पोयंटिंग वेक्टर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Measure of directional electromagnetic energy flux}}
{{Short description|Measure of directional electromagnetic energy flux}}
[[File:DipoleRadiation.gif|300px|thumb|पृष्ठ के तल में विद्युत क्षेत्र की ताकत (रंग) और पॉयंटिंग वेक्टर (तीर) दिखाते हुए पृष्ठ में द्विध्रुव का लंबवत विकिरण।]]
[[File:DipoleRadiation.gif|300px|thumb|पृष्ठ के तल में विद्युत क्षेत्र की ताकत (रंग) और पॉयंटिंग सदिश (तीर) दिखाते हुए पृष्ठ में द्विध्रुव का लंबवत विकिरण।]]
{{Electromagnetism|Electrodynamics}}
{{Electromagnetism|Electrodynamics}}


भौतिकी में, पोयंटिंग वेक्टर (या उमोव-पॉयंटिंग वेक्टर) दिशात्मक [[ऊर्जा प्रवाह]] (प्रति इकाई समय में प्रति इकाई क्षेत्र ऊर्जा हस्तांतरण) या [[विद्युत चुम्बकीय]] क्षेत्र के शक्ति प्रवाह का प्रतिनिधित्व करता है। पोयंटिंग वेक्टर की एसआई इकाई [[वाट]] प्रति वर्ग मीटर (W/m<sup>2</sup>) है; आधार [[SI]] इकाइयों में kg/s<sup>3</sup>इसका नाम इसके खोजकर्ता [[जॉन हेनरी पॉयंटिंग]] के नाम पर रखा गया है जिन्होंने पहली बार इसे 1884 में प्राप्त किया था।<ref name="Stratton1941">{{cite book
भौतिकी में, पोयंटिंग सदिश (या उमोव-पॉयंटिंग सदिश ) दिशात्मक [[ऊर्जा प्रवाह]] (प्रति इकाई समय में प्रति इकाई क्षेत्र ऊर्जा हस्तांतरण) या [[विद्युत चुम्बकीय]] क्षेत्र के शक्ति प्रवाह का प्रतिनिधित्व करता है। पोयंटिंग सदिश की एसआई इकाई [[वाट]] प्रति वर्ग मीटर (W/m<sup>2</sup>) है; आधार [[SI]] इकाइयों में kg/s<sup>3</sup> इसका नाम इसके खोजकर्ता [[जॉन हेनरी पॉयंटिंग]] के नाम पर रखा गया है जिन्होंने पहली बार इसे 1884 में प्राप्त किया था।<ref name="Stratton1941">{{cite book
| last = Stratton
| last = Stratton
| first = Julius Adams | author-link = Julius Adams Stratton
| first = Julius Adams | author-link = Julius Adams Stratton
Line 13: Line 13:
| isbn = 978-0-470-13153-4
| isbn = 978-0-470-13153-4
| url = https://books.google.com/books?id=zFeWdS2luE4C
| url = https://books.google.com/books?id=zFeWdS2luE4C
}}</ref>{{rp|p=132}} निकोले उमोव को भी इस अवधारणा को तैयार करने का श्रेय दिया जाता है।<ref>{{cite web | title=Пойнтинга вектор | website=Физическая энциклопедия | url=http://femto.com.ua/articles/part_2/2938.html | language=ru | access-date=2022-02-21}}</ref> [[ओलिवर हीविसाइड]] ने भी इसे अधिक सामान्य रूप में स्वतंत्र रूप से खोजा जो परिभाषा में इच्छानुसार वेक्टर क्षेत्र के [[कर्ल (गणित)]] को जोड़ने की स्वतंत्रता को पहचानता है। <ref name="Nahin2002">{{cite book | isbn=9780801869099 | year=2002 | title=Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age | last=Nahin | first=Paul J. | author-link=Paul J. Nahin |page=131}}</ref> विद्युतचुंबकीय क्षेत्रों में विद्युत प्रवाह की गणना करने के लिए, पोयंटिंग वेक्टर का उपयोग [[विद्युत चुम्बकीय]] क्षेत्र में विद्युतचुंबकीय ऊर्जा के संरक्षण को व्यक्त करने वाले निरंतरता समीकरण, पोयंटिंग प्रमेय के संयोजन में किया जाता है।
}}</ref>{{rp|p=132}} निकोले उमोव को भी इस अवधारणा को तैयार करने का श्रेय दिया जाता है।<ref>{{cite web | title=Пойнтинга вектор | website=Физическая энциклопедия | url=http://femto.com.ua/articles/part_2/2938.html | language=ru | access-date=2022-02-21}}</ref> [[ओलिवर हीविसाइड]] ने भी इसे अधिक सामान्य रूप में स्वतंत्र रूप से खोजा जो परिभाषा में इच्छानुसार सदिश क्षेत्र के [[कर्ल (गणित)]] को जोड़ने की स्वतंत्रता को पहचानता है। <ref name="Nahin2002">{{cite book | isbn=9780801869099 | year=2002 | title=Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age | last=Nahin | first=Paul J. | author-link=Paul J. Nahin |page=131}}</ref> विद्युतचुंबकीय क्षेत्रों में विद्युत प्रवाह की गणना करने के लिए, पोयंटिंग सदिश का उपयोग [[विद्युत चुम्बकीय]] क्षेत्र में विद्युतचुंबकीय ऊर्जा के संरक्षण को व्यक्त करने वाले निरंतरता समीकरण पोयंटिंग प्रमेय के संयोजन में किया जाता है।


== परिभाषा ==
== परिभाषा ==
पोयंटिंग के मूल पेपर और अधिकांश पाठ्यपुस्तकों में, पोयंटिंग वेक्टर <math>\mathbf{S}</math> को क्रॉस उत्पाद के रूप में परिभाषित किया गया है<ref name="Poynting1884">{{cite journal
पोयंटिंग के मूल पेपर और अधिकांश पाठ्यपुस्तकों में पोयंटिंग सदिश <math>\mathbf{S}</math> को क्रॉस उत्पाद के रूप में परिभाषित किया गया है<ref name="Poynting1884">{{cite journal
| last = Poynting
| last = Poynting
| first = John Henry
| first = John Henry
Line 52: Line 52:


<math display="block">\mathbf{S} = \mathbf{E} \times \mathbf{H},</math>
<math display="block">\mathbf{S} = \mathbf{E} \times \mathbf{H},</math>
जहाँ बोल्ड अक्षर [[यूक्लिडियन वेक्टर]] का प्रतिनिधित्व करते हैं और
जहाँ बोल्ड अक्षर [[यूक्लिडियन वेक्टर|यूक्लिडियन]] सदिश का प्रतिनिधित्व करते हैं और
* [[विद्युत क्षेत्र]] वेक्टर है;
* '''E''' [[विद्युत क्षेत्र]] सदिश है;
* एच [[चुंबकीय क्षेत्र]] का सहायक क्षेत्र वेक्टर या 'चुंबकीय क्षेत्र एच-फील्ड' है।
* '''H''' [[चुंबकीय क्षेत्र]] का सहायक क्षेत्र सदिश या 'चुंबकीयकरण क्षेत्र है।
इस अभिव्यक्ति को अधिकांशतः 'अब्राहम रूप' कहा जाता है और यह सबसे व्यापक रूप से उपयोग किया जाता है।<ref name="Kinsler2009">{{cite journal
इस अभिव्यक्ति को अधिकांशतः 'अब्राहम रूप' कहा जाता है और यह सबसे व्यापक रूप से उपयोग किया जाता है।<ref name="Kinsler2009">{{cite journal
| last1 = Kinsler
| last1 = Kinsler
Line 71: Line 71:
| doi = 10.1088/0143-0807/30/5/007
| doi = 10.1088/0143-0807/30/5/007
|bibcode = 2009EJPh...30..983K | s2cid = 118508886
|bibcode = 2009EJPh...30..983K | s2cid = 118508886
}}</ref> पॉयंटिंग वेक्टर को सामान्यतः एस या एन द्वारा दर्शाया जाता है।
}}</ref> पॉयंटिंग सदिश को सामान्यतः '''S''' या '''N''' द्वारा दर्शाया जाता है।


सरल शब्दों में, पॉयंटिंग वेक्टर एस अंतरिक्ष के क्षेत्र में विद्युत चुम्बकीय क्षेत्रों के कारण ऊर्जा के हस्तांतरण की दिशा और दर को दर्शाता है, जो कि शक्ति (भौतिकी) है, जो खाली हो सकता है या नहीं भी हो सकता है। अधिक सख्ती से, यह वह मात्रा है जिसका उपयोग पॉयंटिंग के प्रमेय को वैध बनाने के लिए किया जाना चाहिए। पॉयंटिंग की प्रमेय अनिवार्य रूप से कहती है कि क्षेत्र में प्रवेश करने वाली विद्युत चुम्बकीय ऊर्जा और क्षेत्र को छोड़ने वाली विद्युत चुम्बकीय ऊर्जा के बीच का अंतर उस क्षेत्र में परिवर्तित या विलुप्त होने वाली ऊर्जा के बराबर होना चाहिए, जो कि ऊर्जा के अलग रूप ( अधिकांशतः गर्मी) में बदल जाती है। इसलिए यदि कोई विद्युत चुम्बकीय ऊर्जा हस्तांतरण के पोयंटिंग वेक्टर विवरण की वैधता को स्वीकार करता है, तो पॉयंटिंग का प्रमेय केवल ऊर्जा के संरक्षण का कथन है।
सरल शब्दों में, पॉयंटिंग सदिश एस अंतरिक्ष के क्षेत्र में विद्युत चुम्बकीय क्षेत्रों के कारण ऊर्जा के हस्तांतरण की दिशा और दर को दर्शाता है, जो कि शक्ति (भौतिकी) है, जो खाली हो सकता है या नहीं भी हो सकता है। अधिक सख्ती से यह वह मात्रा है जिसका उपयोग पॉयंटिंग के प्रमेय को वैध बनाने के लिए किया जाना चाहिए। पॉयंटिंग की प्रमेय अनिवार्य रूप से कहती है कि क्षेत्र में प्रवेश करने वाली विद्युत चुम्बकीय ऊर्जा और क्षेत्र को छोड़ने वाली विद्युत चुम्बकीय ऊर्जा के बीच का अंतर उस क्षेत्र में परिवर्तित या विलुप्त होने वाली ऊर्जा के समान होना चाहिए, जो कि ऊर्जा के अलग रूप ( अधिकांशतः ऊष्मा) में बदल जाती है। इसलिए यदि कोई विद्युत चुम्बकीय ऊर्जा हस्तांतरण के पोयंटिंग सदिश विवरण की वैधता को स्वीकार करता है, तो पॉयंटिंग का प्रमेय केवल ऊर्जा के संरक्षण का कथन है।


यदि विद्युत चुम्बकीय ऊर्जा किसी क्षेत्र के अंदर ऊर्जा के अन्य रूपों (जैसे, यांत्रिक ऊर्जा, या गर्मी) से प्राप्त नहीं होती है या खो जाती है, तो विद्युत चुम्बकीय ऊर्जा संरक्षण नियम   उस क्षेत्र के अंदर वैश्विक और स्थानीय संरक्षण नियम है, जो विशेष के रूप में निरंतरता समीकरण प्रदान करता है। पॉयंटिंग प्रमेय का मामला:
यदि विद्युत चुम्बकीय ऊर्जा किसी क्षेत्र के अंदर ऊर्जा के अन्य रूपों (जैसे, यांत्रिक ऊर्जा, या गर्मी) से प्राप्त नहीं होती है या खो जाती है, तो विद्युत चुम्बकीय ऊर्जा संरक्षण नियम उस क्षेत्र के अंदर वैश्विक और स्थानीय संरक्षण नियम है, जो विशेष के रूप में निरंतरता समीकरण प्रदान करता है। पॉयंटिंग प्रमेय का स्थिति:
<math display="block">\nabla\cdot \mathbf{S} = -\frac{\partial u}{\partial t}</math>
<math display="block">\nabla\cdot \mathbf{S} = -\frac{\partial u}{\partial t}</math>
जहाँ <math>u</math> विद्युत चुम्बकीय क्षेत्र का ऊर्जा घनत्व है। यह लगातार स्थिति निम्न सरल उदाहरण में होती है जिसमें पॉयंटिंग वेक्टर की गणना की जाती है और विद्युत परिपथ में बिजली की सामान्य गणना के अनुरूप होती है।
जहाँ <math>u</math> विद्युत चुम्बकीय क्षेत्र का ऊर्जा घनत्व है। यह निरंतर स्थिति निम्न सरल उदाहरण में होती है जिसमें पॉयंटिंग सदिश की गणना की जाती है और विद्युत परिपथ में विद्युत की सामान्य गणना के अनुरूप होती है।


== उदाहरण: समाक्षीय केबल में विद्युत प्रवाह ==
== उदाहरण: समाक्षीय केबल में विद्युत प्रवाह ==
यद्यपि इलेक्ट्रोमैग्नेटिक्स में मनमानी ज्यामिति वाली समस्याओं को हल करना अत्यधिक कठिन है, हम बेलनाकार निर्देशांक में विश्लेषण किए गए समाक्षीय केबल के खंड के माध्यम से विद्युत संचरण के स्थितियों में अपेक्षाकृत सरल समाधान पा सकते हैं जैसा कि संलग्न चित्र में दर्शाया गया है। हम मॉडल की समरूपता का लाभ उठा सकते हैं: θ (गोलाकार समरूपता) पर कोई निर्भरता नहीं और न ही जेड (केबल के साथ स्थिति) पर। मॉडल (और समाधान) को बिना किसी समय निर्भरता के डीसी परिपथ के रूप में माना जा सकता है, किन्तु निम्नलिखित समाधान रेडियो फ्रीक्वेंसी पावर के संचरण पर समान रूप से प्रयुक्त होता है, जब तक हम समय के पल पर विचार कर रहे हैं (जिसके समय वोल्टेज और करंट नहीं बदलता है), और केबल के पर्याप्त छोटे खंड पर (तरंग दैर्ध्य से बहुत छोटा, जिससे ये मात्राएँ जेड पर निर्भर न हों)। समाक्षीय केबल को त्रिज्या आर<sub>1</sub> के आंतरिक कंडक्टर और बाहरी [[विद्युत कंडक्टर]] के रूप में निर्दिष्ट किया गया है जिसका आंतरिक त्रिज्या आर<sub>2</sub> है (आर<sub>2</sub> से परे इसकी मोटाई निम्नलिखित विश्लेषण को प्रभावित नहीं करती है)। आर<sub>1</sub> और आर<sub>2</sub> के बीच केबल में [[सापेक्ष पारगम्यता]] ε<sub>r</sub> का [[ढांकता हुआ]] हुआ पदार्थ होता है और हम ऐसे कंडक्टर मानते हैं जो गैर-चुंबकीय (इसलिए μ = μ0) और दोषरहित (पूर्ण कंडक्टर) होते हैं, जो सभी वास्तविक संसार के समाक्षीय केबल के लिए अच्छे अनुमान हैं। विशिष्ट स्थितियों में.
यद्यपि इलेक्ट्रोमैग्नेटिक्स में इच्छानुसार ज्यामिति वाली समस्याओं को हल करना अत्यधिक कठिन है, हम बेलनाकार निर्देशांक में विश्लेषण किए गए समाक्षीय केबल के खंड के माध्यम से विद्युत संचरण के स्थितियों में अपेक्षाकृत सरल समाधान पा सकते हैं जैसा कि संलग्न चित्र में दर्शाया गया है। हम मॉडल की समरूपता का लाभ उठा सकते हैं: जो कि θ (गोलाकार समरूपता) पर कोई निर्भरता नहीं और न ही ''Z'' (केबल के साथ स्थिति) पर मॉडल (और समाधान) को बिना किसी समय निर्भरता के डीसी परिपथ के रूप में माना जा सकता है, किन्तु निम्नलिखित समाधान रेडियो आवृति शक्ति  के संचरण पर समान रूप से प्रयुक्त होता है, जब तक हम समय के पल पर विचार कर रहे हैं (जिसके समय वोल्टेज और धारा नहीं बदलता है), और केबल के पर्याप्त छोटे खंड पर (तरंग दैर्ध्य से बहुत छोटा, जिससे ये मात्राएँ जेड पर निर्भर न हों)। समाक्षीय केबल को त्रिज्या ''R''<sub>1</sub> के आंतरिक चालक और बाहरी [[विद्युत कंडक्टर|विद्युत]] चालक के रूप में निर्दिष्ट किया गया है जिसका आंतरिक त्रिज्या ''R''<sub>2</sub> है (''R''<sub>2</sub> से परे इसकी मोटाई निम्नलिखित विश्लेषण को प्रभावित नहीं करती है)। ''R''<sub>1</sub> और ''R''<sub>2</sub> के बीच केबल में [[सापेक्ष पारगम्यता]] ε<sub>r</sub> का [[ढांकता हुआ|परावैद्युत]] हुआ पदार्थ होता है और हम ऐसे चालक मानते हैं जो गैर-चुंबकीय (इसलिए μ = μ0) और दोषरहित (पूर्ण चालक ) होते हैं, जो सभी वास्तविक संसार के समाक्षीय केबल के लिए अच्छे अनुमान हैं। विशिष्ट स्थितियों में.


[[File:CoaxPoyntingVector.png|center|600px|thumb|<span style= color:green >पोयंटिंग वेक्टर एस</span> के अनुसार समाक्षीय केबल के अंदर विद्युत चुम्बकीय शक्ति प्रवाह का चित्रण, <span style= color:red >विद्युत क्षेत्र ई</span> का उपयोग करके गणना की गई (के कारण वोल्टेज ''V'') और <span style= color:blue >चुंबकीय क्षेत्र एच</span> (वर्तमान I के कारण)।]]
[[File:CoaxPoyntingVector.png|center|600px|thumb|<span style= color:green >पोयंटिंग सदिश एस</span> के अनुसार समाक्षीय केबल के अंदर विद्युत चुम्बकीय शक्ति प्रवाह का चित्रण, <span style= color:red >विद्युत क्षेत्र ई</span> का उपयोग करके गणना की गई (के कारण वोल्टेज ''V'') और <span style= color:blue >चुंबकीय क्षेत्र एच</span> (वर्तमान I के कारण)।]]
[[File:Coax-poynting.png|thumb|right|350px|समाक्षीय केबल के माध्यम से डीसी विद्युत संचरण विद्युत (<math>E_r</math>) और चुंबकीय (<math>H_\theta</math>) क्षेत्रों की सापेक्ष शक्ति दर्शाता है और परिणामी पोयंटिंग वेक्टर (<math>S_z = E_r \cdot H_\theta</math>) समाक्षीय केबल के केंद्र से त्रिज्या r पर। टूटी हुई मैजेंटा लाइन त्रिज्या r के अंदर संचयी विद्युत संचरण को दर्शाती है, जिसका आधा हिस्सा आर<sub>1</sub> और आर<sub>2</sub> के ज्यामितीय माध्य के अंदर बहता है।]]केंद्र कंडक्टर को वोल्टेज V पर रखा जाता है और दाईं ओर I धारा खींचता है, इसलिए हम [[विद्युत शक्ति]] के मूलभूत नियमों के अनुसार P = V·I के कुल विद्युत प्रवाह की उम्मीद करते हैं। चूँकि , पोयंटिंग वेक्टर का मूल्यांकन करके, हम समाक्षीय केबल के अंदर विद्युत और चुंबकीय क्षेत्रों के संदर्भ में बिजली प्रवाह की प्रोफ़ाइल की पहचान करने में सक्षम हैं। प्रत्येक कंडक्टर के अंदर विद्युत क्षेत्र निश्चित रूप से शून्य हैं, किन्तु कंडक्टरों के बीच (<math>R_1 < r < R_2</math>) समरूपता तय करती है कि वे सख्ती से रेडियल दिशा में हैं और इसे दिखाया जा सकता है ( गॉस के नियम का उपयोग करते हुए) कि उन्हें निम्नलिखित फॉर्म का पालन करना होगा:<math display=block>E_r(r) = \frac{W}{r}</math>
[[File:Coax-poynting.png|thumb|right|350px|समाक्षीय केबल के माध्यम से डीसी विद्युत संचरण विद्युत (<math>E_r</math>) और चुंबकीय (<math>H_\theta</math>) क्षेत्रों की सापेक्ष शक्ति दर्शाता है और परिणामी पोयंटिंग सदिश (<math>S_z = E_r \cdot H_\theta</math>) समाक्षीय केबल के केंद्र से त्रिज्या r पर टूटी हुई मैजेंटा पंक्ति त्रिज्या r के अंदर संचयी विद्युत संचरण को दर्शाती है, जिसका आधा भाग  ''R''<sub>1</sub> और ''R''<sub>2</sub> के ज्यामितीय माध्य के अंदर बहता है।]]केंद्र चालक को वोल्टेज V पर रखा जाता है और दाईं ओर I धारा खींचता है, इसलिए हम [[विद्युत शक्ति]] के मूलभूत नियमों के अनुसार P = V·I के कुल विद्युत प्रवाह की उम्मीद करते हैं। चूँकि पोयंटिंग सदिश का मूल्यांकन करके हम समाक्षीय केबल के अंदर विद्युत और चुंबकीय क्षेत्रों के संदर्भ में विद्युत प्रवाह की प्रोफ़ाइल की पहचान करने में सक्षम हैं। प्रत्येक चालक के अंदर विद्युत क्षेत्र निश्चित रूप से शून्य हैं, किन्तु चालक के बीच (<math>R_1 < r < R_2</math>) समरूपता तय करती है कि वे सख्ती से रेडियल दिशा में हैं और इसे दिखाया जा सकता है ( गॉस के नियम का उपयोग करते हुए) कि उन्हें निम्नलिखित फॉर्म का पालन करना होगा:<math display=block>E_r(r) = \frac{W}{r}</math>




Line 89: Line 89:




W का मूल्यांकन विद्युत क्षेत्र को {डिस्प्लेस्टाइल <math>r = R_2</math> से <math>R_1</math> तक एकीकृत करके किया जा सकता है, जो वोल्टेज V का ऋणात्मक होना चाहिए:
W का मूल्यांकन विद्युत क्षेत्र को <math>r = R_2</math> से <math>R_1</math> तक एकीकृत करके किया जा सकता है, जो वोल्टेज V का ऋणात्मक होना चाहिए:<math display="block">-V = \int_{R_2}^{R_1} \frac{W}{r} dr = -W \ln \left(\frac{R_2}{R_1}\right)</math>
<math display="block">-V = \int_{R_2}^{R_1} \frac{W}{r} dr = -W \ln \left(\frac{R_2}{R_1}\right)</math>
 
ताकि:
 
<math display=block>W = \frac{V}{\ln(R_2/R_1)}</math>
जिससे :
चुंबकीय क्षेत्र, फिर से समरूपता द्वारा, केवल θ दिशा में गैर-शून्य हो सकता है, अर्थात, आर<sub>1</sub> और आर<sub>2</sub> के बीच प्रत्येक त्रिज्या पर केंद्र कंडक्टर के चारों ओर वेक्टर क्षेत्र लूपिंग करता है। कंडक्टरों के अंदर चुंबकीय क्षेत्र शून्य हो भी सकता है और नहीं भी, किन्तु यह कोई चिंता की बात नहीं है क्योंकि इन क्षेत्रों में पोयंटिंग वेक्टर विद्युत क्षेत्र के शून्य होने के कारण शून्य है। संपूर्ण समाक्षीय केबल के बाहर, चुंबकीय क्षेत्र समान रूप से शून्य है क्योंकि इस क्षेत्र में पथ शून्य की शुद्ध धारा (केंद्र कंडक्टर में + I और बाहरी कंडक्टर में -I) को घेरते हैं, और फिर से विद्युत क्षेत्र वैसे भी शून्य है। आर<sub>1</sub> से आर<sub>2</sub> तक के क्षेत्र में एम्पीयर के नियम का उपयोग करते हुए, जो केंद्रीय कंडक्टर में करंट +I को घेरता है किन्तु बाहरी कंडक्टर में करंट का कोई योगदान नहीं होता है, हम त्रिज्या r पर पाते हैं:<math display=block>\begin{align}
<math display="block">W = \frac{V}{\ln(R_2/R_1)}</math>
चुंबकीय क्षेत्र, फिर से समरूपता द्वारा, केवल θ दिशा में गैर-शून्य हो सकता है, अर्थात, ''R''<sub>1</sub> और ''R''<sub>2</sub> के बीच प्रत्येक त्रिज्या पर केंद्र चालक के चारों ओर सदिश क्षेत्र लूपिंग करता है। चालक के अंदर चुंबकीय क्षेत्र शून्य हो भी सकता है और नहीं भी किन्तु यह कोई चिंता की बात नहीं है क्योंकि इन क्षेत्रों में पोयंटिंग सदिश विद्युत क्षेत्र के शून्य होने के कारण शून्य है। संपूर्ण समाक्षीय केबल के बाहर, चुंबकीय क्षेत्र समान रूप से शून्य है क्योंकि इस क्षेत्र में पथ शून्य की शुद्ध धारा (केंद्र चालक में + I और बाहरी चालक में -I) को घेरते हैं, और फिर से विद्युत क्षेत्र वैसे भी शून्य है। ''R''<sub>1</sub> से ''R''<sub>2</sub> तक के क्षेत्र में एम्पीयर के नियम का उपयोग करते हुए, जो केंद्रीय चालक में धारा +I को घेरता है किन्तु बाहरी चालक में धारा का कोई योगदान नहीं होता है, हम त्रिज्या r पर पाते हैं:<math display="block">\begin{align}
   I = \oint_C \mathbf{H} \cdot ds &= 2 \pi r H_\theta(r) \\
   I = \oint_C \mathbf{H} \cdot ds &= 2 \pi r H_\theta(r) \\
                       H_\theta(r) &= \frac {I}{2 \pi r}
                       H_\theta(r) &= \frac {I}{2 \pi r}
\end{align}</math> अब, रेडियल दिशा में विद्युत क्षेत्र से, और स्पर्शरेखा चुंबकीय क्षेत्र, इनके क्रॉस-उत्पाद द्वारा दिया गया पॉयंटिंग वेक्टर, जेड दिशा में केवल गैर-शून्य है, समाक्षीय केबल की दिशा के साथ ही, जैसा कि हम उम्मीद करेंगे। फिर से केवल r का फलन, हम 'S'(r) का मूल्यांकन कर सकते हैं:
\end{align}</math> अब रेडियल दिशा में विद्युत क्षेत्र से और स्पर्शरेखा चुंबकीय क्षेत्र, इनके क्रॉस-उत्पाद द्वारा दिया गया पॉयंटिंग सदिश ''Z''  दिशा में केवल गैर-शून्य है, समाक्षीय केबल की दिशा के साथ ही, जैसा कि हम उम्मीद करेंगे फिर से केवल r का फलन, हम 'S'(r) का मूल्यांकन कर सकते हैं:
<math display=block>S_z(r) = E_r(r) H_\theta(r) = \frac{W}{r} \frac {I}{2 \pi r} = \frac{W \, I} {2 \pi r^2}</math> जहाँ W को केंद्र कंडक्टर वोल्टेज V के संदर्भ में ऊपर दिया गया है। समाक्षीय केबल के नीचे बहने वाली कुल शक्ति की गणना कंडक्टरों के बीच केबल के पूरे क्रॉस सेक्शन 'A' को एकीकृत करके की जा सकती है:
<math display="block">S_z(r) = E_r(r) H_\theta(r) = \frac{W}{r} \frac {I}{2 \pi r} = \frac{W \, I} {2 \pi r^2}</math> जहाँ W को केंद्र चालक वोल्टेज V के संदर्भ में ऊपर दिया गया है। समाक्षीय केबल के नीचे बहने वाली कुल शक्ति की गणना चालक के बीच केबल के पूरे क्रॉस सेक्शन 'A' को एकीकृत करके की जा सकती है:
<math display=block>\begin{align}
<math display="block">\begin{align}
   P_\text{tot}  
   P_\text{tot}  
   &= \iint_\mathbf{A} S_z (r, \theta)\, dA = \int_{R_2}^{R_1} 2 \pi r dr  S_z(r) \\
   &= \iint_\mathbf{A} S_z (r, \theta)\, dA = \int_{R_2}^{R_1} 2 \pi r dr  S_z(r) \\
Line 104: Line 105:
\end{align}</math>
\end{align}</math>
पिछले समाधान को स्थिरांक W से प्रतिस्थापित करने पर हम पाते हैं:
पिछले समाधान को स्थिरांक W से प्रतिस्थापित करने पर हम पाते हैं:
<math display=block>P_\mathrm{tot} = I \ln \left(\frac{R_2}{R_1}\right) \frac{V}{\ln(R_2/R_1)} = V \, I</math> अर्थात्, समाक्षीय केबल के क्रॉस सेक्शन पर पॉयंटिंग वेक्टर को एकीकृत करके दी गई शक्ति वोल्टेज और करंट के उत्पाद के बराबर होती है, जैसा कि किसी ने बिजली के मूलभूत नियमों का उपयोग करके वितरित की गई शक्ति के लिए गणना की होगी।
<math display=block>P_\mathrm{tot} = I \ln \left(\frac{R_2}{R_1}\right) \frac{V}{\ln(R_2/R_1)} = V \, I</math> अर्थात् समाक्षीय केबल के क्रॉस सेक्शन पर पॉयंटिंग सदिश को एकीकृत करके दी गई शक्ति वोल्टेज और धारा के उत्पाद के समान होती है, जैसा कि किसी ने विद्युत के मूलभूत नियमों का उपयोग करके वितरित की गई शक्ति के लिए गणना की होगी।


== अन्य रूप ==
== अन्य रूप ==
मैक्सवेल के समीकरणों के सूक्ष्म संस्करण में, इस परिभाषा को विद्युत क्षेत्र और चुंबकीय प्रवाह घनत्व बी (लेख में बाद में वर्णित) के संदर्भ में सूक्ष्म क्षेत्रों के संदर्भ में एक सूत्र द्वारा प्रतिस्थापित किया जाना चाहिए।
मैक्सवेल के समीकरणों के सूक्ष्म संस्करण में, इस परिभाषा को विद्युत क्षेत्र '''E'''  और चुंबकीय प्रवाह घनत्व '''B'''  (लेख में बाद में वर्णित) के संदर्भ में सूक्ष्म क्षेत्रों के संदर्भ में एक सूत्र द्वारा प्रतिस्थापित किया जाना चाहिए।


पॉयंटिंग वेक्टर के 'मिन्कोव्स्की फॉर्म' को प्राप्त करने के लिए [[विद्युत विस्थापन क्षेत्र]] डी को चुंबकीय प्रवाह बी के साथ जोड़ना भी संभव है, या और संस्करण का निर्माण करने के लिए डी और एच का उपयोग करना संभव है। चुनाव विवादास्पद रहा है: फेफर एट अल।<ref name="Pfeifer2007">{{cite journal
पॉयंटिंग सदिश के 'मिन्कोव्स्की फॉर्म' को प्राप्त करने के लिए [[विद्युत विस्थापन क्षेत्र]] '''D''' को चुंबकीय प्रवाह '''B''' के साथ जोड़ना भी संभव है, या और संस्करण का निर्माण करने के लिए '''D''' और '''H''' का उपयोग करना संभव है। चुनाव विवादास्पद रहा है: फेफर एट अल<ref name="Pfeifer2007">{{cite journal
| last1 = Pfeifer
| last1 = Pfeifer
| first1 = Robert N. C.
| first1 = Robert N. C.
Line 127: Line 128:
|arxiv = 0710.0461 |bibcode = 2007RvMP...79.1197P }}</ref> इब्राहीम और मिन्कोव्स्की रूपों के समर्थकों के बीच शताब्दी-लंबे विवाद को संक्षेप में और कुछ सीमा तक हल करें (अब्राहम-मिन्कोवस्की विवाद देखें)।
|arxiv = 0710.0461 |bibcode = 2007RvMP...79.1197P }}</ref> इब्राहीम और मिन्कोव्स्की रूपों के समर्थकों के बीच शताब्दी-लंबे विवाद को संक्षेप में और कुछ सीमा तक हल करें (अब्राहम-मिन्कोवस्की विवाद देखें)।


पॉयंटिंग वेक्टर विद्युत चुम्बकीय ऊर्जा के लिए ऊर्जा प्रवाह वेक्टर के विशेष स्थितियों का प्रतिनिधित्व करता है। चूँकि , किसी भी प्रकार की ऊर्जा की अंतरिक्ष में गति की दिशा होती है, साथ ही इसका घनत्व भी होता है, इसलिए ऊर्जा प्रवाह वैक्टर को अन्य प्रकार की ऊर्जा के लिए भी परिभाषित किया जा सकता है, उदाहरण के लिए, पॉयंटिंग के प्रमेय   सामान्यीकरण के लिए। उमोव-पॉयंटिंग वेक्टर<ref name="Umov1874">{{cite journal
पॉयंटिंग सदिश विद्युत चुम्बकीय ऊर्जा के लिए ऊर्जा प्रवाह सदिश के विशेष स्थितियों का प्रतिनिधित्व करता है। चूँकि किसी भी प्रकार की ऊर्जा की अंतरिक्ष में गति की दिशा होती है, साथ ही इसका घनत्व भी होता है, इसलिए ऊर्जा प्रवाह सदिश को अन्य प्रकार की ऊर्जा के लिए भी परिभाषित किया जा सकता है, उदाहरण के लिए, पॉयंटिंग के प्रमेय सामान्यीकरण के लिए उमोव-पॉयंटिंग सदिश <ref name="Umov1874">{{cite journal
| last = Umov
| last = Umov
| first = Nikolay Alekseevich
| first = Nikolay Alekseevich
Line 140: Line 141:


== व्याख्या ==
== व्याख्या ==
पोयंटिंग वेक्टर पोयंटिंग के प्रमेय में प्रकट होता है (व्युत्पत्ति के लिए लेख देखें), ऊर्जा-संरक्षण नियम :
पोयंटिंग सदिश पोयंटिंग के प्रमेय में प्रकट होता है (व्युत्पत्ति के लिए लेख देखें), ऊर्जा-संरक्षण नियम :
<math display="block">\frac{\partial u}{\partial t} = -\mathbf{\nabla} \cdot \mathbf{S} - \mathbf{J_\mathrm{f}} \cdot \mathbf{E},</math>
<math display="block">\frac{\partial u}{\partial t} = -\mathbf{\nabla} \cdot \mathbf{S} - \mathbf{J_\mathrm{f}} \cdot \mathbf{E},</math>
जहां जे<sub>f</sub> मैक्सवेल के समीकरणों का [[वर्तमान घनत्व]] है  फ्री चार्ज और करंट के संदर्भ में सूत्रीकरण और u रैखिक, [[फैलाव (प्रकाशिकी)]] सामग्री के लिए विद्युत चुम्बकीय ऊर्जा घनत्व है, जो द्वारा दिया गया है
जहां '''J'''<sub>f</sub> मैक्सवेल के समीकरणों का [[वर्तमान घनत्व]] है  मुक्त आवेश और धारा के संदर्भ में सूत्रीकरण और u रैखिक, [[फैलाव (प्रकाशिकी)]] पदार्थ  के लिए विद्युत चुम्बकीय ऊर्जा घनत्व है, जो द्वारा दिया गया है
<math display="block">u = \frac{1}{2}\! \left(\mathbf{E} \cdot \mathbf{D} + \mathbf{B} \cdot \mathbf{H}\right)\! ,</math>
<math display="block">u = \frac{1}{2}\! \left(\mathbf{E} \cdot \mathbf{D} + \mathbf{B} \cdot \mathbf{H}\right)\! ,</math>
जहाँ
जहाँ
* विद्युत क्षेत्र है;
* '''E'''  विद्युत क्षेत्र है;
* डी विद्युत विस्थापन क्षेत्र है;
* '''D'''  विद्युत विस्थापन क्षेत्र है;
* बी चुंबकीय प्रवाह घनत्व है;
* '''B''' चुंबकीय प्रवाह घनत्व है;
* एच चुंबकीय क्षेत्र है।<ref name="Jackson1998">{{cite book
* '''H''' चुंबकीय क्षेत्र है।<ref name="Jackson1998">{{cite book
| last = Jackson
| last = Jackson
| first = John David | author-link = John David Jackson (physicist)
| first = John David | author-link = John David Jackson (physicist)
Line 160: Line 161:
}}</ref>{{rp|pp=258–260}}
}}</ref>{{rp|pp=258–260}}


दायीं ओर का पहला पद विद्युतचुंबकीय ऊर्जा प्रवाह को छोटी मात्रा में दर्शाता है, जबकि दूसरा पद मुक्त विद्युत धाराओं पर क्षेत्र द्वारा किए गए कार्य को घटाता है, जो विद्युत चुम्बकीय ऊर्जा से [[अपव्यय]], ऊष्मा आदि के रूप में बाहर निकलता है। इसमें परिभाषा, बाध्य विद्युत धाराएँ इस शब्द में सम्मिलित नहीं हैं और इसके बजाय S और 'u' में योगदान करती हैं।
दायीं ओर का पहला पद विद्युत चुंबकीय ऊर्जा प्रवाह को छोटी मात्रा में दर्शाता है, जबकि दूसरा पद मुक्त विद्युत धाराओं पर क्षेत्र द्वारा किए गए कार्य को घटाता है, जो विद्युत चुम्बकीय ऊर्जा से [[अपव्यय]], ऊष्मा आदि के रूप में बाहर निकलता है। इसमें परिभाषा, बाध्य विद्युत धाराएँ इस शब्द में सम्मिलित नहीं हैं और इसके बजाय S और 'u' में योगदान करती हैं।


रैखिक, फैलाव (ऑप्टिक्स) और आइसोट्रोपिक (सरलता के लिए) सामग्री के लिए, मैक्सवेल के समीकरण संवैधानिक संबंधों को इस रूप में लिखा जा सकता है
रैखिक फैलाव (ऑप्टिक्स) और आइसोट्रोपिक (सरलता के लिए) पदार्थ  के लिए मैक्सवेल के समीकरण संवैधानिक संबंधों को इस रूप में लिखा जा सकता है
<math display="block">\mathbf{D} = \varepsilon \mathbf{E},\quad \mathbf{B} = \mu\mathbf{H},</math>
<math display="block">\mathbf{D} = \varepsilon \mathbf{E},\quad \mathbf{B} = \mu\mathbf{H},</math>
जहाँ
जहाँ
* ε सामग्री की पारगम्यता है;
* ε पदार्थ  की पारगम्यता है;
* μ सामग्री की [[पारगम्यता (विद्युत चुंबकत्व)]] है।<ref name="Jackson1998" />{{rp|pp=258–260}}
* μ पदार्थ  की [[पारगम्यता (विद्युत चुंबकत्व)]] है।<ref name="Jackson1998" />{{rp|pp=258–260}}
यहाँ ε और μ अदिश हैं, स्थिति, दिशा और आवृत्ति से स्वतंत्र वास्तविक-मूल्यवान स्थिरांक हैं।
यहाँ ε और μ अदिश हैं, स्थिति, दिशा और आवृत्ति से स्वतंत्र वास्तविक-मूल्यवान स्थिरांक हैं।


सिद्धांत रूप में, यह पॉयंटिंग के प्रमेय को इस रूप में निर्वात और गैर-फैलाने वाले क्षेत्रों तक सीमित करता है रैखिक सामग्री। अतिरिक्त शर्तों की कीमत पर कुछ परिस्थितियों में फैलाने वाली सामग्री का सामान्यीकरण संभव है।<ref name="Jackson1998" />{{rp|pp=262–264}}
सिद्धांत रूप में, यह पॉयंटिंग के प्रमेय को इस रूप में निर्वात और गैर-फैलाने वाले क्षेत्रों तक सीमित करता है रैखिक पदार्थ अतिरिक्त नियमो की मूल्य  पर कुछ परिस्थितियों में फैलाने वाली पदार्थ  का सामान्यीकरण संभव है।<ref name="Jackson1998" />{{rp|pp=262–264}}


पॉयंटिंग सूत्र का परिणाम यह है कि विद्युत चुम्बकीय क्षेत्र के कार्य करने के लिए, चुंबकीय और विद्युत दोनों क्षेत्रों का उपस्थित होना आवश्यक है। अकेला चुंबकीय क्षेत्र या अकेला विद्युत क्षेत्र कोई कार्य नहीं कर सकता।<ref>{{Cite web|title=के. मैकडॉनल्ड्स भौतिकी के उदाहरण - रेलगन|url=https://physics.princeton.edu//~mcdonald/examples/railgun.pdf|access-date=2021-02-14|website=puhep1.princeton.edu}}</ref>
पॉयंटिंग सूत्र का परिणाम यह है कि विद्युत चुम्बकीय क्षेत्र के कार्य करने के लिए, चुंबकीय और विद्युत दोनों क्षेत्रों का उपस्थित होना आवश्यक है। अकेला चुंबकीय क्षेत्र या अकेला विद्युत क्षेत्र कोई कार्य नहीं कर सकता है ।<ref>{{Cite web|title=के. मैकडॉनल्ड्स भौतिकी के उदाहरण - रेलगन|url=https://physics.princeton.edu//~mcdonald/examples/railgun.pdf|access-date=2021-02-14|website=puhep1.princeton.edu}}</ref>




== समतल तरंगें ==
== समतल तरंगें ==
समदैशिक दोषरहित माध्यम में प्रसारित विद्युत चुम्बकीय समतल तरंग में, तात्कालिक पोयंटिंग वेक्टर परिमाण में तेजी से दोलन करते हुए सदैव प्रसार की दिशा में इंगित करता है। इसे आसानी से देखा जा सकता है कि समतल तरंग में, चुंबकीय क्षेत्र एच (r,t) का परिमाण विद्युत क्षेत्र वेक्टर E(r,t) के परिमाण को η, संचरण की [[आंतरिक प्रतिबाधा]] से विभाजित करके दिया जाता है। मध्यम:
समदैशिक दोष रहित माध्यम में प्रसारित विद्युत चुम्बकीय समतल तरंग में तात्कालिक पोयंटिंग सदिश परिमाण में तेजी से दोलन करते हुए सदैव प्रसार की दिशा में इंगित करता है। इसे आसानी से देखा जा सकता है कि समतल तरंग में, चुंबकीय क्षेत्र '''H'''(''r'',''t'') का परिमाण विद्युत क्षेत्र सदिश E(r,t) के परिमाण को η, संचरण की [[आंतरिक प्रतिबाधा]] से विभाजित करके दिया जाता है। मध्यम:
<math display="block">|\mathbf{H}| =  \frac {|\mathbf{E}|}{\eta},</math>
<math display="block">|\mathbf{H}| =  \frac {|\mathbf{E}|}{\eta},</math>
जहां या ए या नॉर्म (गणित)  ए के यूक्लिडियन मानदंड का प्रतिनिधित्व करता है। चूंकि और एच दूसरे के समकोण पर हैं, उनके क्रॉस उत्पाद का परिमाण उनके परिमाण का उत्पाद है। व्यापकता को खोए बिना आइए हम 'X' को विद्युत क्षेत्र की दिशा और 'Y' को चुंबकीय क्षेत्र की दिशा मान लें। E और एच के क्रॉस उत्पाद द्वारा दिया गया तात्क्षणिक पॉयंटिंग वेक्टर तब धनात्मक ''जेड'' दिशा में होगा:
जहां |'''A'''| '''A''' के सदिश मानदंड का प्रतिनिधित्व करता है। चूंकि '''E''' और '''H''' एक दूसरे के समकोण पर हैं, उनके क्रॉस उत्पाद का परिमाण उनके परिमाण का उत्पाद है। व्यापकता को खोए बिना आइए हम X को विद्युत क्षेत्र की दिशा और Y को चुंबकीय क्षेत्र की दिशा मानें। E और H के क्रॉस उत्पाद द्वारा दिया गया तात्कालिक पोयंटिंग सदिश तब सकारात्मक Z दिशा में होगा:
<math display="block">\mathsf{S_z} = \mathsf{E_x} \cdot \mathsf{H_y} = \frac{\left|\mathsf{E_x}\right|^2}{\eta}.</math>
<math display="block">\mathsf{S_z} = \mathsf{E_x} \cdot \mathsf{H_y} = \frac{\left|\mathsf{E_x}\right|^2}{\eta}.</math>
समतल तरंग में समय-औसत शक्ति का पता लगाने के लिए तरंग अवधि (लहर की व्युत्क्रम आवृत्ति) पर औसत की आवश्यकता होती है:
समतल तरंग में समय-औसत शक्ति का पता लगाने के लिए तरंग अवधि (लहर की व्युत्क्रम आवृत्ति) पर औसत की आवश्यकता होती है:
<math display="block">\left\langle\mathsf{S_z}\right\rangle = \frac{\left\langle\left|\mathsf{E_x}\right|^2\right\rangle}{\eta} = \frac{\mathsf{E_\text{rms}^2}}{\eta},</math>
<math display="block">\left\langle\mathsf{S_z}\right\rangle = \frac{\left\langle\left|\mathsf{E_x}\right|^2\right\rangle}{\eta} = \frac{\mathsf{E_\text{rms}^2}}{\eta},</math>
जहां ''E''<sub>rms</sub> मूल माध्य वर्ग विद्युत क्षेत्र आयाम है। महत्वपूर्ण स्थितियों में कि (टी) शीर्ष आयाम ''E''<sub>peak</sub> के साथ कुछ आवृत्ति पर साइनसोइडल रूप से भिन्न हो रहा है, इसका rms वोल्टेज <math>\mathsf{E_{peak}} / \sqrt{2}</math> द्वारा दिया गया है, साथ में औसत पोयंटिंग वेक्टर तब दिया गया:
जहां ''E''<sub>rms</sub> मूल माध्य वर्ग विद्युत क्षेत्र आयाम है। महत्वपूर्ण स्थितियों में कि ''E''(''t'') शीर्ष आयाम ''E''<sub>peak</sub> के साथ कुछ आवृत्ति पर साइनसोइडल रूप से भिन्न हो रहा है, इसका आरएमएस वोल्टेज <math>\mathsf{E_{peak}} / \sqrt{2}</math> द्वारा दिया गया है, साथ में औसत पोयंटिंग सदिश तब दिया गया:
<math display="block">\left\langle\mathsf{S_z}\right\rangle = \frac{\mathsf{E_{peak}^2}}{2\eta}.</math>
<math display="block">\left\langle\mathsf{S_z}\right\rangle = \frac{\mathsf{E_{peak}^2}}{2\eta}.</math>
यह समतल तरंग के ऊर्जा प्रवाह के लिए सबसे सामान्य रूप है, क्योंकि साइनसॉइडल क्षेत्र के आयाम अधिकांशतः उनके चरम मूल्यों के संदर्भ में व्यक्त किए जाते हैं, और जटिल समस्याओं को सामान्यतः   समय में केवल आवृत्ति पर विचार करके हल किया जाता है। चूँकि , ''E''<sub>rms</sub> का उपयोग करने वाली अभिव्यक्ति पूरी तरह से सामान्य है, उदाहरण के लिए, ध्वनि के स्थितियों में जिसका आरएमएस आयाम मापा जा सकता है किन्तु जहां "शिखर" आयाम अर्थहीन है। मुक्त स्थान में आंतरिक प्रतिबाधा η केवल मुक्त स्थान की प्रतिबाधा η0 ≈ 377 Ω द्वारा दी जाती है। निर्दिष्ट ढांकता हुआ स्थिरांक εr के साथ गैर-चुंबकीय डाइलेक्ट्रिक्स (जैसे कि ऑप्टिकल आवृत्तियों पर सभी पारदर्शी सामग्री) में, या ऐसी सामग्री के साथ प्रकाशिकी में जिसका अपवर्तक सूचकांक <math>\mathsf{n} = \sqrt{\epsilon_r}</math>, आंतरिक प्रतिबाधा इस प्रकार पाई जाती है:
यह समतल तरंग के ऊर्जा प्रवाह के लिए सबसे सामान्य रूप है, क्योंकि साइनसॉइडल क्षेत्र के आयाम अधिकांशतः उनके चरम मूल्यों के संदर्भ में व्यक्त किए जाते हैं, और जटिल समस्याओं को सामान्यतः समय में केवल आवृत्ति पर विचार करके हल किया जाता है। चूँकि , ''E''<sub>rms</sub> का उपयोग करने वाली अभिव्यक्ति पूरी तरह से सामान्य है, उदाहरण के लिए, ध्वनि के स्थितियों में जिसका आरएमएस आयाम मापा जा सकता है किन्तु जहां "शिखर" आयाम अर्थहीन है। मुक्त स्थान में आंतरिक प्रतिबाधा η केवल मुक्त स्थान की प्रतिबाधा η0 ≈ 377 Ω द्वारा दी जाती है। निर्दिष्ट परावैद्युत स्थिरांक εr के साथ गैर-चुंबकीय डाइलेक्ट्रिक्स (जैसे कि ऑप्टिकल आवृत्तियों पर सभी पारदर्शी पदार्थ ) में या ऐसी पदार्थ  के साथ प्रकाशिकी में जिसका अपवर्तक सूचकांक <math>\mathsf{n} = \sqrt{\epsilon_r}</math>, आंतरिक प्रतिबाधा इस प्रकार पाई जाती है:
<math display="block">\eta = \frac{\eta_0}{\sqrt{\epsilon_r}}.</math>
<math display="block">\eta = \frac{\eta_0}{\sqrt{\epsilon_r}}.</math>
प्रकाशिकी में, सतह को पार करने वाले [[विकिरण|विकिरणित]] प्रवाह का मूल्य, इस प्रकार उस सतह के सामान्य दिशा में औसत पॉयंटिंग वेक्टर घटक, तकनीकी रूप से विकिरण के रूप में जाना जाता है, जिसे अधिकांशतः [[तीव्रता (भौतिकी)]] (कुछ सीमा तक अस्पष्ट शब्द) के रूप में संदर्भित किया जाता है। .
प्रकाशिकी में सतह को पार करने वाले [[विकिरण|विकिरणित]] प्रवाह का मूल्य, इस प्रकार उस सतह के सामान्य दिशा में औसत पॉयंटिंग सदिश घटक तकनीकी रूप से विकिरण के रूप में जाना जाता है जिसे अधिकांशतः [[तीव्रता (भौतिकी)]] (कुछ सीमा तक अस्पष्ट शब्द) के रूप में संदर्भित किया जाता है। .


== सूक्ष्म क्षेत्रों के संदर्भ में सूत्रीकरण ==
== सूक्ष्म क्षेत्रों के संदर्भ में सूत्रीकरण ==
मैक्सवेल के समीकरणों का सूक्ष्म (विभेदक) संस्करण भौतिक मीडिया के अंतर्निर्मित मॉडल के बिना, केवल मौलिक क्षेत्रों और बी को स्वीकार करता है। केवल निर्वात पारगम्यता और पारगम्यता का उपयोग किया जाता है, और कोई डी या एच नहीं है। जब इस मॉडल का उपयोग किया जाता है, तो पॉयंटिंग वेक्टर को परिभाषित किया जाता है
मैक्सवेल के समीकरणों का सूक्ष्म (विभेदक) संस्करण भौतिक मीडिया के अंतर्निर्मित मॉडल के बिना केवल मौलिक क्षेत्रों '''E''' और '''B''' को स्वीकार करता है। केवल निर्वात पारगम्यता और पारगम्यता का उपयोग किया जाता है, और कोई '''D''' या '''H''' नहीं है। जब इस मॉडल का उपयोग किया जाता है, तो पॉयंटिंग सदिश को परिभाषित किया जाता है
<math display="block">\mathbf{S} = \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B},</math>
<math display="block">\mathbf{S} = \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B},</math>
जहाँ
जहाँ
* μ<sub>0</sub> [[वैक्यूम पारगम्यता]] है;
* μ<sub>0</sub> [[वैक्यूम पारगम्यता]] है;
* विद्युत क्षेत्र वेक्टर है;
* '''E''' विद्युत क्षेत्र सदिश है;
* बी चुंबकीय प्रवाह है।
* '''B''' चुंबकीय प्रवाह है।


यह वास्तव में पॉयंटिंग वेक्टर की सामान्य अभिव्यक्ति है{{dubious|date=November 2021}}.<ref>{{Cite book|title=आधुनिक इलेक्ट्रोडायनामिक्स|last=Zangwill|first=Andrew|publisher=Cambridge University Press|year=2013|isbn=9780521896979|pages=508}}</ref> पॉयंटिंग प्रमेय का संगत रूप है
यह वास्तव में पॉयंटिंग सदिश की सामान्य अभिव्यक्ति है.<ref>{{Cite book|title=आधुनिक इलेक्ट्रोडायनामिक्स|last=Zangwill|first=Andrew|publisher=Cambridge University Press|year=2013|isbn=9780521896979|pages=508}}</ref> पॉयंटिंग प्रमेय का संगत रूप है
<math display="block">\frac{\partial u}{\partial t} = -  \nabla \cdot \mathbf{S} -\mathbf{J} \cdot \mathbf{E},</math>
<math display="block">\frac{\partial u}{\partial t} = -  \nabla \cdot \mathbf{S} -\mathbf{J} \cdot \mathbf{E},</math>
जहाँ J ''कुल'' वर्तमान घनत्व है और ऊर्जा घनत्व ''u'' द्वारा दिया गया है
जहाँ J ''कुल'' वर्तमान घनत्व है और ऊर्जा घनत्व ''u'' द्वारा दिया गया है
<math display="block">u = \frac{1}{2}\! \left(\varepsilon_0 |\mathbf{E}|^2 + \frac{1}{\mu_0} |\mathbf{B}|^2\right)\! ,</math>
<math display="block">u = \frac{1}{2}\! \left(\varepsilon_0 |\mathbf{E}|^2 + \frac{1}{\mu_0} |\mathbf{B}|^2\right)\! ,</math>
'''जहां''' ई<sub>0</sub> [[वैक्यूम परमिटिटिविटी]] है। यह सीधे मैक्सवेल के समीकरणों से प्राप्त किया जा सकता है  फ्री चार्ज और करंट के संदर्भ में सूत्रीकरण या मैक्सवेल के समीकरण कुल चार्ज और करंट और केवल [[लोरेंत्ज़ बल]] नियम के संदर्भ में।


पॉयंटिंग वेक्टर की दो वैकल्पिक परिभाषाएं वैक्यूम या गैर-चुंबकीय सामग्री में समान हैं, जहां {{nowrap|1='''B''' = ''μ''<sub>0</sub>'''H'''}}. अन्य सभी स्थितियों में, वे इसमें भिन्न हैं {{nowrap|1='''S''' = (1/''μ''<sub>0</sub>) '''E''' × '''B'''}} और संबंधित यू अपव्यय शब्द के बाद से पूरी तरह विकिरणशील हैं {{nowrap|−'''J''' ⋅ '''E'''}} कुल करंट को कवर करता है, जबकि E × एच परिभाषा में बाध्य धाराओं से योगदान होता है, जिन्हें तब अपव्यय अवधि से बाहर रखा जाता है।<ref name="Richter2008">{{cite journal
 
जहां ε0 निर्वात पारगम्यता है। इसे सीधे मैक्सवेल के समीकरणों से कुल आवेश और धारा और लोरेंत्ज़ बल नियम के संदर्भ में प्राप्त किया जा सकता है।
 
पॉयंटिंग सदिश की दो वैकल्पिक परिभाषाएं वैक्यूम या गैर-चुंबकीय पदार्थ  में समान हैं, जहां {{nowrap|1='''B''' = ''μ''<sub>0</sub>'''H'''}}. अन्य सभी स्थितियों में, वे इसमें भिन्न हैं {{nowrap|1='''S''' = (1/''μ''<sub>0</sub>) '''E''' × '''B'''}} और संबंधित यू अपव्यय शब्द के बाद से पूरी तरह विकिरणशील हैं {{nowrap|−'''J''' ⋅ '''E'''}} कुल धारा को आवरण करता है, जबकि '''E''' × '''H''' परिभाषा में बाध्य धाराओं से योगदान होता है, जिन्हें तब अपव्यय अवधि से बाहर रखा जाता है।<ref name="Richter2008">{{cite journal
| last1 = Richter
| last1 = Richter
| first1 = Felix
| first1 = Felix
Line 218: Line 221:
}}</ref>
}}</ref>


चूंकि केवल सूक्ष्म क्षेत्र और बी की व्युत्पत्ति में होते हैं {{nowrap|1='''S''' = (1/''μ''<sub>0</sub>) '''E''' × '''B'''}} और ऊर्जा घनत्व, उपस्थित किसी भी सामग्री के बारे में धारणाओं से बचा जाता है। पॉयंटिंग वेक्टर और ऊर्जा घनत्व के लिए प्रमेय और अभिव्यक्ति सार्वभौमिक रूप से वैक्यूम और सभी सामग्रियों में मान्य हैं।<ref name="Richter2008" />
चूंकि केवल सूक्ष्म क्षेत्र '''E''' और '''B''' की व्युत्पत्ति में होते हैं {{nowrap|1='''S''' = (1/''μ''<sub>0</sub>) '''E''' × '''B'''}} और ऊर्जा घनत्व, उपस्थित किसी भी पदार्थ  के बारे में धारणाओं से बचा जाता है। पॉयंटिंग सदिश और ऊर्जा घनत्व के लिए प्रमेय और अभिव्यक्ति सार्वभौमिक रूप से वैक्यूम और सभी सामग्रियों में मान्य हैं।<ref name="Richter2008" />
 






== समय-औसत पॉयंटिंग वेक्टर ==
== समय-औसत पॉयंटिंग सदिश ==


पॉयंटिंग वेक्टर के लिए उपरोक्त रूप तात्कालिक विद्युत और चुंबकीय क्षेत्रों के कारण तात्कालिक शक्ति प्रवाह का प्रतिनिधित्व करता है। सामान्यतः , इलेक्ट्रोमैग्नेटिक्स में समस्याओं को निर्दिष्ट आवृत्ति पर [[sinusoidal|सिनुसोइदल]] भिन्न क्षेत्रों के संदर्भ में हल किया जाता है। परिणाम तब अधिक सामान्य रूप से प्रयुक्त किए जा सकते हैं, उदाहरण के लिए, विभिन्न आवृत्तियों पर और उतार-चढ़ाव वाले आयामों के साथ ऐसी तरंगों के सुपरपोजिशन के रूप में असंगत विकिरण का प्रतिनिधित्व करके।
'''पॉयंटिंग सदिश के लिए उपरोक्त रूप तात्कालिक विद्युत और चुंबकीय क्षेत्रों के कारण तात्का'''लिक शक्ति प्रवाह का प्रतिनिधित्व करता है। सामान्यतः , इलेक्ट्रोमैग्नेटिक्स में समस्याओं को निर्दिष्ट आवृत्ति पर [[sinusoidal|सिनुसोइदल]] भिन्न क्षेत्रों के संदर्भ में हल किया जाता है। परिणाम तब अधिक सामान्य रूप से प्रयुक्त किए जा सकते हैं, उदाहरण के लिए, विभिन्न आवृत्तियों पर और उतार-चढ़ाव वाले आयामों के साथ ऐसी तरंगों के सुपरपोजिशन के रूप में असंगत विकिरण का प्रतिनिधित्व करके।


इस प्रकार हम तात्कालिक पर विचार नहीं करेंगे {{math|'''E'''(''t'')}} और {{math|'''H'''(''t'')}} ऊपर उपयोग किया गया है, किंतु प्रत्येक के लिए जटिल (वेक्टर) आयाम है जो फेजर नोटेशन का उपयोग करके सुसंगत तरंग के [[चरण]] (साथ ही आयाम) का वर्णन करता है। ये जटिल आयाम वैक्टर समय के कार्य नहीं हैं, क्योंकि उन्हें हर समय दोलनों को संदर्भित करने के लिए समझा जाता है। चरण जैसे {{math|'''E'''<sub>m</sub>}} साइनसॉइडली अलग-अलग क्षेत्र को इंगित करने के लिए समझा जाता है जिसका तात्कालिक आयाम {{math|'''E'''(''t'')}} के वास्तविक भाग का अनुसरण करता है {{math|'''E'''<sub>m</sub>&thinsp;''e<sup>jωt</sup>''}} जहाँ {{mvar|ω}} साइनसोइडल तरंग की (रेडियन) आवृत्ति मानी जा रही है।
इस प्रकार हम तात्कालिक पर विचार नहीं करेंगे {{math|'''E'''(''t'')}} और {{math|'''H'''(''t'')}} ऊपर उपयोग किया गया है, किंतु प्रत्येक के लिए जटिल (सदिश ) आयाम है जो फेजर नोटेशन का उपयोग करके सुसंगत तरंग के [[चरण]] (साथ ही आयाम) का वर्णन करता है। ये जटिल आयाम सदिश समय के कार्य नहीं हैं, क्योंकि उन्हें हर समय दोलनों को संदर्भित करने के लिए समझा जाता है। चरण जैसे {{math|'''E'''<sub>m</sub>}} साइनसॉइडली अलग-अलग क्षेत्र को इंगित करने के लिए समझा जाता है जिसका तात्कालिक आयाम {{math|'''E'''(''t'')}} के वास्तविक भाग का अनुसरण करता है {{math|'''E'''<sub>m</sub>&thinsp;''e<sup>jωt</sup>''}} जहाँ {{mvar|ω}} साइनसोइडल तरंग की (रेडियन) आवृत्ति मानी जा रही है।


समय क्षेत्र में, यह देखा जाएगा कि तात्क्षणिक विद्युत प्रवाह 2ω की आवृत्ति पर घटता-बढ़ता रहेगा। किन्तु सामान्यतः जो रुचि होती है वह औसत शक्ति प्रवाह है जिसमें उन उतार-चढ़ावों पर विचार नहीं किया जाता है। नीचे दिए गए गणित में, यह पूर्ण चक्र को एकीकृत करके पूरा किया जाता है {{math|1=''T'' = 2''π'' / ''ω''}}. निम्नलिखित मात्रा, जिसे अभी भी पोयंटिंग वेक्टर के रूप में संदर्भित किया जाता है, को सीधे चरणों के रूप में व्यक्त किया जाता है:
समय क्षेत्र में, यह देखा जाएगा कि तात्क्षणिक विद्युत प्रवाह 2ω की आवृत्ति पर घटता-बढ़ता रहेगा। किन्तु सामान्यतः जो रुचि होती है वह औसत शक्ति प्रवाह है जिसमें उन उतार-चढ़ावों पर विचार नहीं किया जाता है। नीचे दिए गए गणित में, यह पूर्ण चक्र को एकीकृत करके पूरा किया जाता है {{math|1=''T'' = 2''π'' / ''ω''}}. निम्नलिखित मात्रा, जिसे अभी भी पोयंटिंग सदिश के रूप में संदर्भित किया जाता है, को सीधे चरणों के रूप में व्यक्त किया जाता है:


<math display="block">\mathbf{S}_\mathrm{m} = \tfrac{1}{2} \mathbf{E}_\mathrm{m} \times \mathbf{H}_\mathrm{m}^* ,</math>
<math display="block">\mathbf{S}_\mathrm{m} = \tfrac{1}{2} \mathbf{E}_\mathrm{m} \times \mathbf{H}_\mathrm{m}^* ,</math>
जहाँ <sup>∗</sup> जटिल संयुग्म को दर्शाता है। समय-औसत शक्ति प्रवाह (उदाहरण के लिए, पूर्ण चक्र पर औसत तात्क्षणिक पॉयंटिंग वेक्टर के अनुसार) तब के वास्तविक भाग द्वारा दिया जाता है {{math|'''S'''<sub>m</sub>}}. काल्पनिक भाग को सामान्यतः नजरअंदाज कर दिया जाता है, चूंकि , यह प्रतिक्रियाशील शक्ति को दर्शाता है जैसे कि [[खड़ी लहर]] या विद्युत चुम्बकीय विकिरण    एंटीना के निकट और दूर के क्षेत्रों के कारण हस्तक्षेप। एकल इलेक्ट्रोमैग्नेटिक प्लेन वेव में ( स्टैंडिंग वेव के अतिरिक्त जिसे विपरीत दिशाओं में यात्रा करने वाली दो ऐसी तरंगों के रूप में वर्णित किया जा सकता है), {{math|'''E'''}} और {{math|'''H'''}}<nowiki> बिल्कुल चरण में हैं, इसलिए {{math या </nowiki>'''S'''<sub>m</sub>}उपरोक्त परिभाषा के अनुसार } बस वास्तविक संख्या है।
जहाँ <sup>∗</sup> जटिल संयुग्म को दर्शाता है। समय-औसत शक्ति प्रवाह (उदाहरण के लिए, पूर्ण चक्र पर औसत तात्क्षणिक पॉयंटिंग सदिश के अनुसार) तब के वास्तविक भाग द्वारा दिया जाता है {{math|'''S'''<sub>m</sub>}}. काल्पनिक भाग को सामान्यतः नजरअंदाज कर दिया जाता है, चूंकि , यह प्रतिक्रियाशील शक्ति को दर्शाता है जैसे कि [[खड़ी लहर]] या विद्युत चुम्बकीय विकिरण    एंटीना के निकट और दूर के क्षेत्रों के कारण हस्तक्षेप। एकल इलेक्ट्रोमैग्नेटिक प्लेन वेव में ( स्टैंडिंग वेव के अतिरिक्त जिसे विपरीत दिशाओं में यात्रा करने वाली दो ऐसी तरंगों के रूप में वर्णित किया जा सकता है), {{math|'''E'''}} और {{math|'''H'''}}<nowiki> बिल्कुल चरण में हैं, इसलिए {{math या </nowiki>'''S'''<sub>m</sub>}उपरोक्त परिभाषा के अनुसार } बस वास्तविक संख्या है।


की समानता {{math|Re('''S'''<sub>m</sub>)}} तात्क्षणिक पोयंटिंग सदिश के समय-औसत तक {{math|'''S'''}} इस प्रकार दिखाया जा सकता है।
की समानता {{math|Re('''S'''<sub>m</sub>)}} तात्क्षणिक पोयंटिंग सदिश के समय-औसत तक {{math|'''S'''}} इस प्रकार दिखाया जा सकता है।
Line 241: Line 245:
&= \tfrac{1}{2} \operatorname{Re}\! \left(\mathbf{E}_\mathrm{m} \times \mathbf{H}_\mathrm{m}^*\right) + \tfrac{1}{2}\operatorname{Re}\! \left(\mathbf{E}_\mathrm{m} \times \mathbf{H}_\mathrm{m} e^{2j\omega t}\right)\! .
&= \tfrac{1}{2} \operatorname{Re}\! \left(\mathbf{E}_\mathrm{m} \times \mathbf{H}_\mathrm{m}^*\right) + \tfrac{1}{2}\operatorname{Re}\! \left(\mathbf{E}_\mathrm{m} \times \mathbf{H}_\mathrm{m} e^{2j\omega t}\right)\! .
\end{align}</math>
\end{align}</math>
समय के साथ तात्क्षणिक पॉयंटिंग वेक्टर S का औसत निम्न द्वारा दिया जाता है:
समय के साथ तात्क्षणिक पॉयंटिंग सदिश S का औसत निम्न द्वारा दिया जाता है:
<math display="block">\langle\mathbf{S}\rangle = \frac{1}{T} \int_0^T \mathbf{S}(t)\, dt = \frac{1}{T} \int_0^T\! \left[\tfrac{1}{2} \operatorname{Re}\! \left(\mathbf{E}_\mathrm{m} \times \mathbf{H}_\mathrm{m}^*\right) + \tfrac{1}{2} \operatorname{Re}\! \left({\mathbf{E}_\mathrm{m}} \times {\mathbf{H}_\mathrm{m}} e^{2j\omega t}\right)\right]dt.</math>
<math display="block">\langle\mathbf{S}\rangle = \frac{1}{T} \int_0^T \mathbf{S}(t)\, dt = \frac{1}{T} \int_0^T\! \left[\tfrac{1}{2} \operatorname{Re}\! \left(\mathbf{E}_\mathrm{m} \times \mathbf{H}_\mathrm{m}^*\right) + \tfrac{1}{2} \operatorname{Re}\! \left({\mathbf{E}_\mathrm{m}} \times {\mathbf{H}_\mathrm{m}} e^{2j\omega t}\right)\right]dt.</math>
दूसरा शब्द दोहरी-आवृत्ति घटक है जिसका औसत मान शून्य है, इसलिए हम पाते हैं:
दूसरा शब्द दोहरी-आवृत्ति घटक है जिसका औसत मान शून्य है, इसलिए हम पाते हैं:
<math display="block">\langle \mathbf{S}\rangle = \operatorname{Re}\! \left(\tfrac{1}{2}{\mathbf{E}_\mathrm{m}} \times \mathbf{H}_\mathrm{m}^*\right) =  \operatorname{Re}\! \left(\mathbf{S}_\mathrm{m}\right) </math>
<math display="block">\langle \mathbf{S}\rangle = \operatorname{Re}\! \left(\tfrac{1}{2}{\mathbf{E}_\mathrm{m}} \times \mathbf{H}_\mathrm{m}^*\right) =  \operatorname{Re}\! \left(\mathbf{S}_\mathrm{m}\right) </math>
कुछ परिपाटियों के अनुसार, उपरोक्त परिभाषा में 1/2 के गुणनखंड को छोड़ा जा सकता है। के परिमाण के बाद से बिजली प्रवाह का ठीक से वर्णन करने के लिए 1/2 से गुणा करना आवश्यक है {{math|'''E'''<sub>m</sub>}} और {{math|'''H'''<sub>m</sub>}} दोलन मात्रा के शिखर क्षेत्रों को देखें। यदि इसके बजाय फ़ील्ड्स को उनके मूल माध्य वर्ग (आरएमएस) मानों के संदर्भ में वर्णित किया जाता है (जो कि कारक द्वारा प्रत्येक छोटे होते हैं <math>\sqrt{2}/2</math>), तो 1/2 से गुणा किए बिना सही औसत शक्ति प्रवाह प्राप्त होता है।
कुछ परिपाटियों के अनुसार, उपरोक्त परिभाषा में 1/2 के गुणनखंड को छोड़ा जा सकता है। के परिमाण के बाद से विद्युत प्रवाह का ठीक से वर्णन करने के लिए 1/2 से गुणा करना आवश्यक है {{math|'''E'''<sub>m</sub>}} और {{math|'''H'''<sub>m</sub>}} दोलन मात्रा के शिखर क्षेत्रों को देखें। यदि इसके बजाय फ़ील्ड्स को उनके मूल माध्य वर्ग (आरएमएस) मानों के संदर्भ में वर्णित किया जाता है (जो कि कारक द्वारा प्रत्येक छोटे होते हैं <math>\sqrt{2}/2</math>), तो 1/2 से गुणा किए बिना सही औसत शक्ति प्रवाह प्राप्त होता है।


== प्रतिरोधी अपव्यय ==
== प्रतिरोधी अपव्यय ==
यदि किसी कंडक्टर का महत्वपूर्ण प्रतिरोध है, तो उस कंडक्टर की सतह के पास, पॉयंटिंग वेक्टर कंडक्टर की ओर झुकेगा और उससे टकराएगा। पॉयंटिंग वेक्टर कंडक्टर में प्रवेश करने के बाद, यह ऐसी दिशा में मुड़ा हुआ है जो सतह के लगभग लंबवत है।<ref name="Harrington2001">{{cite book
यदि किसी चालक का महत्वपूर्ण प्रतिरोध है, तो उस चालक की सतह के पास, पॉयंटिंग सदिश चालक की ओर झुकेगा और उससे टकराएगा। पॉयंटिंग सदिश चालक में प्रवेश करने के बाद, यह ऐसी दिशा में मुड़ा हुआ है जो सतह के लगभग लंबवत है।<ref name="Harrington2001">{{cite book
| last = Harrington
| last = Harrington
| first = Roger F.
| first = Roger F.
Line 258: Line 262:
| url = https://books.google.com/books?id=4-6kNAEACAAJ
| url = https://books.google.com/books?id=4-6kNAEACAAJ
|author-link=Roger F. Harrington
|author-link=Roger F. Harrington
}}</ref>{{rp|p=61}} यह स्नेल के नियम और कंडक्टर के अंदर प्रकाश की बहुत धीमी गति का परिणाम है। किसी चालक में प्रकाश की गति की परिभाषा और गणना दी जा सकती है।<ref name="Hayt2011">{{cite book
}}</ref>{{rp|p=61}} यह स्नेल के नियम और चालक के अंदर प्रकाश की बहुत धीमी गति का परिणाम है। किसी चालक में प्रकाश की गति की परिभाषा और गणना दी जा सकती है।<ref name="Hayt2011">{{cite book
| last = Hayt
| last = Hayt
| first = William
| first = William
Line 268: Line 272:
| isbn = 978-0-07-338066-7
| isbn = 978-0-07-338066-7
| url = https://books.google.com/books?id=XeaHcgAACAAJ
| url = https://books.google.com/books?id=XeaHcgAACAAJ
}}</ref>{{rp|p=402}} कंडक्टर के अंदर, पॉयंटिंग वेक्टर विद्युत चुम्बकीय क्षेत्र से तार में ऊर्जा प्रवाह का प्रतिनिधित्व करता है, जिससे तार में प्रतिरोधक जूल ताप उत्पन्न होता है। स्नेल के नियम से प्रारंभिक होने वाली व्युत्पत्ति के लिए रिट्ज पृष्ठ 454 देखें।<ref name="Reitz2008">{{cite book
}}</ref>{{rp|p=402}} चालक के अंदर, पॉयंटिंग सदिश विद्युत चुम्बकीय क्षेत्र से तार में ऊर्जा प्रवाह का प्रतिनिधित्व करता है, जिससे तार में प्रतिरोधक जूल ताप उत्पन्न होता है। स्नेल के नियम से प्रारंभिक होने वाली व्युत्पत्ति के लिए रिट्ज पृष्ठ 454 देखें।<ref name="Reitz2008">{{cite book
| last1 = Reitz
| last1 = Reitz
| first1 = John R.
| first1 = John R.
Line 286: Line 290:
== विकिरण दबाव ==
== विकिरण दबाव ==
{{main|विकिरण दबाव}}
{{main|विकिरण दबाव}}
विद्युत चुम्बकीय क्षेत्र के रैखिक संवेग का घनत्व S/c है<sup>2</sup> जहां S पॉयंटिंग वेक्टर का परिमाण है और c मुक्त स्थान में प्रकाश की गति है। लक्ष्य की सतह पर विद्युत चुम्बकीय तरंग द्वारा लगाए गए [[विकिरण दबाव]] द्वारा दिया जाता है
विद्युत चुम्बकीय क्षेत्र के रैखिक संवेग का घनत्व S/c है<sup>2</sup> जहां S पॉयंटिंग सदिश का परिमाण है और c मुक्त स्थान में प्रकाश की गति है। लक्ष्य की सतह पर विद्युत चुम्बकीय तरंग द्वारा लगाए गए [[विकिरण दबाव]] द्वारा दिया जाता है
<math display="block">P_\mathrm{rad} = \frac{\langle S\rangle}{\mathrm{c}}.</math>
<math display="block">P_\mathrm{rad} = \frac{\langle S\rangle}{\mathrm{c}}.</math>






'''पोयंटिंग वेक्टर की विशिष्टता'''
'''पोयंटिंग सदिश की विशिष्टता'''


पोयंटिंग सदिश पॉयंटिंग प्रमेय में केवल इसके [[विचलन]] के माध्यम से होता है {{nowrap|∇ ⋅ '''S'''}}, अर्थात, यह केवल आवश्यक है कि बंद सतह के चारों ओर पॉयंटिंग वेक्टर का सतही समाकल संलग्न आयतन में या बाहर विद्युत चुम्बकीय ऊर्जा के शुद्ध प्रवाह का वर्णन करता है। इसका अर्थ यह है कि S में सोलनॉइडल सदिश क्षेत्र (शून्य विचलन वाला एक) जोड़ने से अन्य क्षेत्र प्राप्त होगा जो पॉयंटिंग प्रमेय के अनुसार पॉयंटिंग सदिश क्षेत्र के इस आवश्यक गुण को संतुष्ट करता है। चूँकि सदिश कलन की पहचान  कर्ल का विचलन, कोई भी सदिश क्षेत्र के कर्ल (गणित) को पोयंटिंग सदिश में जोड़ सकता है और परिणामी सदिश क्षेत्र S′ अभी भी पॉयंटिंग के प्रमेय को संतुष्ट करेगा।
पोयंटिंग सदिश पॉयंटिंग प्रमेय में केवल इसके [[विचलन]] के माध्यम से होता है {{nowrap|∇ ⋅ '''S'''}}, अर्थात, यह केवल आवश्यक है कि बंद सतह के चारों ओर पॉयंटिंग सदिश का सतही समाकल संलग्न आयतन में या बाहर विद्युत चुम्बकीय ऊर्जा के शुद्ध प्रवाह का वर्णन करता है। इसका अर्थ यह है कि S में सोलनॉइडल सदिश क्षेत्र (शून्य विचलन वाला एक) जोड़ने से अन्य क्षेत्र प्राप्त होगा जो पॉयंटिंग प्रमेय के अनुसार पॉयंटिंग सदिश क्षेत्र के इस आवश्यक गुण को संतुष्ट करता है। चूँकि सदिश कलन की पहचान  कर्ल का विचलन, कोई भी सदिश क्षेत्र के कर्ल (गणित) को पोयंटिंग सदिश में जोड़ सकता है और परिणामी सदिश क्षेत्र S′ अभी भी पॉयंटिंग के प्रमेय को संतुष्ट करेगा।


चूँकि तथापि पॉयंटिंग वेक्टर मूल रूप से केवल पॉयंटिंग के प्रमेय के लिए तैयार किया गया था जिसमें केवल इसका विचलन दिखाई देता है, यह पता चलता है कि इसके रूप का उपरोक्त विकल्प ''अद्वितीय'' है।<ref name="Jackson1998" />{{rp|pp=258–260,605–612}} निम्नलिखित खंड उदाहरण देता है जो बताता है कि क्यों 'ई' × 'एच' में इच्छानुसार सोलेनोइडल क्षेत्र जोड़ना स्वीकार्य नहीं है।
चूँकि तथापि पॉयंटिंग सदिश मूल रूप से केवल पॉयंटिंग के प्रमेय के लिए तैयार किया गया था जिसमें केवल इसका विचलन दिखाई देता है, यह पता चलता है कि इसके रूप का उपरोक्त विकल्प ''अद्वितीय'' है।<ref name="Jackson1998" />{{rp|pp=258–260,605–612}} निम्नलिखित खंड उदाहरण देता है जो बताता है कि क्यों 'ई' × 'एच' में इच्छानुसार सोलेनोइडल क्षेत्र जोड़ना स्वीकार्य नहीं है।


== स्थिर क्षेत्र ==
== स्थिर क्षेत्र ==
[[File:Poynting-Paradoxon.svg|upright=1.15|thumb|स्थिर क्षेत्र में पोयंटिंग वेक्टर, जहां E विद्युत क्षेत्र है, एच चुंबकीय क्षेत्र है, और S पॉयंटिंग वेक्टर है।]]स्थैतिक क्षेत्रों में पॉयंटिंग वेक्टर का विचार मैक्सवेल समीकरणों की सापेक्ष प्रकृति को दर्शाता है और लोरेंत्ज़ बल के चुंबकीय घटक की बढ़िया समझ की अनुमति देता है, {{nowrap|''q''('''v''' × '''B''')}}. वर्णन करने के लिए, संलग्न चित्र पर विचार किया जाता है, जो बेलनाकार संधारित्र में पॉयंटिंग वेक्टर का वर्णन करता है, जो स्थायी चुंबक द्वारा उत्पन्न एच क्षेत्र (पृष्ठ की ओर संकेत करते हुए) में स्थित है। यद्यपि केवल स्थिर विद्युत और चुंबकीय क्षेत्र हैं, पॉयंटिंग वेक्टर की गणना विद्युत चुम्बकीय ऊर्जा का दक्षिणावर्त वृत्ताकार प्रवाह उत्पन्न करती है, जिसका कोई आरंभ या अंत नहीं है।
[[File:Poynting-Paradoxon.svg|upright=1.15|thumb|स्थिर क्षेत्र में पोयंटिंग सदिश , जहां E विद्युत क्षेत्र है, एच चुंबकीय क्षेत्र है, और S पॉयंटिंग सदिश है।]]स्थैतिक क्षेत्रों में पॉयंटिंग सदिश का विचार मैक्सवेल समीकरणों की सापेक्ष प्रकृति को दर्शाता है और लोरेंत्ज़ बल के चुंबकीय घटक की बढ़िया समझ की अनुमति देता है, {{nowrap|''q''('''v''' × '''B''')}}. वर्णन करने के लिए, संलग्न चित्र पर विचार किया जाता है, जो बेलनाकार संधारित्र में पॉयंटिंग सदिश का वर्णन करता है, जो स्थायी चुंबक द्वारा उत्पन्न एच क्षेत्र (पृष्ठ की ओर संकेत करते हुए) में स्थित है। यद्यपि केवल स्थिर विद्युत और चुंबकीय क्षेत्र हैं, पॉयंटिंग सदिश की गणना विद्युत चुम्बकीय ऊर्जा का दक्षिणावर्त वृत्ताकार प्रवाह उत्पन्न करती है, जिसका कोई आरंभ या अंत नहीं है।


जबकि परिसंचारी ऊर्जा प्रवाह अभौतिक लग सकता है, कोणीय गति के संरक्षण को बनाए रखने के लिए इसका अस्तित्व आवश्यक है। मुक्त स्थान में विद्युत चुम्बकीय तरंग का संवेग उसकी शक्ति को ''c'', प्रकाश की गति से विभाजित करने के बराबर होता है। इसलिए विद्युत चुम्बकीय ऊर्जा का गोलाकार प्रवाह 'कोणीय' गति का अर्थ है।<ref name="Feynman">{{cite book
जबकि परिसंचारी ऊर्जा प्रवाह अभौतिक लग सकता है, कोणीय गति के संरक्षण को बनाए रखने के लिए इसका अस्तित्व आवश्यक है। मुक्त स्थान में विद्युत चुम्बकीय तरंग का संवेग उसकी शक्ति को ''c'', प्रकाश की गति से विभाजित करने के समान होता है। इसलिए विद्युत चुम्बकीय ऊर्जा का गोलाकार प्रवाह 'कोणीय' गति का अर्थ है।<ref name="Feynman">{{cite book
| last = Feynman
| last = Feynman
| first = Richard Phillips
| first = Richard Phillips
Line 312: Line 316:
| isbn = 978-0-465-02494-0
| isbn = 978-0-465-02494-0
| url = https://feynmanlectures.caltech.edu/II_27.html
| url = https://feynmanlectures.caltech.edu/II_27.html
}}</ref> यदि कोई आवेशित संधारित्र की दो प्लेटों के बीच तार को जोड़ता है, तो उस तार पर लोरेंत्ज़ बल होगा, जबकि संधारित्र निर्वहन धारा और पार किए गए चुंबकीय क्षेत्र के कारण निर्वहन कर रहा है; वह बल केंद्रीय अक्ष के स्पर्शरेखा होगा और इस प्रकार प्रणाली में कोणीय गति जोड़ देगा। वह कोणीय संवेग छिपे हुए कोणीय संवेग से मेल खाएगा, जो पॉयंटिंग वेक्टर द्वारा प्रकट होता है, जो संधारित्र के निर्वहन से पहले परिचालित होता है।
}}</ref> यदि कोई आवेशित संधारित्र की दो प्लेटों के बीच तार को जोड़ता है, तो उस तार पर लोरेंत्ज़ बल होगा, जबकि संधारित्र निर्वहन धारा और पार किए गए चुंबकीय क्षेत्र के कारण निर्वहन कर रहा है; वह बल केंद्रीय अक्ष के स्पर्शरेखा होगा और इस प्रकार प्रणाली में कोणीय गति जोड़ देगा। वह कोणीय संवेग छिपे हुए कोणीय संवेग से मेल खाएगा, जो पॉयंटिंग सदिश द्वारा प्रकट होता है, जो संधारित्र के निर्वहन से पहले परिचालित होता है।


== यह भी देखें ==
== यह भी देखें ==
* [[वेव वेक्टर]]
* [[वेव वेक्टर|वेव सदिश]]  


==संदर्भ==
==संदर्भ==

Revision as of 22:09, 24 June 2023

पृष्ठ के तल में विद्युत क्षेत्र की ताकत (रंग) और पॉयंटिंग सदिश (तीर) दिखाते हुए पृष्ठ में द्विध्रुव का लंबवत विकिरण।

भौतिकी में, पोयंटिंग सदिश (या उमोव-पॉयंटिंग सदिश ) दिशात्मक ऊर्जा प्रवाह (प्रति इकाई समय में प्रति इकाई क्षेत्र ऊर्जा हस्तांतरण) या विद्युत चुम्बकीय क्षेत्र के शक्ति प्रवाह का प्रतिनिधित्व करता है। पोयंटिंग सदिश की एसआई इकाई वाट प्रति वर्ग मीटर (W/m2) है; आधार SI इकाइयों में kg/s3 इसका नाम इसके खोजकर्ता जॉन हेनरी पॉयंटिंग के नाम पर रखा गया है जिन्होंने पहली बार इसे 1884 में प्राप्त किया था।[1]: 132  निकोले उमोव को भी इस अवधारणा को तैयार करने का श्रेय दिया जाता है।[2] ओलिवर हीविसाइड ने भी इसे अधिक सामान्य रूप में स्वतंत्र रूप से खोजा जो परिभाषा में इच्छानुसार सदिश क्षेत्र के कर्ल (गणित) को जोड़ने की स्वतंत्रता को पहचानता है। [3] विद्युतचुंबकीय क्षेत्रों में विद्युत प्रवाह की गणना करने के लिए, पोयंटिंग सदिश का उपयोग विद्युत चुम्बकीय क्षेत्र में विद्युतचुंबकीय ऊर्जा के संरक्षण को व्यक्त करने वाले निरंतरता समीकरण पोयंटिंग प्रमेय के संयोजन में किया जाता है।

परिभाषा

पोयंटिंग के मूल पेपर और अधिकांश पाठ्यपुस्तकों में पोयंटिंग सदिश को क्रॉस उत्पाद के रूप में परिभाषित किया गया है[4][5][6]

जहाँ बोल्ड अक्षर यूक्लिडियन सदिश का प्रतिनिधित्व करते हैं और

इस अभिव्यक्ति को अधिकांशतः 'अब्राहम रूप' कहा जाता है और यह सबसे व्यापक रूप से उपयोग किया जाता है।[7] पॉयंटिंग सदिश को सामान्यतः S या N द्वारा दर्शाया जाता है।

सरल शब्दों में, पॉयंटिंग सदिश एस अंतरिक्ष के क्षेत्र में विद्युत चुम्बकीय क्षेत्रों के कारण ऊर्जा के हस्तांतरण की दिशा और दर को दर्शाता है, जो कि शक्ति (भौतिकी) है, जो खाली हो सकता है या नहीं भी हो सकता है। अधिक सख्ती से यह वह मात्रा है जिसका उपयोग पॉयंटिंग के प्रमेय को वैध बनाने के लिए किया जाना चाहिए। पॉयंटिंग की प्रमेय अनिवार्य रूप से कहती है कि क्षेत्र में प्रवेश करने वाली विद्युत चुम्बकीय ऊर्जा और क्षेत्र को छोड़ने वाली विद्युत चुम्बकीय ऊर्जा के बीच का अंतर उस क्षेत्र में परिवर्तित या विलुप्त होने वाली ऊर्जा के समान होना चाहिए, जो कि ऊर्जा के अलग रूप ( अधिकांशतः ऊष्मा) में बदल जाती है। इसलिए यदि कोई विद्युत चुम्बकीय ऊर्जा हस्तांतरण के पोयंटिंग सदिश विवरण की वैधता को स्वीकार करता है, तो पॉयंटिंग का प्रमेय केवल ऊर्जा के संरक्षण का कथन है।

यदि विद्युत चुम्बकीय ऊर्जा किसी क्षेत्र के अंदर ऊर्जा के अन्य रूपों (जैसे, यांत्रिक ऊर्जा, या गर्मी) से प्राप्त नहीं होती है या खो जाती है, तो विद्युत चुम्बकीय ऊर्जा संरक्षण नियम उस क्षेत्र के अंदर वैश्विक और स्थानीय संरक्षण नियम है, जो विशेष के रूप में निरंतरता समीकरण प्रदान करता है। पॉयंटिंग प्रमेय का स्थिति:

जहाँ विद्युत चुम्बकीय क्षेत्र का ऊर्जा घनत्व है। यह निरंतर स्थिति निम्न सरल उदाहरण में होती है जिसमें पॉयंटिंग सदिश की गणना की जाती है और विद्युत परिपथ में विद्युत की सामान्य गणना के अनुरूप होती है।

उदाहरण: समाक्षीय केबल में विद्युत प्रवाह

यद्यपि इलेक्ट्रोमैग्नेटिक्स में इच्छानुसार ज्यामिति वाली समस्याओं को हल करना अत्यधिक कठिन है, हम बेलनाकार निर्देशांक में विश्लेषण किए गए समाक्षीय केबल के खंड के माध्यम से विद्युत संचरण के स्थितियों में अपेक्षाकृत सरल समाधान पा सकते हैं जैसा कि संलग्न चित्र में दर्शाया गया है। हम मॉडल की समरूपता का लाभ उठा सकते हैं: जो कि θ (गोलाकार समरूपता) पर कोई निर्भरता नहीं और न ही Z (केबल के साथ स्थिति) पर मॉडल (और समाधान) को बिना किसी समय निर्भरता के डीसी परिपथ के रूप में माना जा सकता है, किन्तु निम्नलिखित समाधान रेडियो आवृति शक्ति के संचरण पर समान रूप से प्रयुक्त होता है, जब तक हम समय के पल पर विचार कर रहे हैं (जिसके समय वोल्टेज और धारा नहीं बदलता है), और केबल के पर्याप्त छोटे खंड पर (तरंग दैर्ध्य से बहुत छोटा, जिससे ये मात्राएँ जेड पर निर्भर न हों)। समाक्षीय केबल को त्रिज्या R1 के आंतरिक चालक और बाहरी विद्युत चालक के रूप में निर्दिष्ट किया गया है जिसका आंतरिक त्रिज्या R2 है (R2 से परे इसकी मोटाई निम्नलिखित विश्लेषण को प्रभावित नहीं करती है)। R1 और R2 के बीच केबल में सापेक्ष पारगम्यता εr का परावैद्युत हुआ पदार्थ होता है और हम ऐसे चालक मानते हैं जो गैर-चुंबकीय (इसलिए μ = μ0) और दोषरहित (पूर्ण चालक ) होते हैं, जो सभी वास्तविक संसार के समाक्षीय केबल के लिए अच्छे अनुमान हैं। विशिष्ट स्थितियों में.

पोयंटिंग सदिश एस के अनुसार समाक्षीय केबल के अंदर विद्युत चुम्बकीय शक्ति प्रवाह का चित्रण, विद्युत क्षेत्र ई का उपयोग करके गणना की गई (के कारण वोल्टेज V) और चुंबकीय क्षेत्र एच (वर्तमान I के कारण)।
समाक्षीय केबल के माध्यम से डीसी विद्युत संचरण विद्युत () और चुंबकीय () क्षेत्रों की सापेक्ष शक्ति दर्शाता है और परिणामी पोयंटिंग सदिश () समाक्षीय केबल के केंद्र से त्रिज्या r पर टूटी हुई मैजेंटा पंक्ति त्रिज्या r के अंदर संचयी विद्युत संचरण को दर्शाती है, जिसका आधा भाग R1 और R2 के ज्यामितीय माध्य के अंदर बहता है।

केंद्र चालक को वोल्टेज V पर रखा जाता है और दाईं ओर I धारा खींचता है, इसलिए हम विद्युत शक्ति के मूलभूत नियमों के अनुसार P = V·I के कुल विद्युत प्रवाह की उम्मीद करते हैं। चूँकि पोयंटिंग सदिश का मूल्यांकन करके हम समाक्षीय केबल के अंदर विद्युत और चुंबकीय क्षेत्रों के संदर्भ में विद्युत प्रवाह की प्रोफ़ाइल की पहचान करने में सक्षम हैं। प्रत्येक चालक के अंदर विद्युत क्षेत्र निश्चित रूप से शून्य हैं, किन्तु चालक के बीच () समरूपता तय करती है कि वे सख्ती से रेडियल दिशा में हैं और इसे दिखाया जा सकता है ( गॉस के नियम का उपयोग करते हुए) कि उन्हें निम्नलिखित फॉर्म का पालन करना होगा:



W का मूल्यांकन विद्युत क्षेत्र को से तक एकीकृत करके किया जा सकता है, जो वोल्टेज V का ऋणात्मक होना चाहिए:


जिससे :

चुंबकीय क्षेत्र, फिर से समरूपता द्वारा, केवल θ दिशा में गैर-शून्य हो सकता है, अर्थात, R1 और R2 के बीच प्रत्येक त्रिज्या पर केंद्र चालक के चारों ओर सदिश क्षेत्र लूपिंग करता है। चालक के अंदर चुंबकीय क्षेत्र शून्य हो भी सकता है और नहीं भी किन्तु यह कोई चिंता की बात नहीं है क्योंकि इन क्षेत्रों में पोयंटिंग सदिश विद्युत क्षेत्र के शून्य होने के कारण शून्य है। संपूर्ण समाक्षीय केबल के बाहर, चुंबकीय क्षेत्र समान रूप से शून्य है क्योंकि इस क्षेत्र में पथ शून्य की शुद्ध धारा (केंद्र चालक में + I और बाहरी चालक में -I) को घेरते हैं, और फिर से विद्युत क्षेत्र वैसे भी शून्य है। R1 से R2 तक के क्षेत्र में एम्पीयर के नियम का उपयोग करते हुए, जो केंद्रीय चालक में धारा +I को घेरता है किन्तु बाहरी चालक में धारा का कोई योगदान नहीं होता है, हम त्रिज्या r पर पाते हैं:
अब रेडियल दिशा में विद्युत क्षेत्र से और स्पर्शरेखा चुंबकीय क्षेत्र, इनके क्रॉस-उत्पाद द्वारा दिया गया पॉयंटिंग सदिश Z दिशा में केवल गैर-शून्य है, समाक्षीय केबल की दिशा के साथ ही, जैसा कि हम उम्मीद करेंगे फिर से केवल r का फलन, हम 'S'(r) का मूल्यांकन कर सकते हैं:
जहाँ W को केंद्र चालक वोल्टेज V के संदर्भ में ऊपर दिया गया है। समाक्षीय केबल के नीचे बहने वाली कुल शक्ति की गणना चालक के बीच केबल के पूरे क्रॉस सेक्शन 'A' को एकीकृत करके की जा सकती है:
पिछले समाधान को स्थिरांक W से प्रतिस्थापित करने पर हम पाते हैं:
अर्थात् समाक्षीय केबल के क्रॉस सेक्शन पर पॉयंटिंग सदिश को एकीकृत करके दी गई शक्ति वोल्टेज और धारा के उत्पाद के समान होती है, जैसा कि किसी ने विद्युत के मूलभूत नियमों का उपयोग करके वितरित की गई शक्ति के लिए गणना की होगी।

अन्य रूप

मैक्सवेल के समीकरणों के सूक्ष्म संस्करण में, इस परिभाषा को विद्युत क्षेत्र E और चुंबकीय प्रवाह घनत्व B (लेख में बाद में वर्णित) के संदर्भ में सूक्ष्म क्षेत्रों के संदर्भ में एक सूत्र द्वारा प्रतिस्थापित किया जाना चाहिए।

पॉयंटिंग सदिश के 'मिन्कोव्स्की फॉर्म' को प्राप्त करने के लिए विद्युत विस्थापन क्षेत्र D को चुंबकीय प्रवाह B के साथ जोड़ना भी संभव है, या और संस्करण का निर्माण करने के लिए D और H का उपयोग करना संभव है। चुनाव विवादास्पद रहा है: फेफर एट अल[8] इब्राहीम और मिन्कोव्स्की रूपों के समर्थकों के बीच शताब्दी-लंबे विवाद को संक्षेप में और कुछ सीमा तक हल करें (अब्राहम-मिन्कोवस्की विवाद देखें)।

पॉयंटिंग सदिश विद्युत चुम्बकीय ऊर्जा के लिए ऊर्जा प्रवाह सदिश के विशेष स्थितियों का प्रतिनिधित्व करता है। चूँकि किसी भी प्रकार की ऊर्जा की अंतरिक्ष में गति की दिशा होती है, साथ ही इसका घनत्व भी होता है, इसलिए ऊर्जा प्रवाह सदिश को अन्य प्रकार की ऊर्जा के लिए भी परिभाषित किया जा सकता है, उदाहरण के लिए, पॉयंटिंग के प्रमेय सामान्यीकरण के लिए उमोव-पॉयंटिंग सदिश [9] 1874 में निकोले उमोव द्वारा खोजा गया तरल और लोचदार मीडिया में ऊर्जा प्रवाह का पूरी तरह से सामान्यीकृत दृश्य में वर्णन करता है।

व्याख्या

पोयंटिंग सदिश पोयंटिंग के प्रमेय में प्रकट होता है (व्युत्पत्ति के लिए लेख देखें), ऊर्जा-संरक्षण नियम :

जहां Jf मैक्सवेल के समीकरणों का वर्तमान घनत्व है मुक्त आवेश और धारा के संदर्भ में सूत्रीकरण और u रैखिक, फैलाव (प्रकाशिकी) पदार्थ के लिए विद्युत चुम्बकीय ऊर्जा घनत्व है, जो द्वारा दिया गया है
जहाँ

  • E विद्युत क्षेत्र है;
  • D विद्युत विस्थापन क्षेत्र है;
  • B चुंबकीय प्रवाह घनत्व है;
  • H चुंबकीय क्षेत्र है।[10]: 258–260 

दायीं ओर का पहला पद विद्युत चुंबकीय ऊर्जा प्रवाह को छोटी मात्रा में दर्शाता है, जबकि दूसरा पद मुक्त विद्युत धाराओं पर क्षेत्र द्वारा किए गए कार्य को घटाता है, जो विद्युत चुम्बकीय ऊर्जा से अपव्यय, ऊष्मा आदि के रूप में बाहर निकलता है। इसमें परिभाषा, बाध्य विद्युत धाराएँ इस शब्द में सम्मिलित नहीं हैं और इसके बजाय S और 'u' में योगदान करती हैं।

रैखिक फैलाव (ऑप्टिक्स) और आइसोट्रोपिक (सरलता के लिए) पदार्थ के लिए मैक्सवेल के समीकरण संवैधानिक संबंधों को इस रूप में लिखा जा सकता है

जहाँ

यहाँ ε और μ अदिश हैं, स्थिति, दिशा और आवृत्ति से स्वतंत्र वास्तविक-मूल्यवान स्थिरांक हैं।

सिद्धांत रूप में, यह पॉयंटिंग के प्रमेय को इस रूप में निर्वात और गैर-फैलाने वाले क्षेत्रों तक सीमित करता है रैखिक पदार्थ अतिरिक्त नियमो की मूल्य पर कुछ परिस्थितियों में फैलाने वाली पदार्थ का सामान्यीकरण संभव है।[10]: 262–264 

पॉयंटिंग सूत्र का परिणाम यह है कि विद्युत चुम्बकीय क्षेत्र के कार्य करने के लिए, चुंबकीय और विद्युत दोनों क्षेत्रों का उपस्थित होना आवश्यक है। अकेला चुंबकीय क्षेत्र या अकेला विद्युत क्षेत्र कोई कार्य नहीं कर सकता है ।[11]


समतल तरंगें

समदैशिक दोष रहित माध्यम में प्रसारित विद्युत चुम्बकीय समतल तरंग में तात्कालिक पोयंटिंग सदिश परिमाण में तेजी से दोलन करते हुए सदैव प्रसार की दिशा में इंगित करता है। इसे आसानी से देखा जा सकता है कि समतल तरंग में, चुंबकीय क्षेत्र H(r,t) का परिमाण विद्युत क्षेत्र सदिश E(r,t) के परिमाण को η, संचरण की आंतरिक प्रतिबाधा से विभाजित करके दिया जाता है। मध्यम:

जहां |A| A के सदिश मानदंड का प्रतिनिधित्व करता है। चूंकि E और H एक दूसरे के समकोण पर हैं, उनके क्रॉस उत्पाद का परिमाण उनके परिमाण का उत्पाद है। व्यापकता को खोए बिना आइए हम X को विद्युत क्षेत्र की दिशा और Y को चुंबकीय क्षेत्र की दिशा मानें। E और H के क्रॉस उत्पाद द्वारा दिया गया तात्कालिक पोयंटिंग सदिश तब सकारात्मक Z दिशा में होगा:
समतल तरंग में समय-औसत शक्ति का पता लगाने के लिए तरंग अवधि (लहर की व्युत्क्रम आवृत्ति) पर औसत की आवश्यकता होती है:
जहां Erms मूल माध्य वर्ग विद्युत क्षेत्र आयाम है। महत्वपूर्ण स्थितियों में कि E(t) शीर्ष आयाम Epeak के साथ कुछ आवृत्ति पर साइनसोइडल रूप से भिन्न हो रहा है, इसका आरएमएस वोल्टेज द्वारा दिया गया है, साथ में औसत पोयंटिंग सदिश तब दिया गया:
यह समतल तरंग के ऊर्जा प्रवाह के लिए सबसे सामान्य रूप है, क्योंकि साइनसॉइडल क्षेत्र के आयाम अधिकांशतः उनके चरम मूल्यों के संदर्भ में व्यक्त किए जाते हैं, और जटिल समस्याओं को सामान्यतः समय में केवल आवृत्ति पर विचार करके हल किया जाता है। चूँकि , Erms का उपयोग करने वाली अभिव्यक्ति पूरी तरह से सामान्य है, उदाहरण के लिए, ध्वनि के स्थितियों में जिसका आरएमएस आयाम मापा जा सकता है किन्तु जहां "शिखर" आयाम अर्थहीन है। मुक्त स्थान में आंतरिक प्रतिबाधा η केवल मुक्त स्थान की प्रतिबाधा η0 ≈ 377 Ω द्वारा दी जाती है। निर्दिष्ट परावैद्युत स्थिरांक εr के साथ गैर-चुंबकीय डाइलेक्ट्रिक्स (जैसे कि ऑप्टिकल आवृत्तियों पर सभी पारदर्शी पदार्थ ) में या ऐसी पदार्थ के साथ प्रकाशिकी में जिसका अपवर्तक सूचकांक , आंतरिक प्रतिबाधा इस प्रकार पाई जाती है:
प्रकाशिकी में सतह को पार करने वाले विकिरणित प्रवाह का मूल्य, इस प्रकार उस सतह के सामान्य दिशा में औसत पॉयंटिंग सदिश घटक तकनीकी रूप से विकिरण के रूप में जाना जाता है जिसे अधिकांशतः तीव्रता (भौतिकी) (कुछ सीमा तक अस्पष्ट शब्द) के रूप में संदर्भित किया जाता है। .

सूक्ष्म क्षेत्रों के संदर्भ में सूत्रीकरण

मैक्सवेल के समीकरणों का सूक्ष्म (विभेदक) संस्करण भौतिक मीडिया के अंतर्निर्मित मॉडल के बिना केवल मौलिक क्षेत्रों E और B को स्वीकार करता है। केवल निर्वात पारगम्यता और पारगम्यता का उपयोग किया जाता है, और कोई D या H नहीं है। जब इस मॉडल का उपयोग किया जाता है, तो पॉयंटिंग सदिश को परिभाषित किया जाता है

जहाँ

यह वास्तव में पॉयंटिंग सदिश की सामान्य अभिव्यक्ति है.[12] पॉयंटिंग प्रमेय का संगत रूप है

जहाँ J कुल वर्तमान घनत्व है और ऊर्जा घनत्व u द्वारा दिया गया है


जहां ε0 निर्वात पारगम्यता है। इसे सीधे मैक्सवेल के समीकरणों से कुल आवेश और धारा और लोरेंत्ज़ बल नियम के संदर्भ में प्राप्त किया जा सकता है।

पॉयंटिंग सदिश की दो वैकल्पिक परिभाषाएं वैक्यूम या गैर-चुंबकीय पदार्थ में समान हैं, जहां B = μ0H. अन्य सभी स्थितियों में, वे इसमें भिन्न हैं S = (1/μ0) E × B और संबंधित यू अपव्यय शब्द के बाद से पूरी तरह विकिरणशील हैं JE कुल धारा को आवरण करता है, जबकि E × H परिभाषा में बाध्य धाराओं से योगदान होता है, जिन्हें तब अपव्यय अवधि से बाहर रखा जाता है।[13]

चूंकि केवल सूक्ष्म क्षेत्र E और B की व्युत्पत्ति में होते हैं S = (1/μ0) E × B और ऊर्जा घनत्व, उपस्थित किसी भी पदार्थ के बारे में धारणाओं से बचा जाता है। पॉयंटिंग सदिश और ऊर्जा घनत्व के लिए प्रमेय और अभिव्यक्ति सार्वभौमिक रूप से वैक्यूम और सभी सामग्रियों में मान्य हैं।[13]



समय-औसत पॉयंटिंग सदिश

पॉयंटिंग सदिश के लिए उपरोक्त रूप तात्कालिक विद्युत और चुंबकीय क्षेत्रों के कारण तात्कालिक शक्ति प्रवाह का प्रतिनिधित्व करता है। सामान्यतः , इलेक्ट्रोमैग्नेटिक्स में समस्याओं को निर्दिष्ट आवृत्ति पर सिनुसोइदल भिन्न क्षेत्रों के संदर्भ में हल किया जाता है। परिणाम तब अधिक सामान्य रूप से प्रयुक्त किए जा सकते हैं, उदाहरण के लिए, विभिन्न आवृत्तियों पर और उतार-चढ़ाव वाले आयामों के साथ ऐसी तरंगों के सुपरपोजिशन के रूप में असंगत विकिरण का प्रतिनिधित्व करके।

इस प्रकार हम तात्कालिक पर विचार नहीं करेंगे E(t) और H(t) ऊपर उपयोग किया गया है, किंतु प्रत्येक के लिए जटिल (सदिश ) आयाम है जो फेजर नोटेशन का उपयोग करके सुसंगत तरंग के चरण (साथ ही आयाम) का वर्णन करता है। ये जटिल आयाम सदिश समय के कार्य नहीं हैं, क्योंकि उन्हें हर समय दोलनों को संदर्भित करने के लिए समझा जाता है। चरण जैसे Em साइनसॉइडली अलग-अलग क्षेत्र को इंगित करने के लिए समझा जाता है जिसका तात्कालिक आयाम E(t) के वास्तविक भाग का अनुसरण करता है Emejωt जहाँ ω साइनसोइडल तरंग की (रेडियन) आवृत्ति मानी जा रही है।

समय क्षेत्र में, यह देखा जाएगा कि तात्क्षणिक विद्युत प्रवाह 2ω की आवृत्ति पर घटता-बढ़ता रहेगा। किन्तु सामान्यतः जो रुचि होती है वह औसत शक्ति प्रवाह है जिसमें उन उतार-चढ़ावों पर विचार नहीं किया जाता है। नीचे दिए गए गणित में, यह पूर्ण चक्र को एकीकृत करके पूरा किया जाता है T = 2π / ω. निम्नलिखित मात्रा, जिसे अभी भी पोयंटिंग सदिश के रूप में संदर्भित किया जाता है, को सीधे चरणों के रूप में व्यक्त किया जाता है:

जहाँ जटिल संयुग्म को दर्शाता है। समय-औसत शक्ति प्रवाह (उदाहरण के लिए, पूर्ण चक्र पर औसत तात्क्षणिक पॉयंटिंग सदिश के अनुसार) तब के वास्तविक भाग द्वारा दिया जाता है Sm. काल्पनिक भाग को सामान्यतः नजरअंदाज कर दिया जाता है, चूंकि , यह प्रतिक्रियाशील शक्ति को दर्शाता है जैसे कि खड़ी लहर या विद्युत चुम्बकीय विकिरण एंटीना के निकट और दूर के क्षेत्रों के कारण हस्तक्षेप। एकल इलेक्ट्रोमैग्नेटिक प्लेन वेव में ( स्टैंडिंग वेव के अतिरिक्त जिसे विपरीत दिशाओं में यात्रा करने वाली दो ऐसी तरंगों के रूप में वर्णित किया जा सकता है), E और H बिल्कुल चरण में हैं, इसलिए {{math या Sm}उपरोक्त परिभाषा के अनुसार } बस वास्तविक संख्या है।

की समानता Re(Sm) तात्क्षणिक पोयंटिंग सदिश के समय-औसत तक S इस प्रकार दिखाया जा सकता है।

समय के साथ तात्क्षणिक पॉयंटिंग सदिश S का औसत निम्न द्वारा दिया जाता है:
दूसरा शब्द दोहरी-आवृत्ति घटक है जिसका औसत मान शून्य है, इसलिए हम पाते हैं:
कुछ परिपाटियों के अनुसार, उपरोक्त परिभाषा में 1/2 के गुणनखंड को छोड़ा जा सकता है। के परिमाण के बाद से विद्युत प्रवाह का ठीक से वर्णन करने के लिए 1/2 से गुणा करना आवश्यक है Em और Hm दोलन मात्रा के शिखर क्षेत्रों को देखें। यदि इसके बजाय फ़ील्ड्स को उनके मूल माध्य वर्ग (आरएमएस) मानों के संदर्भ में वर्णित किया जाता है (जो कि कारक द्वारा प्रत्येक छोटे होते हैं ), तो 1/2 से गुणा किए बिना सही औसत शक्ति प्रवाह प्राप्त होता है।

प्रतिरोधी अपव्यय

यदि किसी चालक का महत्वपूर्ण प्रतिरोध है, तो उस चालक की सतह के पास, पॉयंटिंग सदिश चालक की ओर झुकेगा और उससे टकराएगा। पॉयंटिंग सदिश चालक में प्रवेश करने के बाद, यह ऐसी दिशा में मुड़ा हुआ है जो सतह के लगभग लंबवत है।[14]: 61  यह स्नेल के नियम और चालक के अंदर प्रकाश की बहुत धीमी गति का परिणाम है। किसी चालक में प्रकाश की गति की परिभाषा और गणना दी जा सकती है।[15]: 402  चालक के अंदर, पॉयंटिंग सदिश विद्युत चुम्बकीय क्षेत्र से तार में ऊर्जा प्रवाह का प्रतिनिधित्व करता है, जिससे तार में प्रतिरोधक जूल ताप उत्पन्न होता है। स्नेल के नियम से प्रारंभिक होने वाली व्युत्पत्ति के लिए रिट्ज पृष्ठ 454 देखें।[16]: 454 

विकिरण दबाव

विद्युत चुम्बकीय क्षेत्र के रैखिक संवेग का घनत्व S/c है2 जहां S पॉयंटिंग सदिश का परिमाण है और c मुक्त स्थान में प्रकाश की गति है। लक्ष्य की सतह पर विद्युत चुम्बकीय तरंग द्वारा लगाए गए विकिरण दबाव द्वारा दिया जाता है


पोयंटिंग सदिश की विशिष्टता

पोयंटिंग सदिश पॉयंटिंग प्रमेय में केवल इसके विचलन के माध्यम से होता है ∇ ⋅ S, अर्थात, यह केवल आवश्यक है कि बंद सतह के चारों ओर पॉयंटिंग सदिश का सतही समाकल संलग्न आयतन में या बाहर विद्युत चुम्बकीय ऊर्जा के शुद्ध प्रवाह का वर्णन करता है। इसका अर्थ यह है कि S में सोलनॉइडल सदिश क्षेत्र (शून्य विचलन वाला एक) जोड़ने से अन्य क्षेत्र प्राप्त होगा जो पॉयंटिंग प्रमेय के अनुसार पॉयंटिंग सदिश क्षेत्र के इस आवश्यक गुण को संतुष्ट करता है। चूँकि सदिश कलन की पहचान कर्ल का विचलन, कोई भी सदिश क्षेत्र के कर्ल (गणित) को पोयंटिंग सदिश में जोड़ सकता है और परिणामी सदिश क्षेत्र S′ अभी भी पॉयंटिंग के प्रमेय को संतुष्ट करेगा।

चूँकि तथापि पॉयंटिंग सदिश मूल रूप से केवल पॉयंटिंग के प्रमेय के लिए तैयार किया गया था जिसमें केवल इसका विचलन दिखाई देता है, यह पता चलता है कि इसके रूप का उपरोक्त विकल्प अद्वितीय है।[10]: 258–260, 605–612  निम्नलिखित खंड उदाहरण देता है जो बताता है कि क्यों 'ई' × 'एच' में इच्छानुसार सोलेनोइडल क्षेत्र जोड़ना स्वीकार्य नहीं है।

स्थिर क्षेत्र

स्थिर क्षेत्र में पोयंटिंग सदिश , जहां E विद्युत क्षेत्र है, एच चुंबकीय क्षेत्र है, और S पॉयंटिंग सदिश है।

स्थैतिक क्षेत्रों में पॉयंटिंग सदिश का विचार मैक्सवेल समीकरणों की सापेक्ष प्रकृति को दर्शाता है और लोरेंत्ज़ बल के चुंबकीय घटक की बढ़िया समझ की अनुमति देता है, q(v × B). वर्णन करने के लिए, संलग्न चित्र पर विचार किया जाता है, जो बेलनाकार संधारित्र में पॉयंटिंग सदिश का वर्णन करता है, जो स्थायी चुंबक द्वारा उत्पन्न एच क्षेत्र (पृष्ठ की ओर संकेत करते हुए) में स्थित है। यद्यपि केवल स्थिर विद्युत और चुंबकीय क्षेत्र हैं, पॉयंटिंग सदिश की गणना विद्युत चुम्बकीय ऊर्जा का दक्षिणावर्त वृत्ताकार प्रवाह उत्पन्न करती है, जिसका कोई आरंभ या अंत नहीं है।

जबकि परिसंचारी ऊर्जा प्रवाह अभौतिक लग सकता है, कोणीय गति के संरक्षण को बनाए रखने के लिए इसका अस्तित्व आवश्यक है। मुक्त स्थान में विद्युत चुम्बकीय तरंग का संवेग उसकी शक्ति को c, प्रकाश की गति से विभाजित करने के समान होता है। इसलिए विद्युत चुम्बकीय ऊर्जा का गोलाकार प्रवाह 'कोणीय' गति का अर्थ है।[17] यदि कोई आवेशित संधारित्र की दो प्लेटों के बीच तार को जोड़ता है, तो उस तार पर लोरेंत्ज़ बल होगा, जबकि संधारित्र निर्वहन धारा और पार किए गए चुंबकीय क्षेत्र के कारण निर्वहन कर रहा है; वह बल केंद्रीय अक्ष के स्पर्शरेखा होगा और इस प्रकार प्रणाली में कोणीय गति जोड़ देगा। वह कोणीय संवेग छिपे हुए कोणीय संवेग से मेल खाएगा, जो पॉयंटिंग सदिश द्वारा प्रकट होता है, जो संधारित्र के निर्वहन से पहले परिचालित होता है।

यह भी देखें

संदर्भ

  1. Stratton, Julius Adams (1941). Electromagnetic Theory (1st ed.). New York: McGraw-Hill. ISBN 978-0-470-13153-4.
  2. "Пойнтинга вектор". Физическая энциклопедия (in русский). Retrieved 2022-02-21.
  3. Nahin, Paul J. (2002). Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age. p. 131. ISBN 9780801869099.
  4. Poynting, John Henry (1884). "On the Transfer of Energy in the Electromagnetic Field". Philosophical Transactions of the Royal Society of London. 175: 343–361. doi:10.1098/rstl.1884.0016.
  5. Grant, Ian S.; Phillips, William R. (1990). Electromagnetism (2nd ed.). New York: John Wiley & Sons. ISBN 978-0-471-92712-9.
  6. Griffiths, David J. (2012). Introduction to Electrodynamics (3rd ed.). Boston: Addison-Wesley. ISBN 978-0-321-85656-2.
  7. Kinsler, Paul; Favaro, Alberto; McCall, Martin W. (2009). "Four Poynting Theorems". European Journal of Physics. 30 (5): 983. arXiv:0908.1721. Bibcode:2009EJPh...30..983K. doi:10.1088/0143-0807/30/5/007. S2CID 118508886.
  8. Pfeifer, Robert N. C.; Nieminen, Timo A.; Heckenberg, Norman R.; Rubinsztein-Dunlop, Halina (2007). "Momentum of an Electromagnetic Wave in Dielectric Media". Reviews of Modern Physics. 79 (4): 1197. arXiv:0710.0461. Bibcode:2007RvMP...79.1197P. doi:10.1103/RevModPhys.79.1197.
  9. Umov, Nikolay Alekseevich (1874). "Ein Theorem über die Wechselwirkungen in Endlichen Entfernungen". Zeitschrift für Mathematik und Physik. 19: 97–114.
  10. 10.0 10.1 10.2 10.3 Jackson, John David (1998). Classical Electrodynamics (3rd ed.). New York: John Wiley & Sons. ISBN 978-0-471-30932-1.
  11. "के. मैकडॉनल्ड्स भौतिकी के उदाहरण - रेलगन" (PDF). puhep1.princeton.edu. Retrieved 2021-02-14.
  12. Zangwill, Andrew (2013). आधुनिक इलेक्ट्रोडायनामिक्स. Cambridge University Press. p. 508. ISBN 9780521896979.
  13. 13.0 13.1 Richter, Felix; Florian, Matthias; Henneberger, Klaus (2008). "Poynting's Theorem and Energy Conservation in the Propagation of Light in Bounded Media". EPL. 81 (6): 67005. arXiv:0710.0515. Bibcode:2008EL.....8167005R. doi:10.1209/0295-5075/81/67005. S2CID 119243693.
  14. Harrington, Roger F. (2001). Time-Harmonic Electromagnetic Fields (2nd ed.). McGraw-Hill. ISBN 978-0-471-20806-8.
  15. Hayt, William (2011). Engineering Electromagnetics (4th ed.). New York: McGraw-Hill. ISBN 978-0-07-338066-7.
  16. Reitz, John R.; Milford, Frederick J.; Christy, Robert W. (2008). Foundations of Electromagnetic Theory (4th ed.). Boston: Addison-Wesley. ISBN 978-0-321-58174-7.
  17. Feynman, Richard Phillips (2011). The Feynman Lectures on Physics. Vol. II: Mainly Electromagnetism and Matter (The New Millennium ed.). New York: Basic Books. ISBN 978-0-465-02494-0.


अग्रिम पठन