजूद नहीं होता है (बाएं आरेख)। यदि उचित ध्रुवीकरण (लगभग आधा) वाला एक प्रकाश स्रोत एलसीडी के सामने चमकता है, तो प्रकाश पहले ध्रुवीकरणकर्ता, पी2 से होकर लिक्विड क्रिस्टल में जाएगा, जहां यह पेचदार संरचना द्वारा घूमता है। फिर प्रकाश को दूसरे ध्रुवीकरणकर्ता, P1 से गुजरने के लिए उचित रूप से ध्रुवीकृत किया जाता है, जिसे पहले से 90° पर सेट किया गया है। फिर प्रकाश कोशिका के पीछे से होकर गुजरता है और छवि, I, पारदर्शी दिखाई देती है।


ऑन स्टेट में, यानी, जब दो इलेक्ट्रोड के बीच एक क्षेत्र लगाया जाता है, तो क्रिस्टल खुद को बाहरी क्षेत्र (दाएं आरेख) के साथ फिर से संरेखित करता है। यह क्रिस्टल में सावधान मोड़ को तोड़ता है और क्रिस्टल से गुजरने वाले ध्रुवीकृत प्रकाश को फिर से उन्मुख करने में विफल रहता है। इस मामले में प्रकाश को पीछे के पोलराइज़र, पी द्वारा अवरुद्ध किया जाता है<sub>1</sub>, और छवि, I, अपारदर्शी दिखाई देती है। अपारदर्शिता की मात्रा को वोल्टेज को बदलकर नियंत्रित किया जा सकता है। दहलीज के निकट वोल्टेज पर, केवल कुछ क्रिस्टल फिर से संरेखित होंगे, और प्रदर्शन आंशिक रूप से पारदर्शी होगा। जैसे ही वोल्टेज बढ़ता है, अधिक क्रिस्टल तब तक फिर से संरेखित होंगे जब तक कि यह पूरी तरह से स्विच नहीं हो जाता। क्रिस्टल को क्षेत्र के साथ संरेखित करने के लिए लगभग 1 V के वोल्टेज की आवश्यकता होती है, और कोई भी करंट क्रिस्टल से होकर नहीं गुजरता है। इस प्रकार उस क्रिया के लिए आवश्यक विद्युत शक्ति बहुत कम होती है।
चालू स्थिति में, यानी, जब दो इलेक्ट्रोडों के बीच एक क्षेत्र लागू किया जाता है, तो क्रिस्टल बाहरी क्षेत्र (दाएं आरेख) के साथ खुद को फिर से संरेखित करता है। यह क्रिस्टल में सावधानीपूर्वक मोड़ को "तोड़" देता है और क्रिस्टल से गुजरने वाले ध्रुवीकृत प्रकाश को पुन: उन्मुख करने में विफल रहता है। इस स्थिति में प्रकाश रियर पोलराइज़र, P1 द्वारा अवरुद्ध हो जाता है, और छवि, I, अपारदर्शी दिखाई देती है। वोल्टेज को अलग-अलग करके अपारदर्शिता की मात्रा को नियंत्रित किया जा सकता है। थ्रेशोल्ड के पास वोल्टेज पर, केवल कुछ क्रिस्टल फिर से संरेखित होंगे, और डिस्प्ले आंशिक रूप से पारदर्शी होगा। जैसे-जैसे वोल्टेज बढ़ता है, अधिकांश क्रिस्टल फिर से संरेखित हो जाएंगे जब तक कि यह पूरी तरह से "स्विच" न हो जाए। क्रिस्टल को क्षेत्र के साथ संरेखित करने के लिए लगभग 1 V के वोल्टेज की आवश्यकता होती है, और क्रिस्टल से कोई करंट प्रवाहित नहीं होता है। इस प्रकार उस क्रिया के लिए आवश्यक विद्युत शक्ति बहुत कम है।


मुड़ नीमैटिक लिक्विड क्रिस्टल के साथ जानकारी प्रदर्शित करने के लिए, पारदर्शी इलेक्ट्रोड फोटो-लिथोग्राफी द्वारा [[डॉट-मैट्रिक्स डिस्प्ले]] या अन्य सात-खंड डिस्प्ले बनाने के लिए संरचित होते हैं। केवल एक इलेक्ट्रोड को इस तरह से प्रतिरूपित करना होता है, दूसरा निरंतर (सामान्य इलेक्ट्रोड) रह सकता है। कम जानकारी वाली सामग्री के लिए संख्यात्मक और अल्फा-न्यूमेरिकल TN-LCDs, जैसे डिजिटल घड़ियाँ या कैलकुलेटर, सात-खंड डिस्प्ले पर्याप्त हैं। यदि अधिक जटिल डेटा या ग्राफिक्स जानकारी प्रदर्शित करनी है, तो इलेक्ट्रोड की मैट्रिक्स व्यवस्था का उपयोग किया जाता है। इस वजह से, डॉट-मैट्रिक्स डिस्प्ले का वोल्टेज-नियंत्रित एड्रेसिंग, जैसे कि [[ कंप्यूटर मॉनीटर ]] या [[एलसीडी टेलीविजन]] के लिए एलसीडी स्क्रीन, खंडित इलेक्ट्रोड की तुलना में अधिक जटिल है। सीमित रिज़ॉल्यूशन के मैट्रिक्स के लिए या एक बड़े मैट्रिक्स पैनल पर धीमी गति से बदलते डिस्प्ले के लिए, इलेक्ट्रोड का एक निष्क्रिय ग्रिड [[ निष्क्रिय मैट्रिक्स एड्रेसिंग ]] को लागू करने के लिए पर्याप्त है। पैसिव मैट्रिक्स-एड्रेसिंग, बशर्ते कि प्रत्येक पंक्ति और कॉलम के लिए स्वतंत्र इलेक्ट्रॉनिक ड्राइवर हों . आवश्यक तेज प्रतिक्रिया (जैसे एनिमेटेड ग्राफिक्स और/या वीडियो के लिए) के साथ एक उच्च-रिज़ॉल्यूशन मैट्रिक्स एलसीडी डिस्प्ले के प्रत्येक चित्र तत्व (पिक्सेल) में अतिरिक्त गैर-रैखिक इलेक्ट्रॉनिक तत्वों के एकीकरण की आवश्यकता होती है (उदाहरण के लिए, पतली-फिल्म डायोड, टीएफडी, या [[पतली फिल्म वाला ट्रांजिस्टर]], टीएफटी) [[सक्रिय मैट्रिक्स एड्रेसिंग]] की अनुमति देने के लिए | [[क्रॉसस्टॉक (इलेक्ट्रॉनिक्स)]] के बिना व्यक्तिगत चित्र तत्वों का सक्रिय मैट्रिक्स-एड्रेसिंग (गैर-संबोधित पिक्सल का अनपेक्षित सक्रियण)
एक मुड़े हुए नेमैटिक लिक्विड क्रिस्टल के साथ जानकारी प्रदर्शित करने के लिए, पारदर्शी इलेक्ट्रोड को मैट्रिक्स या इलेक्ट्रोड के अन्य पैटर्न बनाने के लिए फोटो-लिथोग्राफी द्वारा संरचित किया जाता है। केवल एक इलेक्ट्रोड को इस तरह से पैटर्न करना होगा, दूसरा निरंतर (सामान्य इलेक्ट्रोड) रह सकता है। कम सूचना सामग्री के लिए संख्यात्मक और अल्फा-न्यूमेरिकल टीएन-एलसीडी, जैसे डिजिटल घड़ियां या कैलकुलेटर, खंडित इलेक्ट्रोड पर्याप्त हैं। यदि अधिक जटिल डेटा या ग्राफ़िक्स जानकारी प्रदर्शित करनी हो, तो इलेक्ट्रोड की मैट्रिक्स व्यवस्था का उपयोग किया जाता है। इस वजह से, मैट्रिक्स डिस्प्ले का वोल्टेज-नियंत्रित एड्रेसिंग, जैसे कि [[ कंप्यूटर मॉनीटर |कंप्यूटर मॉनीटर]] या [[एलसीडी टेलीविजन]] स्क्रीन के लिए एलसीडी-स्क्रीन, खंडित इलेक्ट्रोड की तुलना में अधिक जटिल है। सीमित रिज़ॉल्यूशन के मैट्रिक्स के लिए या बड़े मैट्रिक्स पैनल पर धीमी गति से बदलते डिस्प्ले के लिए, इलेक्ट्रोड का एक निष्क्रिय ग्रिड निष्क्रिय मैट्रिक्स-एड्रेसिंग को लागू करने के लिए पर्याप्त है, बशर्ते कि प्रत्येक पंक्ति और स्तंभ के लिए स्वतंत्र इलेक्ट्रॉनिक ड्राइवर हों। आवश्यक तेज़ प्रतिक्रिया के साथ एक उच्च-रिज़ॉल्यूशन मैट्रिक्स एलसीडी (उदाहरण के लिए एनिमेटेड ग्राफिक्स और/या वीडियो के लिए) डिस्प्ले के प्रत्येक चित्र तत्व (पिक्सेल) में अतिरिक्त गैर-रेखीय इलेक्ट्रॉनिक तत्वों के एकीकरण की आवश्यकता होती है (उदाहरण के लिए, पतली-फिल्म डायोड, टीएफडी, या [[पतली फिल्म वाला ट्रांजिस्टर]], टीएफटी) क्रॉसस्टॉक के बिना व्यक्तिगत चित्र तत्वों के सक्रिय मैट्रिक्स-एड्रेसिंग (गैर-एड्रेस्ड पिक्सल के अनपेक्षित सक्रियण) की अनुमति देने के लिए।


== इतिहास ==
== इतिहास ==
Line 21: Line 21:
=== आरसीए अनुसंधान ===
=== आरसीए अनुसंधान ===


1962 में, [[अमेरिका के रेडियो निगम]] लेबोरेटरीज में काम करने वाले एक भौतिक रसायनज्ञ रिचर्ड विलियम्स ने नई भौतिक घटनाओं की खोज शुरू की, जो वैक्यूम ट्यूबों के बिना एक प्रदर्शन तकनीक का उत्पादन कर सकती हैं। निमेटिक लिक्विड क्रिस्टल से जुड़े अनुसंधान की लंबी लाइन से अवगत, उन्होंने यौगिक [[पैरा-एज़ोक्सीनिसोल]] | पी-एज़ॉक्साइनिसोल के साथ प्रयोग करना शुरू किया, जिसका गलनांक है {{convert|115|C|F}}. विलियम्स ने अपने प्रयोगों को एक गर्म माइक्रोस्कोप चरण पर स्थापित किया, कांच की प्लेटों पर पारदर्शी टिन-ऑक्साइड इलेक्ट्रोड के बीच नमूने रखे {{convert|125|C|F}}. उन्होंने पाया कि स्टैक के आर-पार लगाया गया एक बहुत मजबूत विद्युत क्षेत्र धारीदार पैटर्न बनाने का कारण होगा। इन्हें बाद में विलियम्स डोमेन कहा गया।<ref name=Castellano>Joseph Castellano, [https://www.jstor.org/stable/27858836 "Modifying Light'], ''American Scientist'', September–October 2006</ref> आवश्यक क्षेत्र लगभग 1,000 वोल्ट प्रति सेंटीमीटर था, जो एक व्यावहारिक उपकरण के लिए बहुत अधिक था। यह महसूस करते हुए कि विकास लंबा होगा, उन्होंने शोध को भौतिक विज्ञानी जॉर्ज हेलमीयर को सौंप दिया और अन्य कार्यों पर चले गए।
1962 में, आरसीए प्रयोगशालाओं में काम करने वाले एक भौतिक रसायनज्ञ रिचर्ड विलियम्स ने नई भौतिक घटनाओं की तलाश शुरू की, जो वैक्यूम ट्यूब के बिना एक प्रदर्शन तकनीक उत्पन्न कर सकती हैं। नेमैटिक लिक्विड क्रिस्टल से जुड़े अनुसंधान की लंबी श्रृंखला से अवगत होकर, उन्होंने यौगिक पी-एज़ोक्सीएनिसोल के साथ प्रयोग करना शुरू किया, जिसका गलनांक {{convert|115|C|F}} है। विलियम्स ने अपने प्रयोगों को एक गर्म माइक्रोस्कोप चरण पर स्थापित किया, जिसमें {{convert|125|C|F}} पर रखी कांच की प्लेटों पर पारदर्शी टिन-ऑक्साइड इलेक्ट्रोड के बीच नमूने रखे गए। उन्होंने पाया कि स्टैक पर लगाए गए एक बहुत मजबूत विद्युत क्षेत्र के कारण धारीदार पैटर्न बनेंगे। इन्हें बाद में "विलियम्स डोमेन" कहा गया।<ref name="Castellano">Joseph Castellano, [https://www.jstor.org/stable/27858836 "Modifying Light'], ''American Scientist'', September–October 2006</ref> आवश्यक क्षेत्र लगभग 1,000 वोल्ट प्रति सेंटीमीटर था, जो एक व्यावहारिक उपकरण के लिए बहुत अधिक था। यह महसूस करते हुए कि विकास लंबा होगा, उन्होंने अनुसंधान को भौतिक विज्ञानी जॉर्ज हेइलमीयर को सौंप दिया और अन्य काम पर चले गए।


1964 में, RCA के जॉर्ज एच. हेल्मीयर ने लुई ज़ानोनी और रसायनशास्त्री लुसियन बार्टन के साथ मिलकर यह पता लगाया कि कुछ तरल क्रिस्टलों को विद्युत प्रवाह के उपयोग से पारदर्शी अवस्था और अत्यधिक बिखरने वाले अपारदर्शी के बीच स्विच किया जा सकता है। प्रकाश स्रोत की ओर [[ backscatter ]]िंग के विपरीत, प्रकीर्णन मुख्य रूप से क्रिस्टल में आगे था। क्रिस्टल के दूर की ओर एक परावर्तक रखकर, घटना प्रकाश को विद्युत रूप से चालू या बंद किया जा सकता है, जिससे हेइलमीयर ने गतिशील बिखरने का नाम दिया। 1965 में जैविक रसायनज्ञ जोसेफ कैस्टेलानो और जोएल गोल्डमाकर ने ऐसे क्रिस्टल की खोज की जो कमरे के तापमान पर तरल अवस्था में रहे। छह महीने के भीतर उन्हें कई उम्मीदवार मिल गए थे, और आगे के विकास के साथ, आरसीए 1968 में पहले लिक्विड क्रिस्टल डिस्प्ले की घोषणा करने में सक्षम था।<ref name=Castellano/>
1964 में, आरसीए के जॉर्ज एच. हेइलमीयर ने लुईस ज़ानोनी और रसायनज्ञ लूसियन बार्टन के साथ मिलकर पता लगाया कि कुछ तरल क्रिस्टल को विद्युत प्रवाह के अनुप्रयोग के साथ एक पारदर्शी अवस्था और एक अत्यधिक बिखरने वाली अपारदर्शी अवस्था के बीच स्विच किया जा सकता है। प्रकाश स्रोत की ओर पीछे की ओर प्रकीर्णन के विपरीत, प्रकीर्णन मुख्य रूप से क्रिस्टल में आगे की ओर था। क्रिस्टल के दूर की ओर एक परावर्तक रखकर, आपतित प्रकाश को विद्युत रूप से चालू या बंद किया जा सकता है, जिससे हेइलमीयर ने गतिशील बिखराव का निर्माण किया। 1965 में, कार्बनिक रसायनज्ञ जोसेफ कैस्टेलानो और जोएल गोल्डमाकर ने ऐसे क्रिस्टल की खोज की जो कमरे के तापमान पर तरल अवस्था में रहे। छह महीने के भीतर उन्हें कई उम्मीदवार मिल गए, और आगे के विकास के साथ, आरसीए 1968 में पहले लिक्विड क्रिस्टल डिस्प्ले की घोषणा करने में सक्षम हुआ।<ref name=Castellano/>
 
हालांकि सफल, गतिशील बिखरने वाले प्रदर्शन को डिवाइस के माध्यम से निरंतर वर्तमान प्रवाह की आवश्यकता होती है, साथ ही साथ अपेक्षाकृत उच्च वोल्टेज भी। इसने उन्हें कम-शक्ति स्थितियों के लिए अनाकर्षक बना दिया, जहाँ इस प्रकार के कई प्रकार के डिस्प्ले का उपयोग किया जा रहा था। स्व-प्रकाशित नहीं होने के कारण, एलसीडी को बाहरी प्रकाश व्यवस्था की भी आवश्यकता होती है, यदि वे कम-प्रकाश स्थितियों में उपयोग किए जा रहे हों, जिसने मौजूदा प्रदर्शन तकनीकों को समग्र शक्ति के संदर्भ में और भी अनाकर्षक बना दिया। एक और सीमा एक दर्पण की आवश्यकता थी, जिसने देखने के कोणों को सीमित कर दिया। आरसीए टीम इन सीमाओं से अवगत थी, और विभिन्न प्रकार की तकनीकों का निरंतर विकास कर रही थी।
 
इन संभावित प्रभावों में से एक की खोज हेइलमेयर ने 1964 में की थी। वह खुद को तरल क्रिस्टल से जोड़ने के लिए कार्बनिक रंगों को प्राप्त करने में सक्षम था, और बाहरी क्षेत्र द्वारा संरेखण में खींचे जाने पर वे स्थिति में बने रहेंगे। जब एक संरेखण से दूसरे में स्विच किया जाता है, तो डाई या तो दिखाई देती है या छिपी होती है, जिसके परिणामस्वरूप दो रंगीन अवस्थाएँ होती हैं जिन्हें अतिथि-मेजबान प्रभाव कहा जाता है। गतिशील बिखरने के प्रभाव का सफलतापूर्वक प्रदर्शन किए जाने पर इस दृष्टिकोण पर काम रुक गया।<ref name=Castellano/>


सफल होने के बावजूद, गतिशील बिखरने वाले डिस्प्ले को डिवाइस के माध्यम से निरंतर वर्तमान प्रवाह के साथ-साथ अपेक्षाकृत उच्च वोल्टेज की आवश्यकता होती है। इसने उन्हें कम-शक्ति वाली स्थितियों के लिए अनाकर्षक बना दिया, जहां इस प्रकार के कई डिस्प्ले का उपयोग किया जा रहा था। स्वयं-प्रकाशित न होने के कारण, यदि एलसीडी को कम-रोशनी स्थितियों में उपयोग किया जाना हो तो उन्हें बाहरी प्रकाश की भी आवश्यकता होती है, जिसने मौजूदा डिस्प्ले प्रौद्योगिकियों को समग्र शक्ति के संदर्भ में और भी अधिक अनाकर्षक बना दिया है। एक और सीमा दर्पण की आवश्यकता थी, जिसने देखने के कोण को सीमित कर दिया। आरसीए टीम इन सीमाओं से अवगत थी, और विभिन्न प्रौद्योगिकियों का विकास जारी रखा।


इन संभावित प्रभावों में से एक की खोज हेइलमीयर ने 1964 में की थी। वह खुद को तरल क्रिस्टल से जोड़ने के लिए कार्बनिक रंगों को प्राप्त करने में सक्षम थे, और बाहरी क्षेत्र द्वारा संरेखण में खींचे जाने पर वे उसी स्थिति में बने रहते थे। जब एक संरेखण से दूसरे संरेखण पर स्विच किया जाता है, तो डाई या तो दिखाई देती है या छिपी होती है, जिसके परिणामस्वरूप दो रंगीन अवस्थाएँ उत्पन्न होती हैं जिन्हें अतिथि-मेज़बान प्रभाव कहा जाता है। इस दृष्टिकोण पर काम तब रुक गया जब गतिशील प्रकीर्णन प्रभाव सफलतापूर्वक प्रदर्शित हो गया।<ref name=Castellano/>
=== टीएन-प्रभाव ===
=== टीएन-प्रभाव ===


एक अन्य संभावित दृष्टिकोण मुड़-नेमैटिक दृष्टिकोण था, जिसे पहली बार 1911 में फ्रांसीसी भौतिक विज्ञानी [[ चार्ल्स विक्टर मौगुइन ]] द्वारा देखा गया था। माउगिन विभिन्न प्रकार के अर्ध-ठोस तरल क्रिस्टल के साथ प्रयोग कर रहे थे जब उन्होंने नोट किया कि वह एक टुकड़ा खींचकर क्रिस्टल को संरेखित कर सकते हैं। उनके चारों ओर कागज की, जिससे क्रिस्टल ध्रुवीकृत हो जाते हैं। बाद में उन्होंने देखा कि जब उन्होंने दो संरेखित ध्रुवकों के बीच क्रिस्टल को सैंडविच किया, तो वे उन्हें एक दूसरे के संबंध में मोड़ सकते थे, लेकिन प्रकाश का संचार जारी रहा। इसकी उम्मीद नहीं थी। आम तौर पर यदि दो ध्रुवकों को समकोण पर संरेखित किया जाता है, तो प्रकाश उनके माध्यम से प्रवाहित नहीं होगा। मौगुइन ने निष्कर्ष निकाला कि क्रिस्टल के मुड़ने से प्रकाश का पुन: ध्रुवीकरण हो रहा था।<ref name=Castellano/>
एक अन्य संभावित दृष्टिकोण ट्विस्टेड-नेमेटिक दृष्टिकोण था, जिसे पहली बार 1911 में फ्रांसीसी भौतिक विज्ञानी [[ चार्ल्स विक्टर मौगुइन |चार्ल्स विक्टर मौगुइन]] ने देखा था। मौगुइन विभिन्न प्रकार के अर्ध-ठोस तरल क्रिस्टल के साथ प्रयोग कर रहे थे जब उन्होंने देखा कि वह एक टुकड़ा खींचकर क्रिस्टल को संरेखित कर सकते हैं। उनके पार कागज का, जिससे क्रिस्टल ध्रुवीकृत हो जाते हैं। बाद में उन्होंने देखा कि जब उन्होंने क्रिस्टल को दो संरेखित ध्रुवीकरणों के बीच सैंडविच किया, तो वह उन्हें एक-दूसरे के संबंध में मोड़ सकते थे, लेकिन प्रकाश प्रसारित होता रहा। इसकी उम्मीद नहीं थी. आम तौर पर यदि दो ध्रुवीकरणकर्ताओं को समकोण पर संरेखित किया जाता है, तो प्रकाश उनके माध्यम से प्रवाहित नहीं होगा। मौगुइन ने निष्कर्ष निकाला कि क्रिस्टल के घुमाव से ही प्रकाश पुनः ध्रुवीकृत हो रहा था।<ref name=Castellano/>


1967 में RCA में शामिल होने वाले एक भौतिक विज्ञानी [[ वोल्फगैंग हेलफ्रिक ]], माउगिन की मुड़ी हुई संरचना में रुचि रखते थे और उन्होंने सोचा कि इसका उपयोग इलेक्ट्रॉनिक डिस्प्ले बनाने के लिए किया जा सकता है। हालांकि आरसीए ने थोड़ी दिलचस्पी दिखाई क्योंकि उन्हें लगा कि कोई भी प्रभाव जो दो पोलराइज़र का उपयोग करता है, उसमें बड़ी मात्रा में प्रकाश अवशोषण भी होगा, जिसके लिए इसे उज्ज्वल रूप से प्रकाशित करने की आवश्यकता होती है। 1970 में, Helfrich ने RCA को छोड़ दिया और [[स्विट्ज़रलैंड]] में [[हॉफमैन-लारोचे]] की केंद्रीय अनुसंधान प्रयोगशालाओं में शामिल हो गए, जहाँ उन्होंने एक ठोस-राज्य भौतिक विज्ञानी [[मार्टिन शाद्ट]] के साथ मिलकर काम किया। Schadt ने इलेक्ट्रोड के साथ एक नमूना बनाया और [[PEBAB]] (p-ethoxybenzylidene-p'-aminobenzonitrile) नामक एक लिक्विड-क्रिस्टल सामग्री का एक मुड़ संस्करण बनाया, जिसे Helfrich ने अपने अतिथि-मेजबान प्रयोगों के भाग के रूप में RCA में पूर्व अध्ययनों में बताया था।<ref name=Castellano/>जब वोल्टेज लगाया जाता है, तो PEBAB खुद को क्षेत्र के साथ संरेखित करता है, घुमावदार संरचना को तोड़ता है और ध्रुवीकरण के पुनर्निर्देशन करता है, जिससे सेल अपारदर्शी हो जाती है।
वोल्फगैंग हेलफ्रिच, एक भौतिक विज्ञानी जो 1967 में आरसीए में शामिल हुए थे, मौगुइन की मुड़ी हुई संरचना में रुचि रखते थे और उन्होंने सोचा कि इसका उपयोग इलेक्ट्रॉनिक डिस्प्ले बनाने के लिए किया जा सकता है। हालाँकि आरसीए ने कम रुचि दिखाई क्योंकि उन्हें लगा कि दो ध्रुवीकरणकर्ताओं का उपयोग करने वाले किसी भी प्रभाव में बड़ी मात्रा में प्रकाश अवशोषण भी होगा, जिसके लिए इसे उज्ज्वल रूप से प्रकाशित करने की आवश्यकता होगी। 1970 में, हेलफ्रिच ने आरसीए छोड़ दिया और [[स्विट्ज़रलैंड]] में [[हॉफमैन-लारोचे]] की केंद्रीय अनुसंधान प्रयोगशालाओं में शामिल हो गए, जहां उन्होंने एक ठोस-राज्य भौतिक विज्ञानी मार्टिन शादट के साथ मिलकर काम किया। स्कैड्ट ने इलेक्ट्रोड और पीईबीएबी (पी-एथॉक्सीबेंज़िलिडीन-पी'-एमिनोबेंज़ोनिट्राइल) नामक तरल-क्रिस्टल सामग्री के एक मुड़ संस्करण के साथ एक नमूना बनाया, जिसे हेलफ्रिच ने अपने अतिथि-मेजबान प्रयोगों के हिस्से के रूप में आरसीए में पूर्व अध्ययनों में रिपोर्ट किया था।<ref name=Castellano/> जब वोल्टेज लगाया जाता है, तो PEBAB स्वयं को क्षेत्र के साथ संरेखित करता है, घुमा संरचना और ध्रुवीकरण के पुनर्निर्देशन को तोड़ता है, जिससे सेल अपारदर्शी हो जाता है।


=== पेटेंट लड़ाई ===
=== पेटेंट लड़ाई ===


इस समय ब्राउन, बोवेरी एंड सी (बीबीसी) भी हॉफमैन-लारोचे के साथ एक पूर्व संयुक्त चिकित्सा अनुसंधान समझौते के हिस्से के रूप में उपकरणों के साथ काम कर रहा था।<ref>[http://www.ieeeghn.org/wiki/index.php/First-Hand:Liquid_Crystal_Display_Evolution_-_Swiss_Contributions IEEE GHN First-Hand Report by Peter J. Wild of LCD developments at Brown Boveri ]</ref> बीबीसी ने अमेरिका के एक भौतिक विज्ञानी को अपने काम का प्रदर्शन किया, जो वेस्टिंगहाउस रिसर्च लेबोरेटरीज में लिक्विड क्रिस्टल के विशेषज्ञ [[जेम्स फर्ग्यूसन]] के साथ जुड़े थे। केंट स्टेट यूनिवर्सिटी के लिक्विड क्रिस्टल इंस्टीट्यूट में सरदारी अरोरा और [[अल्फ्रेड सॉप]]े के साथ मिलकर किए जा रहे अनुसंधान के विकास का व्यावसायीकरण करने के लिए फर्गसन प्रदर्शन के लिए टीएन-प्रभाव पर काम कर रहा था।<ref name=patent>[http://www.lcd-experts.net/docs/TN-Patent.PDF "Twisted Nematic Liquid Crystal Displays (TN-LCDs), an invention from Basel with global effects"], ''Information'', No. 118, October 2005</ref>
इस समय ब्राउन, बोवेरी एंड सी (बीबीसी) भी हॉफमैन-लारोचे के साथ एक पूर्व संयुक्त चिकित्सा अनुसंधान समझौते के हिस्से के रूप में उपकरणों के साथ काम कर रहा था।<ref>[http://www.ieeeghn.org/wiki/index.php/First-Hand:Liquid_Crystal_Display_Evolution_-_Swiss_Contributions IEEE GHN First-Hand Report by Peter J. Wild of LCD developments at Brown Boveri ]</ref> बीबीसी ने अमेरिका के एक भौतिक विज्ञानी को अपना काम दिखाया, जो वेस्टिंगहाउस रिसर्च लेबोरेटरीज में लिक्विड क्रिस्टल के विशेषज्ञ [[जेम्स फर्ग्यूसन]] से जुड़े थे। फर्गसन डिस्प्ले के लिए टीएन-इफेक्ट पर काम कर रहे थे, उन्होंने केंट स्टेट यूनिवर्सिटी के लिक्विड क्रिस्टल इंस्टीट्यूट में सरदारी अरोड़ा और अल्फ्रेड सॉपे के साथ मिलकर किए जा रहे अनुसंधान के विकास का व्यावसायीकरण करने के लिए ILIXCO का गठन किया था।<ref name="patent">[http://www.lcd-experts.net/docs/TN-Patent.PDF "Twisted Nematic Liquid Crystal Displays (TN-LCDs), an invention from Basel with global effects"], ''Information'', No. 118, October 2005</ref>
जब प्रदर्शन की खबर हॉफमैन-लारोचे तक पहुंची, हेलफ्रिच और शाद ने तुरंत एक पेटेंट के लिए धक्का दिया, जिसे 4 दिसंबर 1970 को दायर किया गया था। उनके औपचारिक परिणाम 15 फरवरी 1971 को एप्लाइड फिजिक्स लेटर्स में प्रकाशित किए गए थे। नए की व्यवहार्यता को प्रदर्शित करने के लिए प्रदर्शित करने के लिए प्रभाव, Schadt ने 1972 में एक 4-अंकीय डिस्प्ले पैनल बनाया।<ref name=Castellano/>


फर्गसन ने 9 फरवरी 1971 को अमेरिका में इसी तरह का एक पेटेंट प्रकाशित किया<ref name=Castellano/>या 22 अप्रैल 1971।<ref name=patent/>स्विस पेटेंट दायर किए जाने के दो महीने बाद यह तीन साल के कानूनी टकराव के लिए मंच तैयार किया गया था जिसे अदालत से बाहर सुलझा लिया गया था। अंत में, सभी पार्टियों को रॉयल्टी में कई मिलियन डॉलर का हिस्सा मिला।
जब प्रदर्शन की खबर हॉफमैन-लारोचे तक पहुंची, तो हेलफ्रिच और शैडट ने तुरंत एक पेटेंट के लिए दबाव डाला, जिसे 4 दिसंबर 1970 को दायर किया गया था। उनके औपचारिक परिणाम 15 फरवरी 1971 को एप्लाइड फिजिक्स लेटर्स में प्रकाशित किए गए थे। नए की व्यवहार्यता प्रदर्शित करने के लिए डिस्प्ले के लिए प्रभाव, शाद्ट ने 1972 में 4-अंकीय डिस्प्ले पैनल बनाया।<ref name="Castellano" />
 
फर्गासन ने 9 फरवरी 1971<ref name="Castellano" /> या 22 अप्रैल 1971 को अमेरिका में एक समान पेटेंट प्रकाशित किया।<ref name="patent" /> यह स्विस पेटेंट दायर होने के दो महीने बाद था और इसने तीन साल के कानूनी टकराव के लिए मंच तैयार किया था जिसे अदालत के बाहर सुलझा लिया गया था। अंत में, सभी पार्टियों को रॉयल्टी में लाखों डॉलर का हिस्सा प्राप्त हुआ।


=== लिक्विड क्रिस्टल सामग्री का व्यावसायिक विकास ===
=== लिक्विड क्रिस्टल सामग्री का व्यावसायिक विकास ===


PEBAB पानी या क्षारीय के संपर्क में आने पर टूटने के अधीन था, और संदूषण से बचने के लिए विशेष निर्माण की आवश्यकता थी। 1972 में जॉर्ज डब्ल्यू. ग्रे के नेतृत्व में एक टीम ने एक नए प्रकार का 4-साइनो-4'-पेंटिलबाईफेनिल विकसित किया जिसे कम प्रतिक्रियाशील सामग्री बनाने के लिए PEBAB के साथ मिलाया जा सकता था।<ref>George Gray, Stephen Kelly: "Liquid crystals for twisted nematic display devices", ''Journal of Materials Chemistry'', 1999, 9, 2037–2050</ref> इन योजकों ने परिणामी तरल को कम चिपचिपा बना दिया, जिससे तेजी से प्रतिक्रिया समय प्रदान किया गया, जबकि एक ही समय में उन्हें और अधिक पारदर्शी बना दिया गया, जिससे शुद्ध-सफेद रंग का प्रदर्शन हुआ।
पीईबीएबी पानी या क्षारीय के संपर्क में आने पर टूट जाता था और संदूषण से बचने के लिए विशेष निर्माण की आवश्यकता होती थी। 1972 में जॉर्ज डब्लू. ग्रे के नेतृत्व में एक टीम ने एक नए प्रकार का सायनोबिफेनिल विकसित किया जिसे कम प्रतिक्रियाशील सामग्री उत्पन्न करने के लिए PEBAB के साथ मिलाया जा सकता था।<ref>George Gray, Stephen Kelly: "Liquid crystals for twisted nematic display devices", ''Journal of Materials Chemistry'', 1999, 9, 2037–2050</ref> इन एडिटिव्स ने परिणामी तरल को कम चिपचिपा बना दिया, जिससे तेजी से प्रतिक्रिया समय प्रदान किया गया, जबकि साथ ही उन्हें अधिक पारदर्शी बना दिया गया, जिससे शुद्ध-सफेद रंग का डिस्प्ले उत्पन्न हुआ।
 
बदले में, इस काम ने [[ लुडविग पोल ]], रूडोल्फ ईडेन्सचिंक और उनके सहयोगियों द्वारा डार्मस्टाट में [[मर्क केजीए]]ए में [[सायनोफेनिलसाइक्लोहेक्सेन]] नामक एक पूरी तरह से अलग वर्ग के निमैटिक क्रिस्टल की खोज की। वे जल्द ही लगभग सभी एलसीडी का आधार बन गए और आज मर्क के कारोबार का एक प्रमुख हिस्सा बने हुए हैं।<ref>[http://pb.merck.de/servlet/PB/show/1410650/AR2004Merck_overview_01.pdf "Merck Annual Report, 2004"]</ref>
 


बदले में, इस काम से डार्मस्टेड में मर्क केजीएए में [[ लुडविग पोल |लुडविग पोल]], रुडोल्फ ईडेंसचिंक और उनके सहयोगियों द्वारा नेमैटिक क्रिस्टल की एक पूरी तरह से अलग श्रेणी की खोज हुई, जिसे [[सायनोफेनिलसाइक्लोहेक्सेन]] कहा जाता है। वे शीघ्र ही लगभग सभी एलसीडी का आधार बन गए, और आज भी मर्क के व्यवसाय का एक प्रमुख हिस्सा बने हुए हैं।<ref>[http://pb.merck.de/servlet/PB/show/1410650/AR2004Merck_overview_01.pdf "Merck Annual Report, 2004"]</ref>
== यह भी देखें ==
== यह भी देखें ==
* [[प्रदर्शन प्रौद्योगिकी का इतिहास]]
* [[प्रदर्शन प्रौद्योगिकी का इतिहास]]
Line 62: Line 59:
* Peer Kirsch, [https://mypronet.merck.de/Attachment/200810.023.ProNet.pdf?file&user=ChemPortals "100 years of Liquid Crystals at Merck: The history of the future."], ''20th International Liquid Crystals Conference'', July 2004
* Peer Kirsch, [https://mypronet.merck.de/Attachment/200810.023.ProNet.pdf?file&user=ChemPortals "100 years of Liquid Crystals at Merck: The history of the future."], ''20th International Liquid Crystals Conference'', July 2004
* David A. Dunmur and Horst Stegemeyer: "Crystals that Flow: Classic papers from the history of liquid crystals", Compiled with translation and commentary by Timothy J. Sluckin (Taylor and Francis 2004), {{ISBN|0-415-25789-1}}, [https://web.archive.org/web/20070605072401/http://www.maths.soton.ac.uk/staff/Sluckin/crystals_that_flow/homepage.htm History of Liquid Crystals Homepage]
* David A. Dunmur and Horst Stegemeyer: "Crystals that Flow: Classic papers from the history of liquid crystals", Compiled with translation and commentary by Timothy J. Sluckin (Taylor and Francis 2004), {{ISBN|0-415-25789-1}}, [https://web.archive.org/web/20070605072401/http://www.maths.soton.ac.uk/staff/Sluckin/crystals_that_flow/homepage.htm History of Liquid Crystals Homepage]
* Werner Becker (editor): "100 Years of Commercial Liquid-Crystal Materials", ''Information Display'', Volume 20, 2004
* Werner Becker (editor): "100 Years of Commercial Liquid-Crystal Materials", ''Information Display'', Volume 20, 2004
* Gerhard H. Buntz (Patent Attorney, European Patent Attorney, Physicist, Basel), [http://www.lcd-experts.net/ "Twisted Nematic Liquid Crystal Displays (TN-LCDs), an invention from Basel with global effects"], Information No. 118, October 2005, issued by [http://www.itag.ch/ Internationale Treuhand AG], Basel, Geneva, Zurich. Published in German
* Gerhard H. Buntz (Patent Attorney, European Patent Attorney, Physicist, Basel), [http://www.lcd-experts.net/ "Twisted Nematic Liquid Crystal Displays (TN-LCDs), an invention from Basel with global effects"], Information No. 118, October 2005, issued by [http://www.itag.ch/ Internationale Treuhand AG], Basel, Geneva, Zurich. Published in German
* Rolf Bucher: "Wie Schweizer Firmen aus dem Flüssigkristall-Rennen fielen", Das Schicksal von Roche und BBC-Entwicklungen in zehn Abschnitten", [http://nzz.ch Neue Zürcher Zeitung], Nr.141 56 / B12, 20.06.2005
* Rolf Bucher: "Wie Schweizer Firmen aus dem Flüssigkristall-Rennen fielen", Das Schicksal von Roche und BBC-Entwicklungen in zehn Abschnitten", [http://nzz.ch Neue Zürcher Zeitung], Nr.141 56 / B12, 20.06.2005

Revision as of 19:41, 29 June 2023

ट्विस्टेड निमैटिक फील्ड-इफ़ेक्ट पर आधारित एक शुरुआती एलसीडी प्रोटोटाइप वाली घड़ी

मुड़ नीमेटिक क्षेत्र प्रभाव (टीएन-इफ़ेक्ट) एक मुख्य प्रौद्योगिकी सफलता थी जिसने एलसीडी को व्यावहारिक बना दिया। पहले के डिस्प्ले के विपरीत, टीएन-सेल को संचालन के लिए करंट प्रवाहित करने की आवश्यकता नहीं होती थी और बैटरी के साथ उपयोग के लिए उपयुक्त कम ऑपरेटिंग वोल्टेज का उपयोग किया जाता था। टीएन-इफेक्ट डिस्प्ले की शुरूआत से डिस्प्ले क्षेत्र में उनका तेजी से विस्तार हुआ, जिससे अधिकांश इलेक्ट्रॉनिक्स के लिए मोनोलिथिक एलईडी और सीआरटी जैसी अन्य सामान्य प्रौद्योगिकियों को तेजी से आगे बढ़ाया गया। 1990 के दशक तक, टीएन-प्रभाव एलसीडी पोर्टेबल इलेक्ट्रॉनिक्स में काफी हद तक सार्वभौमिक थे, हालांकि तब से, एलसीडी के कई अनुप्रयोगों ने टीएन-प्रभाव के विकल्प जैसे इन-प्लेन स्विचिंग (आईपीएस) या वर्टिकल एलाइनमेंट (वीए) को अपनाया।

चित्र जानकारी के बिना कई मोनोक्रोम अल्फ़ान्यूमेरिकल डिस्प्ले अभी भी टीएन एलसीडी का उपयोग करते हैं।

टीएन डिस्प्ले तेज पिक्सेल प्रतिक्रिया समय और अन्य एलसीडी डिस्प्ले तकनीक की तुलना में कम धुंधलापन से लाभान्वित होता है, लेकिन खराब रंग प्रजनन और सीमित देखने के कोण से पीड़ित होता है, खासकर ऊर्ध्वाधर दिशा में। जब किसी ऐसे कोण से देखा जाएगा जो डिस्प्ले के लंबवत नहीं है, तो रंग संभवतः पूरी तरह उलटने की स्थिति तक बदल जाएंगे।

विवरण

ट्विस्टेड नेमेटिक प्रभाव एक लागू विद्युत क्षेत्र की कार्रवाई के तहत विभिन्न क्रमबद्ध आणविक विन्यासों के बीच लिक्विड क्रिस्टल अणुओं के सटीक नियंत्रित पुनर्संरेखण पर आधारित है। यह कम बिजली की खपत और कम ऑपरेटिंग वोल्टेज पर हासिल किया जाता है। लागू क्षेत्र में लिक्विड क्रिस्टल अणुओं के संरेखण की अंतर्निहित घटना को फ़्रेडरिक्स संक्रमण कहा जाता है और इसकी खोज 1927 में रूसी भौतिक विज्ञानी वसेवोलॉड फ्रेडरिक ने की थी।

एक TN लिक्विड क्रिस्टल सेल का विस्फोटित दृश्य जो राज्यों को एक बंद स्थिति (बाएं), और एक चालू स्थिति के साथ लागू वोल्टेज (दाएं) में दिखा रहा है

दाईं ओर के चित्र "सामान्य रूप से सफेद" मोड में काम कर रहे एक ट्विस्टेड नेमैटिक लाइट मॉड्यूलेटर लिक्विड क्रिस्टल डिस्प्ले के एकल चित्र तत्व (पिक्सेल) की ऑफ और ऑन-स्थिति दोनों को दिखाते हैं, यानी, एक ऐसा मोड जिसमें प्रकाश प्रसारित होता है लिक्विड क्रिस्टल पर कोई विद्युत क्षेत्र लागू नहीं होता है।

ऑफ स्थिति में, यानी, जब कोई विद्युत क्षेत्र लागू नहीं किया जाता है, तो दो ग्लास प्लेटों, जी के बीच चित्र में जी, नेमैटिक लिक्विड क्रिस्टल अणुओं का एक मुड़ विन्यास (उर्फ हेलिकल संरचना या हेलिक्स) बनता है, जो कई स्पेसर्स द्वारा अलग किए जाते हैं और लेपित होते हैं। पारदर्शी इलेक्ट्रोड, E1 और E2। इलेक्ट्रोड स्वयं संरेखण परतों से लेपित होते हैं (दिखाए नहीं गए) जो तरल क्रिस्टल को 90 डिग्री तक घुमाते हैं जब कोई बाहरी क्षेत्र मौजूद नहीं होता है (बाएं आरेख)। यदि उचित ध्रुवीकरण (लगभग आधा) वाला एक प्रकाश स्रोत एलसीडी के सामने चमकता है, तो प्रकाश पहले ध्रुवीकरणकर्ता, पी2 से होकर लिक्विड क्रिस्टल में जाएगा, जहां यह पेचदार संरचना द्वारा घूमता है। फिर प्रकाश को दूसरे ध्रुवीकरणकर्ता, P1 से गुजरने के लिए उचित रूप से ध्रुवीकृत किया जाता है, जिसे पहले से 90° पर सेट किया गया है। फिर प्रकाश कोशिका के पीछे से होकर गुजरता है और छवि, I, पारदर्शी दिखाई देती है।

चालू स्थिति में, यानी, जब दो इलेक्ट्रोडों के बीच एक क्षेत्र लागू किया जाता है, तो क्रिस्टल बाहरी क्षेत्र (दाएं आरेख) के साथ खुद को फिर से संरेखित करता है। यह क्रिस्टल में सावधानीपूर्वक मोड़ को "तोड़" देता है और क्रिस्टल से गुजरने वाले ध्रुवीकृत प्रकाश को पुन: उन्मुख करने में विफल रहता है। इस स्थिति में प्रकाश रियर पोलराइज़र, P1 द्वारा अवरुद्ध हो जाता है, और छवि, I, अपारदर्शी दिखाई देती है। वोल्टेज को अलग-अलग करके अपारदर्शिता की मात्रा को नियंत्रित किया जा सकता है। थ्रेशोल्ड के पास वोल्टेज पर, केवल कुछ क्रिस्टल फिर से संरेखित होंगे, और डिस्प्ले आंशिक रूप से पारदर्शी होगा। जैसे-जैसे वोल्टेज बढ़ता है, अधिकांश क्रिस्टल फिर से संरेखित हो जाएंगे जब तक कि यह पूरी तरह से "स्विच" न हो जाए। क्रिस्टल को क्षेत्र के साथ संरेखित करने के लिए लगभग 1 V के वोल्टेज की आवश्यकता होती है, और क्रिस्टल से कोई करंट प्रवाहित नहीं होता है। इस प्रकार उस क्रिया के लिए आवश्यक विद्युत शक्ति बहुत कम है।

एक मुड़े हुए नेमैटिक लिक्विड क्रिस्टल के साथ जानकारी प्रदर्शित करने के लिए, पारदर्शी इलेक्ट्रोड को मैट्रिक्स या इलेक्ट्रोड के अन्य पैटर्न बनाने के लिए फोटो-लिथोग्राफी द्वारा संरचित किया जाता है। केवल एक इलेक्ट्रोड को इस तरह से पैटर्न करना होगा, दूसरा निरंतर (सामान्य इलेक्ट्रोड) रह सकता है। कम सूचना सामग्री के लिए संख्यात्मक और अल्फा-न्यूमेरिकल टीएन-एलसीडी, जैसे डिजिटल घड़ियां या कैलकुलेटर, खंडित इलेक्ट्रोड पर्याप्त हैं। यदि अधिक जटिल डेटा या ग्राफ़िक्स जानकारी प्रदर्शित करनी हो, तो इलेक्ट्रोड की मैट्रिक्स व्यवस्था का उपयोग किया जाता है। इस वजह से, मैट्रिक्स डिस्प्ले का वोल्टेज-नियंत्रित एड्रेसिंग, जैसे कि कंप्यूटर मॉनीटर या एलसीडी टेलीविजन स्क्रीन के लिए एलसीडी-स्क्रीन, खंडित इलेक्ट्रोड की तुलना में अधिक जटिल है। सीमित रिज़ॉल्यूशन के मैट्रिक्स के लिए या बड़े मैट्रिक्स पैनल पर धीमी गति से बदलते डिस्प्ले के लिए, इलेक्ट्रोड का एक निष्क्रिय ग्रिड निष्क्रिय मैट्रिक्स-एड्रेसिंग को लागू करने के लिए पर्याप्त है, बशर्ते कि प्रत्येक पंक्ति और स्तंभ के लिए स्वतंत्र इलेक्ट्रॉनिक ड्राइवर हों। आवश्यक तेज़ प्रतिक्रिया के साथ एक उच्च-रिज़ॉल्यूशन मैट्रिक्स एलसीडी (उदाहरण के लिए एनिमेटेड ग्राफिक्स और/या वीडियो के लिए) डिस्प्ले के प्रत्येक चित्र तत्व (पिक्सेल) में अतिरिक्त गैर-रेखीय इलेक्ट्रॉनिक तत्वों के एकीकरण की आवश्यकता होती है (उदाहरण के लिए, पतली-फिल्म डायोड, टीएफडी, या पतली फिल्म वाला ट्रांजिस्टर, टीएफटी) क्रॉसस्टॉक के बिना व्यक्तिगत चित्र तत्वों के सक्रिय मैट्रिक्स-एड्रेसिंग (गैर-एड्रेस्ड पिक्सल के अनपेक्षित सक्रियण) की अनुमति देने के लिए।

इतिहास

आरसीए अनुसंधान

1962 में, आरसीए प्रयोगशालाओं में काम करने वाले एक भौतिक रसायनज्ञ रिचर्ड विलियम्स ने नई भौतिक घटनाओं की तलाश शुरू की, जो वैक्यूम ट्यूब के बिना एक प्रदर्शन तकनीक उत्पन्न कर सकती हैं। नेमैटिक लिक्विड क्रिस्टल से जुड़े अनुसंधान की लंबी श्रृंखला से अवगत होकर, उन्होंने यौगिक पी-एज़ोक्सीएनिसोल के साथ प्रयोग करना शुरू किया, जिसका गलनांक 115 °C (239 °F) है। विलियम्स ने अपने प्रयोगों को एक गर्म माइक्रोस्कोप चरण पर स्थापित किया, जिसमें 125 °C (257 °F) पर रखी कांच की प्लेटों पर पारदर्शी टिन-ऑक्साइड इलेक्ट्रोड के बीच नमूने रखे गए। उन्होंने पाया कि स्टैक पर लगाए गए एक बहुत मजबूत विद्युत क्षेत्र के कारण धारीदार पैटर्न बनेंगे। इन्हें बाद में "विलियम्स डोमेन" कहा गया।[1] आवश्यक क्षेत्र लगभग 1,000 वोल्ट प्रति सेंटीमीटर था, जो एक व्यावहारिक उपकरण के लिए बहुत अधिक था। यह महसूस करते हुए कि विकास लंबा होगा, उन्होंने अनुसंधान को भौतिक विज्ञानी जॉर्ज हेइलमीयर को सौंप दिया और अन्य काम पर चले गए।

1964 में, आरसीए के जॉर्ज एच. हेइलमीयर ने लुईस ज़ानोनी और रसायनज्ञ लूसियन बार्टन के साथ मिलकर पता लगाया कि कुछ तरल क्रिस्टल को विद्युत प्रवाह के अनुप्रयोग के साथ एक पारदर्शी अवस्था और एक अत्यधिक बिखरने वाली अपारदर्शी अवस्था के बीच स्विच किया जा सकता है। प्रकाश स्रोत की ओर पीछे की ओर प्रकीर्णन के विपरीत, प्रकीर्णन मुख्य रूप से क्रिस्टल में आगे की ओर था। क्रिस्टल के दूर की ओर एक परावर्तक रखकर, आपतित प्रकाश को विद्युत रूप से चालू या बंद किया जा सकता है, जिससे हेइलमीयर ने गतिशील बिखराव का निर्माण किया। 1965 में, कार्बनिक रसायनज्ञ जोसेफ कैस्टेलानो और जोएल गोल्डमाकर ने ऐसे क्रिस्टल की खोज की जो कमरे के तापमान पर तरल अवस्था में रहे। छह महीने के भीतर उन्हें कई उम्मीदवार मिल गए, और आगे के विकास के साथ, आरसीए 1968 में पहले लिक्विड क्रिस्टल डिस्प्ले की घोषणा करने में सक्षम हुआ।[1]

सफल होने के बावजूद, गतिशील बिखरने वाले डिस्प्ले को डिवाइस के माध्यम से निरंतर वर्तमान प्रवाह के साथ-साथ अपेक्षाकृत उच्च वोल्टेज की आवश्यकता होती है। इसने उन्हें कम-शक्ति वाली स्थितियों के लिए अनाकर्षक बना दिया, जहां इस प्रकार के कई डिस्प्ले का उपयोग किया जा रहा था। स्वयं-प्रकाशित न होने के कारण, यदि एलसीडी को कम-रोशनी स्थितियों में उपयोग किया जाना हो तो उन्हें बाहरी प्रकाश की भी आवश्यकता होती है, जिसने मौजूदा डिस्प्ले प्रौद्योगिकियों को समग्र शक्ति के संदर्भ में और भी अधिक अनाकर्षक बना दिया है। एक और सीमा दर्पण की आवश्यकता थी, जिसने देखने के कोण को सीमित कर दिया। आरसीए टीम इन सीमाओं से अवगत थी, और विभिन्न प्रौद्योगिकियों का विकास जारी रखा।

इन संभावित प्रभावों में से एक की खोज हेइलमीयर ने 1964 में की थी। वह खुद को तरल क्रिस्टल से जोड़ने के लिए कार्बनिक रंगों को प्राप्त करने में सक्षम थे, और बाहरी क्षेत्र द्वारा संरेखण में खींचे जाने पर वे उसी स्थिति में बने रहते थे। जब एक संरेखण से दूसरे संरेखण पर स्विच किया जाता है, तो डाई या तो दिखाई देती है या छिपी होती है, जिसके परिणामस्वरूप दो रंगीन अवस्थाएँ उत्पन्न होती हैं जिन्हें अतिथि-मेज़बान प्रभाव कहा जाता है। इस दृष्टिकोण पर काम तब रुक गया जब गतिशील प्रकीर्णन प्रभाव सफलतापूर्वक प्रदर्शित हो गया।[1]

टीएन-प्रभाव

एक अन्य संभावित दृष्टिकोण ट्विस्टेड-नेमेटिक दृष्टिकोण था, जिसे पहली बार 1911 में फ्रांसीसी भौतिक विज्ञानी चार्ल्स विक्टर मौगुइन ने देखा था। मौगुइन विभिन्न प्रकार के अर्ध-ठोस तरल क्रिस्टल के साथ प्रयोग कर रहे थे जब उन्होंने देखा कि वह एक टुकड़ा खींचकर क्रिस्टल को संरेखित कर सकते हैं। उनके पार कागज का, जिससे क्रिस्टल ध्रुवीकृत हो जाते हैं। बाद में उन्होंने देखा कि जब उन्होंने क्रिस्टल को दो संरेखित ध्रुवीकरणों के बीच सैंडविच किया, तो वह उन्हें एक-दूसरे के संबंध में मोड़ सकते थे, लेकिन प्रकाश प्रसारित होता रहा। इसकी उम्मीद नहीं थी. आम तौर पर यदि दो ध्रुवीकरणकर्ताओं को समकोण पर संरेखित किया जाता है, तो प्रकाश उनके माध्यम से प्रवाहित नहीं होगा। मौगुइन ने निष्कर्ष निकाला कि क्रिस्टल के घुमाव से ही प्रकाश पुनः ध्रुवीकृत हो रहा था।[1]

वोल्फगैंग हेलफ्रिच, एक भौतिक विज्ञानी जो 1967 में आरसीए में शामिल हुए थे, मौगुइन की मुड़ी हुई संरचना में रुचि रखते थे और उन्होंने सोचा कि इसका उपयोग इलेक्ट्रॉनिक डिस्प्ले बनाने के लिए किया जा सकता है। हालाँकि आरसीए ने कम रुचि दिखाई क्योंकि उन्हें लगा कि दो ध्रुवीकरणकर्ताओं का उपयोग करने वाले किसी भी प्रभाव में बड़ी मात्रा में प्रकाश अवशोषण भी होगा, जिसके लिए इसे उज्ज्वल रूप से प्रकाशित करने की आवश्यकता होगी। 1970 में, हेलफ्रिच ने आरसीए छोड़ दिया और स्विट्ज़रलैंड में हॉफमैन-लारोचे की केंद्रीय अनुसंधान प्रयोगशालाओं में शामिल हो गए, जहां उन्होंने एक ठोस-राज्य भौतिक विज्ञानी मार्टिन शादट के साथ मिलकर काम किया। स्कैड्ट ने इलेक्ट्रोड और पीईबीएबी (पी-एथॉक्सीबेंज़िलिडीन-पी'-एमिनोबेंज़ोनिट्राइल) नामक तरल-क्रिस्टल सामग्री के एक मुड़ संस्करण के साथ एक नमूना बनाया, जिसे हेलफ्रिच ने अपने अतिथि-मेजबान प्रयोगों के हिस्से के रूप में आरसीए में पूर्व अध्ययनों में रिपोर्ट किया था।[1] जब वोल्टेज लगाया जाता है, तो PEBAB स्वयं को क्षेत्र के साथ संरेखित करता है, घुमा संरचना और ध्रुवीकरण के पुनर्निर्देशन को तोड़ता है, जिससे सेल अपारदर्शी हो जाता है।

पेटेंट लड़ाई

इस समय ब्राउन, बोवेरी एंड सी (बीबीसी) भी हॉफमैन-लारोचे के साथ एक पूर्व संयुक्त चिकित्सा अनुसंधान समझौते के हिस्से के रूप में उपकरणों के साथ काम कर रहा था।[2] बीबीसी ने अमेरिका के एक भौतिक विज्ञानी को अपना काम दिखाया, जो वेस्टिंगहाउस रिसर्च लेबोरेटरीज में लिक्विड क्रिस्टल के विशेषज्ञ जेम्स फर्ग्यूसन से जुड़े थे। फर्गसन डिस्प्ले के लिए टीएन-इफेक्ट पर काम कर रहे थे, उन्होंने केंट स्टेट यूनिवर्सिटी के लिक्विड क्रिस्टल इंस्टीट्यूट में सरदारी अरोड़ा और अल्फ्रेड सॉपे के साथ मिलकर किए जा रहे अनुसंधान के विकास का व्यावसायीकरण करने के लिए ILIXCO का गठन किया था।[3]

जब प्रदर्शन की खबर हॉफमैन-लारोचे तक पहुंची, तो हेलफ्रिच और शैडट ने तुरंत एक पेटेंट के लिए दबाव डाला, जिसे 4 दिसंबर 1970 को दायर किया गया था। उनके औपचारिक परिणाम 15 फरवरी 1971 को एप्लाइड फिजिक्स लेटर्स में प्रकाशित किए गए थे। नए की व्यवहार्यता प्रदर्शित करने के लिए डिस्प्ले के लिए प्रभाव, शाद्ट ने 1972 में 4-अंकीय डिस्प्ले पैनल बनाया।[1]

फर्गासन ने 9 फरवरी 1971[1] या 22 अप्रैल 1971 को अमेरिका में एक समान पेटेंट प्रकाशित किया।[3] यह स्विस पेटेंट दायर होने के दो महीने बाद था और इसने तीन साल के कानूनी टकराव के लिए मंच तैयार किया था जिसे अदालत के बाहर सुलझा लिया गया था। अंत में, सभी पार्टियों को रॉयल्टी में लाखों डॉलर का हिस्सा प्राप्त हुआ।

लिक्विड क्रिस्टल सामग्री का व्यावसायिक विकास

पीईबीएबी पानी या क्षारीय के संपर्क में आने पर टूट जाता था और संदूषण से बचने के लिए विशेष निर्माण की आवश्यकता होती थी। 1972 में जॉर्ज डब्लू. ग्रे के नेतृत्व में एक टीम ने एक नए प्रकार का सायनोबिफेनिल विकसित किया जिसे कम प्रतिक्रियाशील सामग्री उत्पन्न करने के लिए PEBAB के साथ मिलाया जा सकता था।[4] इन एडिटिव्स ने परिणामी तरल को कम चिपचिपा बना दिया, जिससे तेजी से प्रतिक्रिया समय प्रदान किया गया, जबकि साथ ही उन्हें अधिक पारदर्शी बना दिया गया, जिससे शुद्ध-सफेद रंग का डिस्प्ले उत्पन्न हुआ।

बदले में, इस काम से डार्मस्टेड में मर्क केजीएए में लुडविग पोल, रुडोल्फ ईडेंसचिंक और उनके सहयोगियों द्वारा नेमैटिक क्रिस्टल की एक पूरी तरह से अलग श्रेणी की खोज हुई, जिसे सायनोफेनिलसाइक्लोहेक्सेन कहा जाता है। वे शीघ्र ही लगभग सभी एलसीडी का आधार बन गए, और आज भी मर्क के व्यवसाय का एक प्रमुख हिस्सा बने हुए हैं।[5]

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Joseph Castellano, "Modifying Light', American Scientist, September–October 2006
  2. IEEE GHN First-Hand Report by Peter J. Wild of LCD developments at Brown Boveri
  3. 3.0 3.1 "Twisted Nematic Liquid Crystal Displays (TN-LCDs), an invention from Basel with global effects", Information, No. 118, October 2005
  4. George Gray, Stephen Kelly: "Liquid crystals for twisted nematic display devices", Journal of Materials Chemistry, 1999, 9, 2037–2050
  5. "Merck Annual Report, 2004"


अग्रिम पठन

  • Joseph A. Castellano: Liquid Gold — The Story of Liquid Crystal Displays and the Creation of an Industry, World Scientific Publishing, 2005
  • Peer Kirsch, "100 years of Liquid Crystals at Merck: The history of the future.", 20th International Liquid Crystals Conference, July 2004
  • David A. Dunmur and Horst Stegemeyer: "Crystals that Flow: Classic papers from the history of liquid crystals", Compiled with translation and commentary by Timothy J. Sluckin (Taylor and Francis 2004), ISBN 0-415-25789-1, History of Liquid Crystals Homepage
  • Werner Becker (editor): "100 Years of Commercial Liquid-Crystal Materials", Information Display, Volume 20, 2004
  • Gerhard H. Buntz (Patent Attorney, European Patent Attorney, Physicist, Basel), "Twisted Nematic Liquid Crystal Displays (TN-LCDs), an invention from Basel with global effects", Information No. 118, October 2005, issued by Internationale Treuhand AG, Basel, Geneva, Zurich. Published in German
  • Rolf Bucher: "Wie Schweizer Firmen aus dem Flüssigkristall-Rennen fielen", Das Schicksal von Roche und BBC-Entwicklungen in zehn Abschnitten", Neue Zürcher Zeitung, Nr.141 56 / B12, 20.06.2005
  • M. Schadt: "Milestones in the History of Field-Effect Liquid Crystal Displays and Materials", Jpn. J. Appl. Phys. 48(2009), pp. 1–9