पोयंटिंग वेक्टर: Difference between revisions
No edit summary |
No edit summary |
||
Line 75: | Line 75: | ||
सरल शब्दों में, पॉयंटिंग सदिश एस अंतरिक्ष के क्षेत्र में विद्युत चुम्बकीय क्षेत्रों के कारण ऊर्जा के हस्तांतरण की दिशा और दर को दर्शाता है, जो कि शक्ति (भौतिकी) है, जो खाली हो सकता है या नहीं भी हो सकता है। अधिक सख्ती से यह वह मात्रा है जिसका उपयोग पॉयंटिंग के प्रमेय को वैध बनाने के लिए किया जाना चाहिए। पॉयंटिंग की प्रमेय अनिवार्य रूप से कहती है कि क्षेत्र में प्रवेश करने वाली विद्युत चुम्बकीय ऊर्जा और क्षेत्र को छोड़ने वाली विद्युत चुम्बकीय ऊर्जा के बीच का अंतर उस क्षेत्र में परिवर्तित या विलुप्त होने वाली ऊर्जा के समान होना चाहिए, जो कि ऊर्जा के अलग रूप ( अधिकांशतः ऊष्मा) में बदल जाती है। इसलिए यदि कोई विद्युत चुम्बकीय ऊर्जा हस्तांतरण के पोयंटिंग सदिश विवरण की वैधता को स्वीकार करता है, तो पॉयंटिंग का प्रमेय केवल ऊर्जा के संरक्षण का कथन है। | सरल शब्दों में, पॉयंटिंग सदिश एस अंतरिक्ष के क्षेत्र में विद्युत चुम्बकीय क्षेत्रों के कारण ऊर्जा के हस्तांतरण की दिशा और दर को दर्शाता है, जो कि शक्ति (भौतिकी) है, जो खाली हो सकता है या नहीं भी हो सकता है। अधिक सख्ती से यह वह मात्रा है जिसका उपयोग पॉयंटिंग के प्रमेय को वैध बनाने के लिए किया जाना चाहिए। पॉयंटिंग की प्रमेय अनिवार्य रूप से कहती है कि क्षेत्र में प्रवेश करने वाली विद्युत चुम्बकीय ऊर्जा और क्षेत्र को छोड़ने वाली विद्युत चुम्बकीय ऊर्जा के बीच का अंतर उस क्षेत्र में परिवर्तित या विलुप्त होने वाली ऊर्जा के समान होना चाहिए, जो कि ऊर्जा के अलग रूप ( अधिकांशतः ऊष्मा) में बदल जाती है। इसलिए यदि कोई विद्युत चुम्बकीय ऊर्जा हस्तांतरण के पोयंटिंग सदिश विवरण की वैधता को स्वीकार करता है, तो पॉयंटिंग का प्रमेय केवल ऊर्जा के संरक्षण का कथन है। | ||
यदि विद्युत चुम्बकीय ऊर्जा किसी क्षेत्र के अंदर ऊर्जा के अन्य रूपों (जैसे, यांत्रिक ऊर्जा, या गर्मी) से प्राप्त नहीं होती है या खो जाती है, तो विद्युत चुम्बकीय ऊर्जा संरक्षण नियम | यदि विद्युत चुम्बकीय ऊर्जा किसी क्षेत्र के अंदर ऊर्जा के अन्य रूपों (जैसे, यांत्रिक ऊर्जा, या गर्मी) से प्राप्त नहीं होती है या खो जाती है, तो विद्युत चुम्बकीय ऊर्जा संरक्षण नियम उस क्षेत्र के अंदर वैश्विक और स्थानीय संरक्षण नियम है, जो विशेष के रूप में निरंतरता समीकरण प्रदान करता है। पॉयंटिंग प्रमेय का स्थिति: | ||
<math display="block">\nabla\cdot \mathbf{S} = -\frac{\partial u}{\partial t}</math> | <math display="block">\nabla\cdot \mathbf{S} = -\frac{\partial u}{\partial t}</math> | ||
जहाँ <math>u</math> विद्युत चुम्बकीय क्षेत्र का ऊर्जा घनत्व है। यह निरंतर स्थिति निम्न सरल उदाहरण में होती है जिसमें पॉयंटिंग सदिश की गणना की जाती है और विद्युत परिपथ में विद्युत की सामान्य गणना के अनुरूप होती है। | जहाँ <math>u</math> विद्युत चुम्बकीय क्षेत्र का ऊर्जा घनत्व है। यह निरंतर स्थिति निम्न सरल उदाहरण में होती है जिसमें पॉयंटिंग सदिश की गणना की जाती है और विद्युत परिपथ में विद्युत की सामान्य गणना के अनुरूप होती है। | ||
== उदाहरण: समाक्षीय केबल में विद्युत प्रवाह == | == उदाहरण: समाक्षीय केबल में विद्युत प्रवाह == | ||
यद्यपि इलेक्ट्रोमैग्नेटिक्स में इच्छानुसार ज्यामिति वाली समस्याओं को हल करना अत्यधिक कठिन है, हम बेलनाकार निर्देशांक में विश्लेषण किए गए समाक्षीय केबल के खंड के माध्यम से विद्युत संचरण के स्थितियों में अपेक्षाकृत सरल समाधान पा सकते हैं जैसा कि संलग्न चित्र में दर्शाया गया है। हम मॉडल की समरूपता का लाभ उठा सकते हैं: जो कि θ (गोलाकार समरूपता) पर कोई निर्भरता नहीं और न ही ''Z'' (केबल के साथ स्थिति) पर मॉडल (और समाधान) को बिना किसी समय निर्भरता के डीसी परिपथ के रूप में माना जा सकता है, किन्तु निम्नलिखित समाधान रेडियो आवृति शक्ति | यद्यपि इलेक्ट्रोमैग्नेटिक्स में इच्छानुसार ज्यामिति वाली समस्याओं को हल करना अत्यधिक कठिन है, हम बेलनाकार निर्देशांक में विश्लेषण किए गए समाक्षीय केबल के खंड के माध्यम से विद्युत संचरण के स्थितियों में अपेक्षाकृत सरल समाधान पा सकते हैं जैसा कि संलग्न चित्र में दर्शाया गया है। हम मॉडल की समरूपता का लाभ उठा सकते हैं: जो कि θ (गोलाकार समरूपता) पर कोई निर्भरता नहीं और न ही ''Z'' (केबल के साथ स्थिति) पर मॉडल (और समाधान) को बिना किसी समय निर्भरता के डीसी परिपथ के रूप में माना जा सकता है, किन्तु निम्नलिखित समाधान रेडियो आवृति शक्ति के संचरण पर समान रूप से प्रयुक्त होता है, जब तक हम समय के पल पर विचार कर रहे हैं (जिसके समय वोल्टेज और धारा नहीं बदलता है), और केबल के पर्याप्त छोटे खंड पर (तरंग दैर्ध्य से बहुत छोटा, जिससे ये मात्राएँ जेड पर निर्भर न हों)। समाक्षीय केबल को त्रिज्या ''R''<sub>1</sub> के आंतरिक चालक और बाहरी [[विद्युत कंडक्टर|विद्युत]] चालक के रूप में निर्दिष्ट किया गया है जिसका आंतरिक त्रिज्या ''R''<sub>2</sub> है (''R''<sub>2</sub> से परे इसकी मोटाई निम्नलिखित विश्लेषण को प्रभावित नहीं करती है)। ''R''<sub>1</sub> और ''R''<sub>2</sub> के बीच केबल में [[सापेक्ष पारगम्यता]] ε<sub>r</sub> का [[ढांकता हुआ|परावैद्युत]] हुआ पदार्थ होता है और हम ऐसे चालक मानते हैं जो गैर-चुंबकीय (इसलिए μ = μ0) और दोषरहित (पूर्ण चालक ) होते हैं, जो सभी वास्तविक संसार के समाक्षीय केबल के लिए अच्छे अनुमान हैं। विशिष्ट स्थितियों में. | ||
[[File:CoaxPoyntingVector.png|center|600px|thumb|<span style= color:green >पोयंटिंग सदिश एस</span> के अनुसार समाक्षीय केबल के अंदर विद्युत चुम्बकीय शक्ति प्रवाह का चित्रण, <span style= color:red >विद्युत क्षेत्र ई</span> का उपयोग करके गणना की गई (के कारण वोल्टेज ''V'') और <span style= color:blue >चुंबकीय क्षेत्र एच</span> (वर्तमान I के कारण)।]] | [[File:CoaxPoyntingVector.png|center|600px|thumb|<span style= color:green >पोयंटिंग सदिश एस</span> के अनुसार समाक्षीय केबल के अंदर विद्युत चुम्बकीय शक्ति प्रवाह का चित्रण, <span style= color:red >विद्युत क्षेत्र ई</span> का उपयोग करके गणना की गई (के कारण वोल्टेज ''V'') और <span style= color:blue >चुंबकीय क्षेत्र एच</span> (वर्तमान I के कारण)।]] | ||
[[File:Coax-poynting.png|thumb|right|350px|समाक्षीय केबल के माध्यम से डीसी विद्युत संचरण विद्युत (<math>E_r</math>) और चुंबकीय (<math>H_\theta</math>) क्षेत्रों की सापेक्ष शक्ति दर्शाता है और परिणामी पोयंटिंग सदिश (<math>S_z = E_r \cdot H_\theta</math>) समाक्षीय केबल के केंद्र से त्रिज्या r पर टूटी हुई मैजेंटा पंक्ति त्रिज्या r के अंदर संचयी विद्युत संचरण को दर्शाती है, जिसका आधा भाग | [[File:Coax-poynting.png|thumb|right|350px|समाक्षीय केबल के माध्यम से डीसी विद्युत संचरण विद्युत (<math>E_r</math>) और चुंबकीय (<math>H_\theta</math>) क्षेत्रों की सापेक्ष शक्ति दर्शाता है और परिणामी पोयंटिंग सदिश (<math>S_z = E_r \cdot H_\theta</math>) समाक्षीय केबल के केंद्र से त्रिज्या r पर टूटी हुई मैजेंटा पंक्ति त्रिज्या r के अंदर संचयी विद्युत संचरण को दर्शाती है, जिसका आधा भाग ''R''<sub>1</sub> और ''R''<sub>2</sub> के ज्यामितीय माध्य के अंदर बहता है।]]केंद्र चालक को वोल्टेज V पर रखा जाता है और दाईं ओर I धारा खींचता है, इसलिए हम [[विद्युत शक्ति]] के मूलभूत नियमों के अनुसार P = V·I के कुल विद्युत प्रवाह की उम्मीद करते हैं। चूँकि पोयंटिंग सदिश का मूल्यांकन करके हम समाक्षीय केबल के अंदर विद्युत और चुंबकीय क्षेत्रों के संदर्भ में विद्युत प्रवाह की प्रोफ़ाइल की पहचान करने में सक्षम हैं। प्रत्येक चालक के अंदर विद्युत क्षेत्र निश्चित रूप से शून्य हैं, किन्तु चालक के बीच (<math>R_1 < r < R_2</math>) समरूपता तय करती है कि वे सख्ती से रेडियल दिशा में हैं और इसे दिखाया जा सकता है ( गॉस के नियम का उपयोग करते हुए) कि उन्हें निम्नलिखित फॉर्म का पालन करना होगा:<math display=block>E_r(r) = \frac{W}{r}</math> | ||
Line 94: | Line 94: | ||
जिससे : | जिससे : | ||
<math display="block">W = \frac{V}{\ln(R_2/R_1)}</math> | <math display="block">W = \frac{V}{\ln(R_2/R_1)}</math> | ||
चुंबकीय क्षेत्र, फिर से समरूपता द्वारा, केवल θ दिशा में गैर-शून्य हो सकता है, अर्थात, ''R''<sub>1</sub> | चुंबकीय क्षेत्र, फिर से समरूपता द्वारा, केवल θ दिशा में गैर-शून्य हो सकता है, अर्थात, ''R''<sub>1</sub> और ''R''<sub>2</sub> के बीच प्रत्येक त्रिज्या पर केंद्र चालक के चारों ओर सदिश क्षेत्र लूपिंग करता है। चालक के अंदर चुंबकीय क्षेत्र शून्य हो भी सकता है और नहीं भी किन्तु यह कोई चिंता की बात नहीं है क्योंकि इन क्षेत्रों में पोयंटिंग सदिश विद्युत क्षेत्र के शून्य होने के कारण शून्य है। संपूर्ण समाक्षीय केबल के बाहर, चुंबकीय क्षेत्र समान रूप से शून्य है क्योंकि इस क्षेत्र में पथ शून्य की शुद्ध धारा (केंद्र चालक में + I और बाहरी चालक में -I) को घेरते हैं, और फिर से विद्युत क्षेत्र वैसे भी शून्य है। ''R''<sub>1</sub> से ''R''<sub>2</sub> तक के क्षेत्र में एम्पीयर के नियम का उपयोग करते हुए, जो केंद्रीय चालक में धारा +I को घेरता है किन्तु बाहरी चालक में धारा का कोई योगदान नहीं होता है, हम त्रिज्या r पर पाते हैं:<math display="block">\begin{align} | ||
I = \oint_C \mathbf{H} \cdot ds &= 2 \pi r H_\theta(r) \\ | I = \oint_C \mathbf{H} \cdot ds &= 2 \pi r H_\theta(r) \\ | ||
H_\theta(r) &= \frac {I}{2 \pi r} | H_\theta(r) &= \frac {I}{2 \pi r} | ||
\end{align}</math> अब रेडियल दिशा में विद्युत क्षेत्र से और स्पर्शरेखा चुंबकीय क्षेत्र, इनके क्रॉस-उत्पाद द्वारा दिया गया पॉयंटिंग सदिश ''Z'' | \end{align}</math> अब रेडियल दिशा में विद्युत क्षेत्र से और स्पर्शरेखा चुंबकीय क्षेत्र, इनके क्रॉस-उत्पाद द्वारा दिया गया पॉयंटिंग सदिश ''Z'' दिशा में केवल गैर-शून्य है, समाक्षीय केबल की दिशा के साथ ही, जैसा कि हम उम्मीद करेंगे फिर से केवल r का फलन, हम 'S'(r) का मूल्यांकन कर सकते हैं: | ||
<math display="block">S_z(r) = E_r(r) H_\theta(r) = \frac{W}{r} \frac {I}{2 \pi r} = \frac{W \, I} {2 \pi r^2}</math> जहाँ W को केंद्र चालक वोल्टेज V के संदर्भ में ऊपर दिया गया है। समाक्षीय केबल के नीचे बहने वाली कुल शक्ति की गणना चालक के बीच केबल के पूरे क्रॉस सेक्शन 'A' को एकीकृत करके की जा सकती है: | <math display="block">S_z(r) = E_r(r) H_\theta(r) = \frac{W}{r} \frac {I}{2 \pi r} = \frac{W \, I} {2 \pi r^2}</math> जहाँ W को केंद्र चालक वोल्टेज V के संदर्भ में ऊपर दिया गया है। समाक्षीय केबल के नीचे बहने वाली कुल शक्ति की गणना चालक के बीच केबल के पूरे क्रॉस सेक्शन 'A' को एकीकृत करके की जा सकती है: | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
Line 108: | Line 108: | ||
== अन्य रूप == | == अन्य रूप == | ||
मैक्सवेल के समीकरणों के सूक्ष्म संस्करण में, इस परिभाषा को विद्युत क्षेत्र '''E''' | मैक्सवेल के समीकरणों के सूक्ष्म संस्करण में, इस परिभाषा को विद्युत क्षेत्र '''E''' और चुंबकीय प्रवाह घनत्व '''B''' (लेख में बाद में वर्णित) के संदर्भ में सूक्ष्म क्षेत्रों के संदर्भ में एक सूत्र द्वारा प्रतिस्थापित किया जाना चाहिए। | ||
पॉयंटिंग सदिश के 'मिन्कोव्स्की फॉर्म' को प्राप्त करने के लिए [[विद्युत विस्थापन क्षेत्र]] '''D''' को चुंबकीय प्रवाह '''B''' के साथ जोड़ना भी संभव है, या और संस्करण का निर्माण करने के लिए '''D''' और '''H''' का उपयोग करना संभव है। चुनाव विवादास्पद रहा है: फेफर एट अल<ref name="Pfeifer2007">{{cite journal | पॉयंटिंग सदिश के 'मिन्कोव्स्की फॉर्म' को प्राप्त करने के लिए [[विद्युत विस्थापन क्षेत्र]] '''D''' को चुंबकीय प्रवाह '''B''' के साथ जोड़ना भी संभव है, या और संस्करण का निर्माण करने के लिए '''D''' और '''H''' का उपयोग करना संभव है। चुनाव विवादास्पद रहा है: फेफर एट अल<ref name="Pfeifer2007">{{cite journal | ||
Line 128: | Line 128: | ||
|arxiv = 0710.0461 |bibcode = 2007RvMP...79.1197P }}</ref> इब्राहीम और मिन्कोव्स्की रूपों के समर्थकों के बीच शताब्दी-लंबे विवाद को संक्षेप में और कुछ सीमा तक हल करें (अब्राहम-मिन्कोवस्की विवाद देखें)। | |arxiv = 0710.0461 |bibcode = 2007RvMP...79.1197P }}</ref> इब्राहीम और मिन्कोव्स्की रूपों के समर्थकों के बीच शताब्दी-लंबे विवाद को संक्षेप में और कुछ सीमा तक हल करें (अब्राहम-मिन्कोवस्की विवाद देखें)। | ||
पॉयंटिंग सदिश विद्युत चुम्बकीय ऊर्जा के लिए ऊर्जा प्रवाह सदिश के विशेष स्थितियों का प्रतिनिधित्व करता है। चूँकि किसी भी प्रकार की ऊर्जा की अंतरिक्ष में गति की दिशा होती है, साथ ही इसका घनत्व भी होता है, इसलिए ऊर्जा प्रवाह सदिश को अन्य प्रकार की ऊर्जा के लिए भी परिभाषित किया जा सकता है, उदाहरण के लिए, पॉयंटिंग के प्रमेय | पॉयंटिंग सदिश विद्युत चुम्बकीय ऊर्जा के लिए ऊर्जा प्रवाह सदिश के विशेष स्थितियों का प्रतिनिधित्व करता है। चूँकि किसी भी प्रकार की ऊर्जा की अंतरिक्ष में गति की दिशा होती है, साथ ही इसका घनत्व भी होता है, इसलिए ऊर्जा प्रवाह सदिश को अन्य प्रकार की ऊर्जा के लिए भी परिभाषित किया जा सकता है, उदाहरण के लिए, पॉयंटिंग के प्रमेय सामान्यीकरण के लिए उमोव-पॉयंटिंग सदिश <ref name="Umov1874">{{cite journal | ||
| last = Umov | | last = Umov | ||
| first = Nikolay Alekseevich | | first = Nikolay Alekseevich | ||
Line 143: | Line 143: | ||
पोयंटिंग सदिश पोयंटिंग के प्रमेय में प्रकट होता है (व्युत्पत्ति के लिए लेख देखें), ऊर्जा-संरक्षण नियम : | पोयंटिंग सदिश पोयंटिंग के प्रमेय में प्रकट होता है (व्युत्पत्ति के लिए लेख देखें), ऊर्जा-संरक्षण नियम : | ||
<math display="block">\frac{\partial u}{\partial t} = -\mathbf{\nabla} \cdot \mathbf{S} - \mathbf{J_\mathrm{f}} \cdot \mathbf{E},</math> | <math display="block">\frac{\partial u}{\partial t} = -\mathbf{\nabla} \cdot \mathbf{S} - \mathbf{J_\mathrm{f}} \cdot \mathbf{E},</math> | ||
जहां '''J'''<sub>f</sub> मैक्सवेल के समीकरणों का [[वर्तमान घनत्व]] है मुक्त आवेश और धारा के संदर्भ में सूत्रीकरण और u रैखिक, [[फैलाव (प्रकाशिकी)]] पदार्थ | जहां '''J'''<sub>f</sub> मैक्सवेल के समीकरणों का [[वर्तमान घनत्व]] है मुक्त आवेश और धारा के संदर्भ में सूत्रीकरण और u रैखिक, [[फैलाव (प्रकाशिकी)]] पदार्थ के लिए विद्युत चुम्बकीय ऊर्जा घनत्व है, जो द्वारा दिया गया है | ||
<math display="block">u = \frac{1}{2}\! \left(\mathbf{E} \cdot \mathbf{D} + \mathbf{B} \cdot \mathbf{H}\right)\! ,</math> | <math display="block">u = \frac{1}{2}\! \left(\mathbf{E} \cdot \mathbf{D} + \mathbf{B} \cdot \mathbf{H}\right)\! ,</math> | ||
जहाँ | जहाँ | ||
* '''E''' | * '''E''' विद्युत क्षेत्र है; | ||
* '''D''' | * '''D''' विद्युत विस्थापन क्षेत्र है; | ||
* '''B''' चुंबकीय प्रवाह घनत्व है; | * '''B''' चुंबकीय प्रवाह घनत्व है; | ||
* '''H''' चुंबकीय क्षेत्र है।<ref name="Jackson1998">{{cite book | * '''H''' चुंबकीय क्षेत्र है।<ref name="Jackson1998">{{cite book | ||
Line 163: | Line 163: | ||
दायीं ओर का पहला पद विद्युत चुंबकीय ऊर्जा प्रवाह को छोटी मात्रा में दर्शाता है, जबकि दूसरा पद मुक्त विद्युत धाराओं पर क्षेत्र द्वारा किए गए कार्य को घटाता है, जो विद्युत चुम्बकीय ऊर्जा से [[अपव्यय]], ऊष्मा आदि के रूप में बाहर निकलता है। इसमें परिभाषा, बाध्य विद्युत धाराएँ इस शब्द में सम्मिलित नहीं हैं और इसके बजाय S और 'u' में योगदान करती हैं। | दायीं ओर का पहला पद विद्युत चुंबकीय ऊर्जा प्रवाह को छोटी मात्रा में दर्शाता है, जबकि दूसरा पद मुक्त विद्युत धाराओं पर क्षेत्र द्वारा किए गए कार्य को घटाता है, जो विद्युत चुम्बकीय ऊर्जा से [[अपव्यय]], ऊष्मा आदि के रूप में बाहर निकलता है। इसमें परिभाषा, बाध्य विद्युत धाराएँ इस शब्द में सम्मिलित नहीं हैं और इसके बजाय S और 'u' में योगदान करती हैं। | ||
रैखिक फैलाव (ऑप्टिक्स) और आइसोट्रोपिक (सरलता के लिए) पदार्थ | रैखिक फैलाव (ऑप्टिक्स) और आइसोट्रोपिक (सरलता के लिए) पदार्थ के लिए मैक्सवेल के समीकरण संवैधानिक संबंधों को इस रूप में लिखा जा सकता है | ||
<math display="block">\mathbf{D} = \varepsilon \mathbf{E},\quad \mathbf{B} = \mu\mathbf{H},</math> | <math display="block">\mathbf{D} = \varepsilon \mathbf{E},\quad \mathbf{B} = \mu\mathbf{H},</math> | ||
जहाँ | जहाँ | ||
* ε पदार्थ | * ε पदार्थ की पारगम्यता है; | ||
* μ पदार्थ | * μ पदार्थ की [[पारगम्यता (विद्युत चुंबकत्व)]] है।<ref name="Jackson1998" />{{rp|pp=258–260}} | ||
यहाँ ε और μ अदिश हैं, स्थिति, दिशा और आवृत्ति से स्वतंत्र वास्तविक-मूल्यवान स्थिरांक हैं। | यहाँ ε और μ अदिश हैं, स्थिति, दिशा और आवृत्ति से स्वतंत्र वास्तविक-मूल्यवान स्थिरांक हैं। | ||
सिद्धांत रूप में, यह पॉयंटिंग के प्रमेय को इस रूप में निर्वात और गैर-फैलाने वाले क्षेत्रों तक सीमित करता है रैखिक पदार्थ अतिरिक्त नियमो की मूल्य | सिद्धांत रूप में, यह पॉयंटिंग के प्रमेय को इस रूप में निर्वात और गैर-फैलाने वाले क्षेत्रों तक सीमित करता है रैखिक पदार्थ अतिरिक्त नियमो की मूल्य पर कुछ परिस्थितियों में फैलाने वाली पदार्थ का सामान्यीकरण संभव है।<ref name="Jackson1998" />{{rp|pp=262–264}} | ||
पॉयंटिंग सूत्र का परिणाम यह है कि विद्युत चुम्बकीय क्षेत्र के कार्य करने के लिए, चुंबकीय और विद्युत दोनों क्षेत्रों का उपस्थित होना आवश्यक है। अकेला चुंबकीय क्षेत्र या अकेला विद्युत क्षेत्र कोई कार्य नहीं कर सकता है ।<ref>{{Cite web|title=के. मैकडॉनल्ड्स भौतिकी के उदाहरण - रेलगन|url=https://physics.princeton.edu//~mcdonald/examples/railgun.pdf|access-date=2021-02-14|website=puhep1.princeton.edu}}</ref> | पॉयंटिंग सूत्र का परिणाम यह है कि विद्युत चुम्बकीय क्षेत्र के कार्य करने के लिए, चुंबकीय और विद्युत दोनों क्षेत्रों का उपस्थित होना आवश्यक है। अकेला चुंबकीय क्षेत्र या अकेला विद्युत क्षेत्र कोई कार्य नहीं कर सकता है ।<ref>{{Cite web|title=के. मैकडॉनल्ड्स भौतिकी के उदाहरण - रेलगन|url=https://physics.princeton.edu//~mcdonald/examples/railgun.pdf|access-date=2021-02-14|website=puhep1.princeton.edu}}</ref> | ||
Line 184: | Line 184: | ||
जहां ''E''<sub>rms</sub> मूल माध्य वर्ग विद्युत क्षेत्र आयाम है। महत्वपूर्ण स्थितियों में कि ''E''(''t'') शीर्ष आयाम ''E''<sub>peak</sub> के साथ कुछ आवृत्ति पर साइनसोइडल रूप से भिन्न हो रहा है, इसका आरएमएस वोल्टेज <math>\mathsf{E_{peak}} / \sqrt{2}</math> द्वारा दिया गया है, साथ में औसत पोयंटिंग सदिश तब दिया गया: | जहां ''E''<sub>rms</sub> मूल माध्य वर्ग विद्युत क्षेत्र आयाम है। महत्वपूर्ण स्थितियों में कि ''E''(''t'') शीर्ष आयाम ''E''<sub>peak</sub> के साथ कुछ आवृत्ति पर साइनसोइडल रूप से भिन्न हो रहा है, इसका आरएमएस वोल्टेज <math>\mathsf{E_{peak}} / \sqrt{2}</math> द्वारा दिया गया है, साथ में औसत पोयंटिंग सदिश तब दिया गया: | ||
<math display="block">\left\langle\mathsf{S_z}\right\rangle = \frac{\mathsf{E_{peak}^2}}{2\eta}.</math> | <math display="block">\left\langle\mathsf{S_z}\right\rangle = \frac{\mathsf{E_{peak}^2}}{2\eta}.</math> | ||
यह समतल तरंग के ऊर्जा प्रवाह के लिए सबसे सामान्य रूप है, क्योंकि साइनसॉइडल क्षेत्र के आयाम अधिकांशतः उनके चरम मूल्यों के संदर्भ में व्यक्त किए जाते हैं, और जटिल समस्याओं को सामान्यतः | यह समतल तरंग के ऊर्जा प्रवाह के लिए सबसे सामान्य रूप है, क्योंकि साइनसॉइडल क्षेत्र के आयाम अधिकांशतः उनके चरम मूल्यों के संदर्भ में व्यक्त किए जाते हैं, और जटिल समस्याओं को सामान्यतः समय में केवल आवृत्ति पर विचार करके हल किया जाता है। चूँकि , ''E''<sub>rms</sub> का उपयोग करने वाली अभिव्यक्ति पूरी तरह से सामान्य है, उदाहरण के लिए, ध्वनि के स्थितियों में जिसका आरएमएस आयाम मापा जा सकता है किन्तु जहां "शिखर" आयाम अर्थहीन है। मुक्त स्थान में आंतरिक प्रतिबाधा η केवल मुक्त स्थान की प्रतिबाधा η0 ≈ 377 Ω द्वारा दी जाती है। निर्दिष्ट परावैद्युत स्थिरांक εr के साथ गैर-चुंबकीय डाइलेक्ट्रिक्स (जैसे कि ऑप्टिकल आवृत्तियों पर सभी पारदर्शी पदार्थ ) में या ऐसी पदार्थ के साथ प्रकाशिकी में जिसका अपवर्तक सूचकांक <math>\mathsf{n} = \sqrt{\epsilon_r}</math>, आंतरिक प्रतिबाधा इस प्रकार पाई जाती है: | ||
<math display="block">\eta = \frac{\eta_0}{\sqrt{\epsilon_r}}.</math> | <math display="block">\eta = \frac{\eta_0}{\sqrt{\epsilon_r}}.</math> | ||
प्रकाशिकी में सतह को पार करने वाले [[विकिरण|विकिरणित]] प्रवाह का मूल्य, इस प्रकार उस सतह के सामान्य दिशा में औसत पॉयंटिंग सदिश घटक तकनीकी रूप से विकिरण के रूप में जाना जाता है जिसे अधिकांशतः [[तीव्रता (भौतिकी)]] (कुछ सीमा तक अस्पष्ट शब्द) के रूप में संदर्भित किया जाता है। . | प्रकाशिकी में सतह को पार करने वाले [[विकिरण|विकिरणित]] प्रवाह का मूल्य, इस प्रकार उस सतह के सामान्य दिशा में औसत पॉयंटिंग सदिश घटक तकनीकी रूप से विकिरण के रूप में जाना जाता है जिसे अधिकांशतः [[तीव्रता (भौतिकी)]] (कुछ सीमा तक अस्पष्ट शब्द) के रूप में संदर्भित किया जाता है। . | ||
== सूक्ष्म क्षेत्रों के संदर्भ में सूत्रीकरण == | == सूक्ष्म क्षेत्रों के संदर्भ में सूत्रीकरण == | ||
मैक्सवेल के समीकरणों का सूक्ष्म (विभेदक) संस्करण भौतिक मीडिया के अंतर्निर्मित मॉडल के बिना केवल मौलिक क्षेत्रों '''E''' और '''B''' को स्वीकार करता है। केवल निर्वात पारगम्यता और पारगम्यता का उपयोग किया जाता है, और कोई | मैक्सवेल के समीकरणों का सूक्ष्म (विभेदक) संस्करण भौतिक मीडिया के अंतर्निर्मित मॉडल के बिना केवल मौलिक क्षेत्रों '''E''' और '''B''' को स्वीकार करता है। केवल निर्वात पारगम्यता और पारगम्यता का उपयोग किया जाता है, और कोई '''D''' या '''H''' नहीं है। जब इस मॉडल का उपयोग किया जाता है, तो पॉयंटिंग सदिश को परिभाषित किया जाता है | ||
<math display="block">\mathbf{S} = \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B},</math> | <math display="block">\mathbf{S} = \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B},</math> | ||
जहाँ | जहाँ | ||
Line 204: | Line 204: | ||
जहां ε0 निर्वात पारगम्यता है। इसे सीधे मैक्सवेल के समीकरणों से कुल आवेश और धारा और लोरेंत्ज़ बल नियम के संदर्भ में प्राप्त किया जा सकता है। | जहां ε0 निर्वात पारगम्यता है। इसे सीधे मैक्सवेल के समीकरणों से कुल आवेश और धारा और लोरेंत्ज़ बल नियम के संदर्भ में प्राप्त किया जा सकता है। | ||
पॉयंटिंग सदिश की दो वैकल्पिक परिभाषाएं वैक्यूम या गैर-चुंबकीय पदार्थ | पॉयंटिंग सदिश की दो वैकल्पिक परिभाषाएं वैक्यूम या गैर-चुंबकीय पदार्थ में समान हैं, जहां {{nowrap|1='''B''' = ''μ''<sub>0</sub>'''H'''}}. अन्य सभी स्थितियों में, वे इसमें भिन्न हैं {{nowrap|1='''S''' = (1/''μ''<sub>0</sub>) '''E''' × '''B'''}} और संबंधित यू अपव्यय शब्द के बाद से पूरी तरह विकिरणशील हैं {{nowrap|−'''J''' ⋅ '''E'''}} कुल धारा को आवरण करता है, जबकि '''E''' × '''H''' परिभाषा में बाध्य धाराओं से योगदान होता है, जिन्हें तब अपव्यय अवधि से बाहर रखा जाता है।<ref name="Richter2008">{{cite journal | ||
| last1 = Richter | | last1 = Richter | ||
| first1 = Felix | | first1 = Felix | ||
Line 221: | Line 221: | ||
}}</ref> | }}</ref> | ||
चूंकि केवल सूक्ष्म क्षेत्र '''E''' और '''B''' की व्युत्पत्ति में होते हैं {{nowrap|1='''S''' = (1/''μ''<sub>0</sub>) '''E''' × '''B'''}} और ऊर्जा घनत्व, उपस्थित किसी भी पदार्थ | चूंकि केवल सूक्ष्म क्षेत्र '''E''' और '''B''' की व्युत्पत्ति में होते हैं {{nowrap|1='''S''' = (1/''μ''<sub>0</sub>) '''E''' × '''B'''}} और ऊर्जा घनत्व, उपस्थित किसी भी पदार्थ के बारे में धारणाओं से बचा जाता है। पॉयंटिंग सदिश और ऊर्जा घनत्व के लिए प्रमेय और अभिव्यक्ति सार्वभौमिक रूप से वैक्यूम और सभी सामग्रियों में मान्य हैं।<ref name="Richter2008" /> | ||
Line 228: | Line 228: | ||
== समय-औसत पॉयंटिंग सदिश == | == समय-औसत पॉयंटिंग सदिश == | ||
पॉयंटिंग सदिश के लिए उपरोक्त रूप तात्कालिक विद्युत और चुंबकीय क्षेत्रों के कारण तात्कालिक शक्ति प्रवाह का प्रतिनिधित्व करता है। सामान्यतः | पॉयंटिंग सदिश के लिए उपरोक्त रूप तात्कालिक विद्युत और चुंबकीय क्षेत्रों के कारण तात्कालिक शक्ति प्रवाह का प्रतिनिधित्व करता है। सामान्यतः इलेक्ट्रोमैग्नेटिक्स में समस्याओं को निर्दिष्ट आवृत्ति पर [[sinusoidal|सिनुसोइदल]] भिन्न क्षेत्रों के संदर्भ में हल किया जाता है। परिणाम तब अधिक सामान्य रूप से प्रयुक्त किए जा सकते हैं, उदाहरण के लिए, विभिन्न आवृत्तियों पर और उतार-चढ़ाव वाले आयामों के साथ ऐसी तरंगों के सुपरपोजिशन के रूप में असंगत विकिरण का प्रतिनिधित्व करते है । | ||
इस प्रकार हम तात्कालिक पर विचार नहीं करेंगे {{math|'''E'''(''t'')}} और {{math|'''H'''(''t'')}} ऊपर उपयोग किया गया है, किंतु प्रत्येक के लिए जटिल (सदिश ) आयाम है जो फेजर नोटेशन का उपयोग करके सुसंगत तरंग के [[चरण]] (साथ ही आयाम) का वर्णन करता है। ये जटिल आयाम सदिश समय के कार्य नहीं हैं, क्योंकि उन्हें हर समय दोलनों को संदर्भित करने के लिए समझा जाता है। चरण जैसे {{math|'''E'''<sub>m</sub>}} साइनसॉइडली अलग-अलग क्षेत्र को इंगित करने के लिए समझा जाता है जिसका तात्कालिक आयाम {{math|'''E'''(''t'')}} के वास्तविक भाग का अनुसरण करता है जो {{math|'''E'''<sub>m</sub> ''e<sup>jωt</sup>''}} जहाँ {{mvar|ω}} साइनसोइडल तरंग की (रेडियन) आवृत्ति मानी जा रही है। | इस प्रकार हम तात्कालिक पर विचार नहीं करेंगे {{math|'''E'''(''t'')}} और {{math|'''H'''(''t'')}} ऊपर उपयोग किया गया है, किंतु प्रत्येक के लिए जटिल (सदिश ) आयाम है जो फेजर नोटेशन का उपयोग करके सुसंगत तरंग के [[चरण]] (साथ ही आयाम) का वर्णन करता है। ये जटिल आयाम सदिश समय के कार्य नहीं हैं, क्योंकि उन्हें हर समय दोलनों को संदर्भित करने के लिए समझा जाता है। चरण जैसे {{math|'''E'''<sub>m</sub>}} साइनसॉइडली अलग-अलग क्षेत्र को इंगित करने के लिए समझा जाता है जिसका तात्कालिक आयाम {{math|'''E'''(''t'')}} के वास्तविक भाग का अनुसरण करता है जो {{math|'''E'''<sub>m</sub> ''e<sup>jωt</sup>''}} जहाँ {{mvar|ω}} साइनसोइडल तरंग की (रेडियन) आवृत्ति मानी जा रही है। | ||
Line 235: | Line 235: | ||
<math display="block">\mathbf{S}_\mathrm{m} = \tfrac{1}{2} \mathbf{E}_\mathrm{m} \times \mathbf{H}_\mathrm{m}^* ,</math> | <math display="block">\mathbf{S}_\mathrm{m} = \tfrac{1}{2} \mathbf{E}_\mathrm{m} \times \mathbf{H}_\mathrm{m}^* ,</math> | ||
जहाँ <sup>∗</sup> जटिल संयुग्म को दर्शाता है। समय-औसत शक्ति प्रवाह (उदाहरण के लिए, पूर्ण चक्र पर औसत तात्क्षणिक पॉयंटिंग सदिश के अनुसार) तब {{math|'''S'''<sub>m</sub>}} के वास्तविक भाग द्वारा दिया जाता है | जहाँ <sup>∗</sup> जटिल संयुग्म को दर्शाता है। समय-औसत शक्ति प्रवाह (उदाहरण के लिए, पूर्ण चक्र पर औसत तात्क्षणिक पॉयंटिंग सदिश के अनुसार) तब {{math|'''S'''<sub>m</sub>}} के वास्तविक भाग द्वारा दिया जाता है काल्पनिक भाग को सामान्यतः ध्यान नही दिया जाता है, चूंकि, यह प्रतिक्रियाशील शक्ति को दर्शाता है जैसे कि [[खड़ी लहर]] या विद्युत चुम्बकीय विकिरण एंटीना के निकट और दूर के क्षेत्रों के कारण हस्तक्षेप एकल इलेक्ट्रोमैग्नेटिक समतल तरंग में ( स्टैंडिंग तरंग के अतिरिक्त जिसे विपरीत दिशाओं में यात्रा करने वाली दो ऐसी तरंगों के रूप में वर्णित किया जा सकता है), {{math|'''E'''}} और {{math|'''H'''}} बिल्कुल चरण में हैं, इसलिए उपरोक्त परिभाषा के अनुसार {{math|'''S'''<sub>m</sub>}} बस वास्तविक संख्या है। | ||
तात्कालिक पोयंटिंग सदिश | तात्कालिक पोयंटिंग सदिश {{math|'''S'''}} के समय-औसत के लिए {{math|Re('''S'''<sub>m</sub>)}} की तुल्यता निम्नानुसार दिखाई जा सकती है। | ||
<math display="block">\begin{align}\mathbf{S}(t) &= \mathbf{E}(t) \times \mathbf{H}(t)\\ | <math display="block">\begin{align}\mathbf{S}(t) &= \mathbf{E}(t) \times \mathbf{H}(t)\\ | ||
Line 292: | Line 292: | ||
== विकिरण दबाव == | == विकिरण दबाव == | ||
{{main|विकिरण दबाव}} | {{main|विकिरण दबाव}} | ||
विद्युत चुम्बकीय क्षेत्र के रैखिक संवेग का घनत्व ''S''/''c''<sup>2</sup> | विद्युत चुम्बकीय क्षेत्र के रैखिक संवेग का घनत्व ''S''/''c''<sup>2</sup> है जहां S पॉयंटिंग सदिश का परिमाण है और c मुक्त स्थान में प्रकाश की गति है। लक्ष्य की सतह पर विद्युत चुम्बकीय तरंग द्वारा लगाए गए [[विकिरण दबाव]] द्वारा दिया जाता है | ||
<math display="block">P_\mathrm{rad} = \frac{\langle S\rangle}{\mathrm{c}}.</math> | <math display="block">P_\mathrm{rad} = \frac{\langle S\rangle}{\mathrm{c}}.</math> | ||
Line 299: | Line 299: | ||
'''पोयंटिंग सदिश की विशिष्टता''' | '''पोयंटिंग सदिश की विशिष्टता''' | ||
पोयंटिंग सदिश , पोयंटिंग के प्रमेय में केवल इसके विचलन {{nowrap|∇ ⋅ '''S'''}} के माध्यम से होता है, | पोयंटिंग सदिश , पोयंटिंग के प्रमेय में केवल इसके विचलन {{nowrap|∇ ⋅ '''S'''}} के माध्यम से होता है, अर्थात, यह केवल आवश्यक है कि बंद सतह के चारों ओर पॉयंटिंग सदिश का सतही समाकल संलग्न आयतन में या बाहर विद्युत चुम्बकीय ऊर्जा के शुद्ध प्रवाह का वर्णन करता है। इसका अर्थ यह है कि S में सोलनॉइडल सदिश क्षेत्र (शून्य विचलन वाला एक) जोड़ने से अन्य क्षेत्र प्राप्त होगा जो पॉयंटिंग प्रमेय के अनुसार पॉयंटिंग सदिश क्षेत्र के इस आवश्यक गुण को संतुष्ट करता है। चूँकि सदिश कलन की पहचान कर्ल का विचलन, कोई भी सदिश क्षेत्र के कर्ल (गणित) को पोयंटिंग सदिश में जोड़ सकता है और परिणामी सदिश क्षेत्र S′ अभी भी पॉयंटिंग के प्रमेय को संतुष्ट करेगा। | ||
चूँकि तथापि पॉयंटिंग सदिश मूल रूप से केवल पॉयंटिंग के प्रमेय के लिए तैयार किया गया था जिसमें केवल इसका विचलन दिखाई देता है, यह पता चलता है कि इसके रूप का उपरोक्त विकल्प ''अद्वितीय'' है।<ref name="Jackson1998" />{{rp|pp=258–260,605–612}} निम्नलिखित खंड उदाहरण देता है जो बताता है कि क्यों ''''E''' × '''H'''.' में इच्छानुसार सोलेनोइडल क्षेत्र जोड़ना स्वीकार्य नहीं है। | चूँकि तथापि पॉयंटिंग सदिश मूल रूप से केवल पॉयंटिंग के प्रमेय के लिए तैयार किया गया था जिसमें केवल इसका विचलन दिखाई देता है, यह पता चलता है कि इसके रूप का उपरोक्त विकल्प ''अद्वितीय'' है।<ref name="Jackson1998" />{{rp|pp=258–260,605–612}} निम्नलिखित खंड उदाहरण देता है जो बताता है कि क्यों ''''E''' × '''H'''.' में इच्छानुसार सोलेनोइडल क्षेत्र जोड़ना स्वीकार्य नहीं है। | ||
Line 322: | Line 322: | ||
'''दो प्लेटों के बीच तार को जोड़ता है, तो उस तार | '''दो प्लेटों के बीच तार को जोड़ता है, तो उस तार''' | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 359: | Line 359: | ||
}} | }} | ||
[[Category: विद्युत चुम्बकीय विकिरण]] [[Category: प्रकाशिकी]] [[Category: वैक्टर (गणित और भौतिकी)]] | [[Category: विद्युत चुम्बकीय विकिरण]] [[Category: प्रकाशिकी]] [[Category: वैक्टर (गणित और भौतिकी)]] | ||
Revision as of 22:32, 24 June 2023
Articles about |
Electromagnetism |
---|
भौतिकी में, पोयंटिंग सदिश (या उमोव-पॉयंटिंग सदिश ) दिशात्मक ऊर्जा प्रवाह (प्रति इकाई समय में प्रति इकाई क्षेत्र ऊर्जा हस्तांतरण) या विद्युत चुम्बकीय क्षेत्र के शक्ति प्रवाह का प्रतिनिधित्व करता है। पोयंटिंग सदिश की एसआई इकाई वाट प्रति वर्ग मीटर (W/m2) है; आधार SI इकाइयों में kg/s3 इसका नाम इसके खोजकर्ता जॉन हेनरी पॉयंटिंग के नाम पर रखा गया है जिन्होंने पहली बार इसे 1884 में प्राप्त किया था।[1]: 132 निकोले उमोव को भी इस अवधारणा को तैयार करने का श्रेय दिया जाता है।[2] ओलिवर हीविसाइड ने भी इसे अधिक सामान्य रूप में स्वतंत्र रूप से खोजा जो परिभाषा में इच्छानुसार सदिश क्षेत्र के कर्ल (गणित) को जोड़ने की स्वतंत्रता को पहचानता है। [3] विद्युतचुंबकीय क्षेत्रों में विद्युत प्रवाह की गणना करने के लिए, पोयंटिंग सदिश का उपयोग विद्युत चुम्बकीय क्षेत्र में विद्युतचुंबकीय ऊर्जा के संरक्षण को व्यक्त करने वाले निरंतरता समीकरण पोयंटिंग प्रमेय के संयोजन में किया जाता है।
परिभाषा
पोयंटिंग के मूल पेपर और अधिकांश पाठ्यपुस्तकों में पोयंटिंग सदिश को क्रॉस उत्पाद के रूप में परिभाषित किया गया है[4][5][6]
- E विद्युत क्षेत्र सदिश है;
- H चुंबकीय क्षेत्र का सहायक क्षेत्र सदिश या 'चुंबकीयकरण क्षेत्र है।
इस अभिव्यक्ति को अधिकांशतः 'अब्राहम रूप' कहा जाता है और यह सबसे व्यापक रूप से उपयोग किया जाता है।[7] पॉयंटिंग सदिश को सामान्यतः S या N द्वारा दर्शाया जाता है।
सरल शब्दों में, पॉयंटिंग सदिश एस अंतरिक्ष के क्षेत्र में विद्युत चुम्बकीय क्षेत्रों के कारण ऊर्जा के हस्तांतरण की दिशा और दर को दर्शाता है, जो कि शक्ति (भौतिकी) है, जो खाली हो सकता है या नहीं भी हो सकता है। अधिक सख्ती से यह वह मात्रा है जिसका उपयोग पॉयंटिंग के प्रमेय को वैध बनाने के लिए किया जाना चाहिए। पॉयंटिंग की प्रमेय अनिवार्य रूप से कहती है कि क्षेत्र में प्रवेश करने वाली विद्युत चुम्बकीय ऊर्जा और क्षेत्र को छोड़ने वाली विद्युत चुम्बकीय ऊर्जा के बीच का अंतर उस क्षेत्र में परिवर्तित या विलुप्त होने वाली ऊर्जा के समान होना चाहिए, जो कि ऊर्जा के अलग रूप ( अधिकांशतः ऊष्मा) में बदल जाती है। इसलिए यदि कोई विद्युत चुम्बकीय ऊर्जा हस्तांतरण के पोयंटिंग सदिश विवरण की वैधता को स्वीकार करता है, तो पॉयंटिंग का प्रमेय केवल ऊर्जा के संरक्षण का कथन है।
यदि विद्युत चुम्बकीय ऊर्जा किसी क्षेत्र के अंदर ऊर्जा के अन्य रूपों (जैसे, यांत्रिक ऊर्जा, या गर्मी) से प्राप्त नहीं होती है या खो जाती है, तो विद्युत चुम्बकीय ऊर्जा संरक्षण नियम उस क्षेत्र के अंदर वैश्विक और स्थानीय संरक्षण नियम है, जो विशेष के रूप में निरंतरता समीकरण प्रदान करता है। पॉयंटिंग प्रमेय का स्थिति:
उदाहरण: समाक्षीय केबल में विद्युत प्रवाह
यद्यपि इलेक्ट्रोमैग्नेटिक्स में इच्छानुसार ज्यामिति वाली समस्याओं को हल करना अत्यधिक कठिन है, हम बेलनाकार निर्देशांक में विश्लेषण किए गए समाक्षीय केबल के खंड के माध्यम से विद्युत संचरण के स्थितियों में अपेक्षाकृत सरल समाधान पा सकते हैं जैसा कि संलग्न चित्र में दर्शाया गया है। हम मॉडल की समरूपता का लाभ उठा सकते हैं: जो कि θ (गोलाकार समरूपता) पर कोई निर्भरता नहीं और न ही Z (केबल के साथ स्थिति) पर मॉडल (और समाधान) को बिना किसी समय निर्भरता के डीसी परिपथ के रूप में माना जा सकता है, किन्तु निम्नलिखित समाधान रेडियो आवृति शक्ति के संचरण पर समान रूप से प्रयुक्त होता है, जब तक हम समय के पल पर विचार कर रहे हैं (जिसके समय वोल्टेज और धारा नहीं बदलता है), और केबल के पर्याप्त छोटे खंड पर (तरंग दैर्ध्य से बहुत छोटा, जिससे ये मात्राएँ जेड पर निर्भर न हों)। समाक्षीय केबल को त्रिज्या R1 के आंतरिक चालक और बाहरी विद्युत चालक के रूप में निर्दिष्ट किया गया है जिसका आंतरिक त्रिज्या R2 है (R2 से परे इसकी मोटाई निम्नलिखित विश्लेषण को प्रभावित नहीं करती है)। R1 और R2 के बीच केबल में सापेक्ष पारगम्यता εr का परावैद्युत हुआ पदार्थ होता है और हम ऐसे चालक मानते हैं जो गैर-चुंबकीय (इसलिए μ = μ0) और दोषरहित (पूर्ण चालक ) होते हैं, जो सभी वास्तविक संसार के समाक्षीय केबल के लिए अच्छे अनुमान हैं। विशिष्ट स्थितियों में.
केंद्र चालक को वोल्टेज V पर रखा जाता है और दाईं ओर I धारा खींचता है, इसलिए हम विद्युत शक्ति के मूलभूत नियमों के अनुसार P = V·I के कुल विद्युत प्रवाह की उम्मीद करते हैं। चूँकि पोयंटिंग सदिश का मूल्यांकन करके हम समाक्षीय केबल के अंदर विद्युत और चुंबकीय क्षेत्रों के संदर्भ में विद्युत प्रवाह की प्रोफ़ाइल की पहचान करने में सक्षम हैं। प्रत्येक चालक के अंदर विद्युत क्षेत्र निश्चित रूप से शून्य हैं, किन्तु चालक के बीच () समरूपता तय करती है कि वे सख्ती से रेडियल दिशा में हैं और इसे दिखाया जा सकता है ( गॉस के नियम का उपयोग करते हुए) कि उन्हें निम्नलिखित फॉर्म का पालन करना होगा:
W का मूल्यांकन विद्युत क्षेत्र को से तक एकीकृत करके किया जा सकता है, जो वोल्टेज V का ऋणात्मक होना चाहिए:
जिससे :
अन्य रूप
मैक्सवेल के समीकरणों के सूक्ष्म संस्करण में, इस परिभाषा को विद्युत क्षेत्र E और चुंबकीय प्रवाह घनत्व B (लेख में बाद में वर्णित) के संदर्भ में सूक्ष्म क्षेत्रों के संदर्भ में एक सूत्र द्वारा प्रतिस्थापित किया जाना चाहिए।
पॉयंटिंग सदिश के 'मिन्कोव्स्की फॉर्म' को प्राप्त करने के लिए विद्युत विस्थापन क्षेत्र D को चुंबकीय प्रवाह B के साथ जोड़ना भी संभव है, या और संस्करण का निर्माण करने के लिए D और H का उपयोग करना संभव है। चुनाव विवादास्पद रहा है: फेफर एट अल[8] इब्राहीम और मिन्कोव्स्की रूपों के समर्थकों के बीच शताब्दी-लंबे विवाद को संक्षेप में और कुछ सीमा तक हल करें (अब्राहम-मिन्कोवस्की विवाद देखें)।
पॉयंटिंग सदिश विद्युत चुम्बकीय ऊर्जा के लिए ऊर्जा प्रवाह सदिश के विशेष स्थितियों का प्रतिनिधित्व करता है। चूँकि किसी भी प्रकार की ऊर्जा की अंतरिक्ष में गति की दिशा होती है, साथ ही इसका घनत्व भी होता है, इसलिए ऊर्जा प्रवाह सदिश को अन्य प्रकार की ऊर्जा के लिए भी परिभाषित किया जा सकता है, उदाहरण के लिए, पॉयंटिंग के प्रमेय सामान्यीकरण के लिए उमोव-पॉयंटिंग सदिश [9] 1874 में निकोले उमोव द्वारा खोजा गया तरल और लोचदार मीडिया में ऊर्जा प्रवाह का पूरी तरह से सामान्यीकृत दृश्य में वर्णन करता है।
व्याख्या
पोयंटिंग सदिश पोयंटिंग के प्रमेय में प्रकट होता है (व्युत्पत्ति के लिए लेख देखें), ऊर्जा-संरक्षण नियम :
- E विद्युत क्षेत्र है;
- D विद्युत विस्थापन क्षेत्र है;
- B चुंबकीय प्रवाह घनत्व है;
- H चुंबकीय क्षेत्र है।[10]: 258–260
दायीं ओर का पहला पद विद्युत चुंबकीय ऊर्जा प्रवाह को छोटी मात्रा में दर्शाता है, जबकि दूसरा पद मुक्त विद्युत धाराओं पर क्षेत्र द्वारा किए गए कार्य को घटाता है, जो विद्युत चुम्बकीय ऊर्जा से अपव्यय, ऊष्मा आदि के रूप में बाहर निकलता है। इसमें परिभाषा, बाध्य विद्युत धाराएँ इस शब्द में सम्मिलित नहीं हैं और इसके बजाय S और 'u' में योगदान करती हैं।
रैखिक फैलाव (ऑप्टिक्स) और आइसोट्रोपिक (सरलता के लिए) पदार्थ के लिए मैक्सवेल के समीकरण संवैधानिक संबंधों को इस रूप में लिखा जा सकता है
- ε पदार्थ की पारगम्यता है;
- μ पदार्थ की पारगम्यता (विद्युत चुंबकत्व) है।[10]: 258–260
यहाँ ε और μ अदिश हैं, स्थिति, दिशा और आवृत्ति से स्वतंत्र वास्तविक-मूल्यवान स्थिरांक हैं।
सिद्धांत रूप में, यह पॉयंटिंग के प्रमेय को इस रूप में निर्वात और गैर-फैलाने वाले क्षेत्रों तक सीमित करता है रैखिक पदार्थ अतिरिक्त नियमो की मूल्य पर कुछ परिस्थितियों में फैलाने वाली पदार्थ का सामान्यीकरण संभव है।[10]: 262–264
पॉयंटिंग सूत्र का परिणाम यह है कि विद्युत चुम्बकीय क्षेत्र के कार्य करने के लिए, चुंबकीय और विद्युत दोनों क्षेत्रों का उपस्थित होना आवश्यक है। अकेला चुंबकीय क्षेत्र या अकेला विद्युत क्षेत्र कोई कार्य नहीं कर सकता है ।[11]
समतल तरंगें
समदैशिक दोष रहित माध्यम में प्रसारित विद्युत चुम्बकीय समतल तरंग में तात्कालिक पोयंटिंग सदिश परिमाण में तेजी से दोलन करते हुए सदैव प्रसार की दिशा में इंगित करता है। इसे आसानी से देखा जा सकता है कि समतल तरंग में, चुंबकीय क्षेत्र H(r,t) का परिमाण विद्युत क्षेत्र सदिश E(r,t) के परिमाण को η, संचरण की आंतरिक प्रतिबाधा से विभाजित करके दिया जाता है। मध्यम:
सूक्ष्म क्षेत्रों के संदर्भ में सूत्रीकरण
मैक्सवेल के समीकरणों का सूक्ष्म (विभेदक) संस्करण भौतिक मीडिया के अंतर्निर्मित मॉडल के बिना केवल मौलिक क्षेत्रों E और B को स्वीकार करता है। केवल निर्वात पारगम्यता और पारगम्यता का उपयोग किया जाता है, और कोई D या H नहीं है। जब इस मॉडल का उपयोग किया जाता है, तो पॉयंटिंग सदिश को परिभाषित किया जाता है
- μ0 वैक्यूम पारगम्यता है;
- E विद्युत क्षेत्र सदिश है;
- B चुंबकीय प्रवाह है।
यह वास्तव में पॉयंटिंग सदिश की सामान्य अभिव्यक्ति है.[12] पॉयंटिंग प्रमेय का संगत रूप है
जहां ε0 निर्वात पारगम्यता है। इसे सीधे मैक्सवेल के समीकरणों से कुल आवेश और धारा और लोरेंत्ज़ बल नियम के संदर्भ में प्राप्त किया जा सकता है।
पॉयंटिंग सदिश की दो वैकल्पिक परिभाषाएं वैक्यूम या गैर-चुंबकीय पदार्थ में समान हैं, जहां B = μ0H. अन्य सभी स्थितियों में, वे इसमें भिन्न हैं S = (1/μ0) E × B और संबंधित यू अपव्यय शब्द के बाद से पूरी तरह विकिरणशील हैं −J ⋅ E कुल धारा को आवरण करता है, जबकि E × H परिभाषा में बाध्य धाराओं से योगदान होता है, जिन्हें तब अपव्यय अवधि से बाहर रखा जाता है।[13]
चूंकि केवल सूक्ष्म क्षेत्र E और B की व्युत्पत्ति में होते हैं S = (1/μ0) E × B और ऊर्जा घनत्व, उपस्थित किसी भी पदार्थ के बारे में धारणाओं से बचा जाता है। पॉयंटिंग सदिश और ऊर्जा घनत्व के लिए प्रमेय और अभिव्यक्ति सार्वभौमिक रूप से वैक्यूम और सभी सामग्रियों में मान्य हैं।[13]
समय-औसत पॉयंटिंग सदिश
पॉयंटिंग सदिश के लिए उपरोक्त रूप तात्कालिक विद्युत और चुंबकीय क्षेत्रों के कारण तात्कालिक शक्ति प्रवाह का प्रतिनिधित्व करता है। सामान्यतः इलेक्ट्रोमैग्नेटिक्स में समस्याओं को निर्दिष्ट आवृत्ति पर सिनुसोइदल भिन्न क्षेत्रों के संदर्भ में हल किया जाता है। परिणाम तब अधिक सामान्य रूप से प्रयुक्त किए जा सकते हैं, उदाहरण के लिए, विभिन्न आवृत्तियों पर और उतार-चढ़ाव वाले आयामों के साथ ऐसी तरंगों के सुपरपोजिशन के रूप में असंगत विकिरण का प्रतिनिधित्व करते है ।
इस प्रकार हम तात्कालिक पर विचार नहीं करेंगे E(t) और H(t) ऊपर उपयोग किया गया है, किंतु प्रत्येक के लिए जटिल (सदिश ) आयाम है जो फेजर नोटेशन का उपयोग करके सुसंगत तरंग के चरण (साथ ही आयाम) का वर्णन करता है। ये जटिल आयाम सदिश समय के कार्य नहीं हैं, क्योंकि उन्हें हर समय दोलनों को संदर्भित करने के लिए समझा जाता है। चरण जैसे Em साइनसॉइडली अलग-अलग क्षेत्र को इंगित करने के लिए समझा जाता है जिसका तात्कालिक आयाम E(t) के वास्तविक भाग का अनुसरण करता है जो Em ejωt जहाँ ω साइनसोइडल तरंग की (रेडियन) आवृत्ति मानी जा रही है।
समय क्षेत्र में, यह देखा जाएगा कि तात्क्षणिक विद्युत प्रवाह 2ω की आवृत्ति पर घटता-बढ़ता रहेगा। किन्तु सामान्यतः जो रुचि होती है वह औसत शक्ति प्रवाह है जिसमें उन उतार-चढ़ावों पर विचार नहीं किया जाता है। नीचे दिए गए गणित में यह पूर्ण चक्र को एकीकृत करके पूरा किया जाता है T = 2π / ω. निम्नलिखित मात्रा जिसे अभी भी पोयंटिंग सदिश के रूप में संदर्भित किया जाता है जिसे सीधे चरणों के रूप में व्यक्त किया जाता है:
तात्कालिक पोयंटिंग सदिश S के समय-औसत के लिए Re(Sm) की तुल्यता निम्नानुसार दिखाई जा सकती है।
कुछ परंपराओं के अनुसार, उपरोक्त परिभाषा में 1/2 का कारक छोड़ा जा सकता है। विद्युत प्रवाह का ठीक से वर्णन करने के लिए 1/2 से गुणा करना आवश्यक है क्योंकि Em और Hm के परिमाण दोलनशील मात्राओं के चरम क्षेत्रों को संदर्भित करते हैं। यदि क्षेत्र को उनके मूल माध्य वर्ग (आरएमएस) मानों के संदर्भ में वर्णित किया जाता है (जो प्रत्येक कारक से छोटा होता है), तो सही औसत विद्युत प्रवाह 1/2 से गुणा किए बिना प्राप्त होता है .
प्रतिरोधी अपव्यय
यदि किसी चालक का महत्वपूर्ण प्रतिरोध है तो उस चालक की सतह के पास, पॉयंटिंग सदिश चालक की ओर झुकेगा और उससे टकराएगा। पॉयंटिंग सदिश चालक में प्रवेश करने के बाद, यह ऐसी दिशा में मुड़ा हुआ है जो सतह के लगभग लंबवत है।[14]: 61 यह स्नेल के नियम और चालक के अंदर प्रकाश की बहुत धीमी गति का परिणाम है। किसी चालक में प्रकाश की गति की परिभाषा और गणना दी जा सकती है।[15]: 402 चालक के अंदर, पॉयंटिंग सदिश विद्युत चुम्बकीय क्षेत्र से तार में ऊर्जा प्रवाह का प्रतिनिधित्व करता है, जिससे तार में प्रतिरोधक जूल ताप उत्पन्न होता है। स्नेल के नियम से प्रारंभिक होने वाली व्युत्पत्ति के लिए रिट्ज पृष्ठ 454 देखें।[16]: 454
विकिरण दबाव
विद्युत चुम्बकीय क्षेत्र के रैखिक संवेग का घनत्व S/c2 है जहां S पॉयंटिंग सदिश का परिमाण है और c मुक्त स्थान में प्रकाश की गति है। लक्ष्य की सतह पर विद्युत चुम्बकीय तरंग द्वारा लगाए गए विकिरण दबाव द्वारा दिया जाता है
पोयंटिंग सदिश की विशिष्टता
पोयंटिंग सदिश , पोयंटिंग के प्रमेय में केवल इसके विचलन ∇ ⋅ S के माध्यम से होता है, अर्थात, यह केवल आवश्यक है कि बंद सतह के चारों ओर पॉयंटिंग सदिश का सतही समाकल संलग्न आयतन में या बाहर विद्युत चुम्बकीय ऊर्जा के शुद्ध प्रवाह का वर्णन करता है। इसका अर्थ यह है कि S में सोलनॉइडल सदिश क्षेत्र (शून्य विचलन वाला एक) जोड़ने से अन्य क्षेत्र प्राप्त होगा जो पॉयंटिंग प्रमेय के अनुसार पॉयंटिंग सदिश क्षेत्र के इस आवश्यक गुण को संतुष्ट करता है। चूँकि सदिश कलन की पहचान कर्ल का विचलन, कोई भी सदिश क्षेत्र के कर्ल (गणित) को पोयंटिंग सदिश में जोड़ सकता है और परिणामी सदिश क्षेत्र S′ अभी भी पॉयंटिंग के प्रमेय को संतुष्ट करेगा।
चूँकि तथापि पॉयंटिंग सदिश मूल रूप से केवल पॉयंटिंग के प्रमेय के लिए तैयार किया गया था जिसमें केवल इसका विचलन दिखाई देता है, यह पता चलता है कि इसके रूप का उपरोक्त विकल्प अद्वितीय है।[10]: 258–260, 605–612 निम्नलिखित खंड उदाहरण देता है जो बताता है कि क्यों 'E × H.' में इच्छानुसार सोलेनोइडल क्षेत्र जोड़ना स्वीकार्य नहीं है।
स्थिर क्षेत्र
स्थैतिक क्षेत्रों में पॉयंटिंग सदिश का विचार मैक्सवेल समीकरणों की सापेक्ष प्रकृति को दर्शाता है और लोरेंत्ज़ बल के चुंबकीय घटक की बढ़िया समझ की अनुमति देता है, q(v × B). वर्णन करने के लिए, संलग्न चित्र पर विचार किया जाता है, जो बेलनाकार संधारित्र में पॉयंटिंग सदिश का वर्णन करता है, जो स्थायी चुंबक द्वारा उत्पन्न H क्षेत्र (पृष्ठ की ओर संकेत करते हुए) में स्थित है। यद्यपि केवल स्थिर विद्युत और चुंबकीय क्षेत्र हैं, पॉयंटिंग सदिश की गणना विद्युत चुम्बकीय ऊर्जा का दक्षिणावर्त वृत्ताकार प्रवाह उत्पन्न करती है, जिसका कोई आरंभ या अंत नहीं है।
जबकि परिसंचारी ऊर्जा प्रवाह अभौतिक लग सकता है, कोणीय गति के संरक्षण को बनाए रखने के लिए इसका अस्तित्व आवश्यक है। मुक्त स्थान में विद्युत चुम्बकीय तरंग का संवेग उसकी शक्ति को c, प्रकाश की गति से विभाजित करने के समान होता है। इसलिए विद्युत चुम्बकीय ऊर्जा का गोलाकार प्रवाह 'कोणीय' गति का अर्थ है।[17] यदि कोई आवेशित संधारित्र की दो प्लेटों के बीच तार को जोड़ता है, तो उस तार पर लोरेंत्ज़ बल होगा जबकि संधारित्र निर्वहन धारा और पार किए गए चुंबकीय क्षेत्र के कारण निर्वहन कर रहा है; वह बल केंद्रीय अक्ष के स्पर्शरेखा होगा और इस प्रकार प्रणाली में कोणीय गति जोड़ देगा। वह कोणीय संवेग छिपे हुए कोणीय संवेग से मेल खाएगा, जो पॉयंटिंग सदिश द्वारा प्रकट होता है, जो संधारित्र के निर्वहन से पहले परिचालित होता है।
दो प्लेटों के बीच तार को जोड़ता है, तो उस तार
यह भी देखें
संदर्भ
- ↑ Stratton, Julius Adams (1941). Electromagnetic Theory (1st ed.). New York: McGraw-Hill. ISBN 978-0-470-13153-4.
- ↑ "Пойнтинга вектор". Физическая энциклопедия (in русский). Retrieved 2022-02-21.
- ↑ Nahin, Paul J. (2002). Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age. p. 131. ISBN 9780801869099.
- ↑ Poynting, John Henry (1884). "On the Transfer of Energy in the Electromagnetic Field". Philosophical Transactions of the Royal Society of London. 175: 343–361. doi:10.1098/rstl.1884.0016.
- ↑ Grant, Ian S.; Phillips, William R. (1990). Electromagnetism (2nd ed.). New York: John Wiley & Sons. ISBN 978-0-471-92712-9.
- ↑ Griffiths, David J. (2012). Introduction to Electrodynamics (3rd ed.). Boston: Addison-Wesley. ISBN 978-0-321-85656-2.
- ↑ Kinsler, Paul; Favaro, Alberto; McCall, Martin W. (2009). "Four Poynting Theorems". European Journal of Physics. 30 (5): 983. arXiv:0908.1721. Bibcode:2009EJPh...30..983K. doi:10.1088/0143-0807/30/5/007. S2CID 118508886.
- ↑ Pfeifer, Robert N. C.; Nieminen, Timo A.; Heckenberg, Norman R.; Rubinsztein-Dunlop, Halina (2007). "Momentum of an Electromagnetic Wave in Dielectric Media". Reviews of Modern Physics. 79 (4): 1197. arXiv:0710.0461. Bibcode:2007RvMP...79.1197P. doi:10.1103/RevModPhys.79.1197.
- ↑ Umov, Nikolay Alekseevich (1874). "Ein Theorem über die Wechselwirkungen in Endlichen Entfernungen". Zeitschrift für Mathematik und Physik. 19: 97–114.
- ↑ 10.0 10.1 10.2 10.3 Jackson, John David (1998). Classical Electrodynamics (3rd ed.). New York: John Wiley & Sons. ISBN 978-0-471-30932-1.
- ↑ "के. मैकडॉनल्ड्स भौतिकी के उदाहरण - रेलगन" (PDF). puhep1.princeton.edu. Retrieved 2021-02-14.
- ↑ Zangwill, Andrew (2013). आधुनिक इलेक्ट्रोडायनामिक्स. Cambridge University Press. p. 508. ISBN 9780521896979.
- ↑ 13.0 13.1 Richter, Felix; Florian, Matthias; Henneberger, Klaus (2008). "Poynting's Theorem and Energy Conservation in the Propagation of Light in Bounded Media". EPL. 81 (6): 67005. arXiv:0710.0515. Bibcode:2008EL.....8167005R. doi:10.1209/0295-5075/81/67005. S2CID 119243693.
- ↑ Harrington, Roger F. (2001). Time-Harmonic Electromagnetic Fields (2nd ed.). McGraw-Hill. ISBN 978-0-471-20806-8.
- ↑ Hayt, William (2011). Engineering Electromagnetics (4th ed.). New York: McGraw-Hill. ISBN 978-0-07-338066-7.
- ↑ Reitz, John R.; Milford, Frederick J.; Christy, Robert W. (2008). Foundations of Electromagnetic Theory (4th ed.). Boston: Addison-Wesley. ISBN 978-0-321-58174-7.
- ↑ Feynman, Richard Phillips (2011). The Feynman Lectures on Physics. Vol. II: Mainly Electromagnetism and Matter (The New Millennium ed.). New York: Basic Books. ISBN 978-0-465-02494-0.
अग्रिम पठन
- Becker, Richard (1982). Electromagnetic Fields and Interactions (1st ed.). Mineola, New York: Dover Publications. ISBN 978-0-486-64290-1.
- Edminister, Joseph; Nahvi, Mahmood (2013). Electromagnetics (4th ed.). New York: McGraw-Hill. ISBN 978-0-07-183149-9.