सातत्य (समुच्चय सिद्धांत): Difference between revisions
From Vigyanwiki
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
''सातत्य की प्रमुखता'' वास्तविक संख्याओं के समुच्चय का आकार है। सातत्य परिकल्पना को कभी-कभी यह कहकर कहा जाता है कि सातत्य और प्राकृतिक संख्याओं <math>\aleph_0</math>, या वैकल्पिक रूप से, <math>\mathfrak{c} = \aleph_1</math>के बीच कोई प्रमुखता नहीं है।<ref name=":0" /> | ''सातत्य की प्रमुखता'' वास्तविक संख्याओं के समुच्चय का आकार है। सातत्य परिकल्पना को कभी-कभी यह कहकर कहा जाता है कि सातत्य और प्राकृतिक संख्याओं <math>\aleph_0</math>, या वैकल्पिक रूप से, <math>\mathfrak{c} = \aleph_1</math>के बीच कोई प्रमुखता नहीं है।<ref name=":0" /> | ||
==रेखीय सातत्य == | ==रेखीय सातत्य == | ||
{{Main| | {{Main|रैखिक सातत्य}} | ||
[[रेमंड वाइल्डर]] (1965) के अनुसार, चार | [[रेमंड वाइल्डर]] (1965) के अनुसार, चार अभिगृहीत हैं जो एक समुच्चय ''C'' और संबंध < को एक रैखिक सातत्य में बनाते हैं: | ||
* C को | * ''C'' को < के संबंध में आदेशित किया जाता है। | ||
* यदि [ | * यदि [''A,B''] ''C'' का कट है, तो या तो ''A'' में अंतिम अवयव है या ''B'' में पहला अवयव है। ([[डेडेकाइंड कट]] की तुलना करें) | ||
* C का एक गैर-रिक्त, [[गणनीय]] उपसमुच्चय S | *''C'' का एक गैर-रिक्त, [[गणनीय]] उपसमुच्चय ''S'' उपस्थित है, जैसे कि, यदि x, y ∈ ''C'' ऐसा है कि x < y, तो z ∈ S उपस्थित है जैसे कि x < z < y। (पृथक्करण स्वयंसिद्ध) | ||
* C का कोई पहला | *''C'' में कोई पहला अवयव और कोई अंतिम अवयव नहीं है। (असीमितता स्वयंसिद्ध) | ||
ये अभिगृहीत [[वास्तविक संख्या रेखा]] के क्रम प्रकार | *''C'' का कोई पहला अवयव और कोई अंतिम अवयव नहीं है। ([[बंधा हुआ सेट]]) | ||
ये अभिगृहीत [[वास्तविक संख्या रेखा]] के क्रम प्रकार को दर्शाते हैं। | |||
== यह भी देखें == | == यह भी देखें == |
Revision as of 22:57, 5 July 2023
सेट सिद्धांत के गणितीय क्षेत्र में, सातत्य का अर्थ वास्तविक संख्याएं, या संबंधित (अनंत) कार्डिनल संख्या है, जिसे के द्वारा दर्शाया जाता है।[1][2] जॉर्ज कैंटर ने सिद्ध किया कि कार्डिनैलिटी सबसे छोटी अनंतता, अर्थात् से बड़ी है। उन्होंने यह भी सिद्ध किया कि के बराबर है, जो प्राकृतिक संख्याओं के घात सेट की प्रमुखता है।
सातत्य की प्रमुखता वास्तविक संख्याओं के समुच्चय का आकार है। सातत्य परिकल्पना को कभी-कभी यह कहकर कहा जाता है कि सातत्य और प्राकृतिक संख्याओं , या वैकल्पिक रूप से, के बीच कोई प्रमुखता नहीं है।[1]
रेखीय सातत्य
रेमंड वाइल्डर (1965) के अनुसार, चार अभिगृहीत हैं जो एक समुच्चय C और संबंध < को एक रैखिक सातत्य में बनाते हैं:
- C को < के संबंध में आदेशित किया जाता है।
- यदि [A,B] C का कट है, तो या तो A में अंतिम अवयव है या B में पहला अवयव है। (डेडेकाइंड कट की तुलना करें)
- C का एक गैर-रिक्त, गणनीय उपसमुच्चय S उपस्थित है, जैसे कि, यदि x, y ∈ C ऐसा है कि x < y, तो z ∈ S उपस्थित है जैसे कि x < z < y। (पृथक्करण स्वयंसिद्ध)
- C में कोई पहला अवयव और कोई अंतिम अवयव नहीं है। (असीमितता स्वयंसिद्ध)
- C का कोई पहला अवयव और कोई अंतिम अवयव नहीं है। (बंधा हुआ सेट)
ये अभिगृहीत वास्तविक संख्या रेखा के क्रम प्रकार को दर्शाते हैं।
यह भी देखें
- aleph-अशक्त
- सुसलिन की समस्या
- अनंत संख्या
संदर्भ
- ↑ 1.0 1.1 Weisstein, Eric W. "सातत्य". mathworld.wolfram.com (in English). Retrieved 2020-08-12.
- ↑ "Transfinite number | mathematics". Encyclopedia Britannica (in English). Retrieved 2020-08-12.
ग्रन्थसूची
- Raymond L. Wilder (1965) The Foundations of Mathematics, 2nd ed., page 150, John Wiley & Sons.