आदर्श (आदेश सिद्धांत): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 12: Line 12:
ऑर्डर आदर्श की कमजोर धारणा को पोसेट {{mvar|P}} के उपसमुच्चय के रूप में परिभाषित किया गया है जो उपरोक्त शर्तों 1 एवं 2 को संतुष्ट करता है। दूसरे शब्दों में, ऑर्डर आदर्श निचला समुच्चय है। इसी प्रकार, आदर्श को निर्देशित निम्न समुच्चय के रूप में भी परिभाषित किया जा सकता है।
ऑर्डर आदर्श की कमजोर धारणा को पोसेट {{mvar|P}} के उपसमुच्चय के रूप में परिभाषित किया गया है जो उपरोक्त शर्तों 1 एवं 2 को संतुष्ट करता है। दूसरे शब्दों में, ऑर्डर आदर्श निचला समुच्चय है। इसी प्रकार, आदर्श को निर्देशित निम्न समुच्चय के रूप में भी परिभाषित किया जा सकता है।


आदर्श की [[द्वैत (आदेश सिद्धांत)]] धारणा, अर्थात्, सभी ≤ को विपरीत कर एवं आदान-प्रदान करके प्राप्त की गई अवधारणा <math>\vee</math> साथ <math>\wedge,</math> [[फ़िल्टर (गणित)]] है.
आदर्श की [[द्वैत (आदेश सिद्धांत)]] धारणा, अर्थात्, सभी ≤ को विपरीत कर एवं आदान-प्रदान करके प्राप्त की गई अवधारणा <math>\vee</math> साथ <math>\wedge,</math> [[फ़िल्टर (गणित)]] है।


[[फ्रिंक आदर्श]], छद्म आदर्श एवं डॉयल छद्म आदर्श जाली आदर्श की धारणा के विभिन्न सामान्यीकरण हैं।
[[फ्रिंक आदर्श]], छद्म आदर्श एवं डॉयल छद्म आदर्श जाली आदर्श की धारणा के विभिन्न सामान्यीकरण हैं।
Line 54: Line 54:
इस फॉर्म के सभी बाइनरी जॉइन के सेट को नीचे की ओर बंद करके आदर्श ''N'' का निर्माण किया जा सकता है, अर्थात{{गणित|''एन'' {{=}} {{Mसेट| ''X'' | ''x'' ≤ ''m'' &or; ''a'' कुछ ''M'' के लिए &isin; ''M''}}}}। यह सरलता से लिया जाता है कि ''N'' वास्तव में ''M'' से आदर्श विच्छेदन है जो ''M'' से सख्ती से बड़ा है। यह ''M'' की अधिकतमता का खंडन करता है और इस प्रकार यह धारणा कि ''M'' अभाज्य नहीं है।
इस फॉर्म के सभी बाइनरी जॉइन के सेट को नीचे की ओर बंद करके आदर्श ''N'' का निर्माण किया जा सकता है, अर्थात{{गणित|''एन'' {{=}} {{Mसेट| ''X'' | ''x'' ≤ ''m'' &or; ''a'' कुछ ''M'' के लिए &isin; ''M''}}}}। यह सरलता से लिया जाता है कि ''N'' वास्तव में ''M'' से आदर्श विच्छेदन है जो ''M'' से सख्ती से बड़ा है। यह ''M'' की अधिकतमता का खंडन करता है और इस प्रकार यह धारणा कि ''M'' अभाज्य नहीं है।


दूसरे विषय के लिए, मान लें कि ''M'' में {{math|''m'' &or; के साथ कुछ ''m'' है। ''a'}} ''F'' में। अब यदि ''M'' में कोई तत्व ''n'' ऐसा है कि {{math|''n'' &or; ''b''}} ''F'' में है, कोई पाता है कि {{math|(''m'' &or; ''n'') &or; ''b''}} और {{गणित|(''M'' &या; ''N'') &या; ''a''}} दोनों ''F'' में हैं।  तब उनका मिलना ''F'' में होता है और, वितरण के अनुसार, {{गणित|(''M'' &या; ''N'') &या; (''a'' &and; ''b'')}} ''F'' में भी है। दूसरी ओर, ''एम'' के तत्वों का यह सीमित जुड़ाव स्पष्ट रूप से ''M'' में है, जैसे कि ''N'' का अनुमानित अस्तित्व दो सेटों की असंगति का खंडन करता है। इसलिए ''M'' के सभी तत्वों ''n'' का संबंध ''b'' से है जो कि ''F'' में नहीं है। कोई उपरोक्त निर्माण को ''A'' के स्थान पर ''B'' के साथ प्रस्तुत कर सकता है ताकि आदर्श प्राप्त किया जा सके जो ''F'' से असंबद्ध होते हुए ''M'' से सख्ती से बड़ा हो। इससे प्रमाण समाप्त हो जाता है।}}
दूसरे विषय के लिए, मान लें कि ''M'' में {{math|''m'' &or; के साथ कुछ ''m'' है। ''a'}} ''F'' में। अब यदि ''M'' में कोई तत्व ''n'' ऐसा है कि {{math|''n'' &or; ''b''}} ''F'' में है, कोई पाता है कि {{math|(''m'' &or; ''n'') &or; ''b''}} और {{गणित|(''M'' &या; ''N'') &या; ''a''}} दोनों ''F'' में हैं।  तब उनका मिलना ''F'' में होता है और, वितरण के अनुसार, {{गणित|(''M'' &या; ''N'') &या; (''a'' &and; ''b'')}} ''F'' में भी है। दूसरी ओर, ''एम'' के तत्वों का यह सीमित जुड़ाव स्पष्ट रूप से ''M'' में है, जैसे कि ''N'' का अनुमानित अस्तित्व दो सेटों की असंगति का खंडन करता है। इसलिए ''M'' के सभी तत्वों ''n'' का संबंध ''b'' से है जो कि ''F'' में नहीं है। कोई उपरोक्त निर्माण को ''A'' के स्थान पर ''B'' के साथ प्रस्तुत कर सकता है जिससे आदर्श प्राप्त किया जा सके जो ''F'' से असंबद्ध होते हुए ''M'' से सख्ती से बड़ा हो। इससे प्रमाण समाप्त हो जाता है।}}


चूँकि, सामान्यतः यह स्पष्ट नहीं है कि क्या कोई आदर्श M सम्मिलित है जो इस अर्थ में अधिकतम है। फिर भी, यदि हम अपने समुच्चय सिद्धांत में पसंद के सिद्धांत को मानते हैं, तो प्रत्येक असंयुक्त फिल्टर आदर्श जोड़ी के लिए M का अस्तित्व प्रदर्शित किया जा सकता है। विशेष विषय में कि माना गया क्रम [[बूलियन बीजगणित (संरचना)]] है, इस प्रमेय को बूलियन प्राइम आदर्श प्रमेय कहा जाता है। यह पसंद के स्वयंसिद्ध से सख्ती से कमजोर है एवं यह पता चलता है कि आदर्शों के कई आदेश-सैद्धांतिक अनुप्रयोगों के लिए एवं कुछ भी आवश्यक नहीं है।
चूँकि, सामान्यतः यह स्पष्ट नहीं है कि क्या कोई आदर्श M सम्मिलित है जो इस अर्थ में अधिकतम है। फिर भी, यदि हम अपने समुच्चय सिद्धांत में पसंद के सिद्धांत को मानते हैं, तो प्रत्येक असंयुक्त फिल्टर आदर्श जोड़ी के लिए M का अस्तित्व प्रदर्शित किया जा सकता है। विशेष विषय में कि माना गया क्रम [[बूलियन बीजगणित (संरचना)]] है, इस प्रमेय को बूलियन प्राइम आदर्श प्रमेय कहा जाता है। यह पसंद के स्वयंसिद्ध से सख्ती से कमजोर है एवं यह पता चलता है कि आदर्शों के कई आदेश-सैद्धांतिक अनुप्रयोगों के लिए एवं कुछ भी आवश्यक नहीं है।
Line 112: Line 112:
श्रेणी:आदेश सिद्धांत
श्रेणी:आदेश सिद्धांत


 
[[Category:Collapse templates]]
[[Category: Machine Translated Page]]
[[Category:Created On 01/07/2023]]
[[Category:Created On 01/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]

Latest revision as of 09:19, 12 July 2023

गणितीय क्रम सिद्धांत में, आदर्श आंशिक रूप से क्रमबद्ध समुच्चय (पोसेट) का विशेष उपसमुच्चय है। यद्यपि यह शब्द ऐतिहासिक रूप से अमूर्त बीजगणित के वलय आदर्श की धारणा से लिया गया था, पश्चात में इसे भिन्न धारणा के लिए सामान्यीकृत किया गया है। क्रम एवं जाली सिद्धांत में कई निर्माणों के लिए आदर्शों का अधिक महत्व है।

परिभाषाएँ

आंशिक रूप से ऑर्डर किए गए उपसमुच्चय यह आदर्श है यदि निम्नलिखित स्थितियाँ प्रस्तुत होती हैं

  1. I अन्य-रिक्त है,
  2. प्रत्येक x के लिए I एवं y के लिए P में, yx तात्पर्य यह है कि y, I के अंदर है (I निचला समुच्चय है),
  3. प्रत्येक x, y के लिए, I में कुछ तत्व z है I, जैसे कि xz एवं yz  (I निर्देशित समुच्चय है)।

चूँकि यह मनमाना पोसेट के लिए आदर्श को परिभाषित करने का सबसे सामान्य उपाय है, इसे मूल रूप से केवल जाली (आदेश) के लिए परिभाषित किया गया था। इस विषय में, निम्नलिखित समकक्ष परिभाषा दी जा सकती है, उपसमुच्चय I जाली का यह आदर्श है यदि एवं केवल यदि यह निचला समुच्चय है जो परिमित जोड़ (उच्चतम) के तहत बंद है; अर्थात्, यह अन्य-रिक्त है एवं सभी x, y के लिए है एवं I में सभी x, y के लिए तत्व है।

ऑर्डर आदर्श की कमजोर धारणा को पोसेट P के उपसमुच्चय के रूप में परिभाषित किया गया है जो उपरोक्त शर्तों 1 एवं 2 को संतुष्ट करता है। दूसरे शब्दों में, ऑर्डर आदर्श निचला समुच्चय है। इसी प्रकार, आदर्श को निर्देशित निम्न समुच्चय के रूप में भी परिभाषित किया जा सकता है।

आदर्श की द्वैत (आदेश सिद्धांत) धारणा, अर्थात्, सभी ≤ को विपरीत कर एवं आदान-प्रदान करके प्राप्त की गई अवधारणा साथ फ़िल्टर (गणित) है।

फ्रिंक आदर्श, छद्म आदर्श एवं डॉयल छद्म आदर्श जाली आदर्श की धारणा के विभिन्न सामान्यीकरण हैं।

आदर्श या फ़िल्टर को उचित कहा जाता है यदि यह पूर्ण समुच्चय P के बराबर नहीं है।[1]

सबसे छोटा आदर्श जिसमें दिया गया तत्व p सम्मिलित है, प्रमुख आदर्श है एवं इस स्थिति में p को आदर्श का प्रमुख तत्व कहा जाता है। प्रमुख आदर्श मूलधन के लिए p इस प्रकार p = {xP | xp} दिया जाता है।

शब्दावली भ्रम

आदर्श एवं क्रम आदर्श की उपरोक्त परिभाषाएँ मानक हैं, [1][2][3] परन्तु शब्दावली में कुछ भ्रम है। कभी-कभी आदर्श, ऑर्डर आदर्श, फ्रिंक आदर्श, या आंशिक ऑर्डर आदर्श जैसे शब्द एवं परिभाषाएँ दूसरे का अर्थ होती हैं।[4][5]


प्रधान आदर्श

किसी आदर्श का महत्वपूर्ण विशेष विषय उन आदर्शों से बनता है जिनके समुच्चय सैद्धांतिक पूरक फ़िल्टर होते हैं, अर्थात व्युत्क्रम क्रम में आदर्श है। ऐसे आदर्शों को प्रधान आदर्श कहा जाता है। यह भी ध्यान रखें कि, चूंकि हमें आदर्शों एवं फिल्टरों को अन्य-रिक्त होने की आवश्यकता है, इसलिए प्रत्येक अभाज्य आदर्श आवश्यक रूप से उचित है। जाली के लिए, प्रमुख आदर्शों को इस प्रकार चित्रित किया जा सकता है:

उपसमुच्चय I जाली का प्रमुख आदर्श है, यदि एवं केवल यदि

  1. I, P का उचित आदर्श है, एवं
  2. P के सभी तत्वों x एवं y के लिए, में I का आशय xI या yI है।

यह सरलता से जांचा जा सकता है कि यह वास्तव में यह बताने के बराबर है कि फिल्टर है (जो दोहरे अर्थ में अभाज्य भी है)।

पूर्ण जाली के लिए एक पूर्णतः प्रधान आदर्श की आगे की धारणा सार्थक है। इसे अतिरिक्त संपत्ति के साथ उचित आदर्श I के रूप में परिभाषित किया गया है, जब भी कुछ मनमाना समुच्चय A का मिलन (न्यूनतम) I में होता है, तो A का कुछ अवयव भी I होता है। इसलिए यह सिर्फ विशिष्ट प्रधान आदर्श है जो उपरोक्त शर्तों को अनंत बैठकों तक विस्तारित करता है।

प्रधान आदर्शों का अस्तित्व सामान्यतः स्पष्ट नहीं है, एवं प्रायः ZF (पसंद के स्वयंसिद्ध सिद्धांत के बिना ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत) के अन्दर प्रमुख आदर्शों की संतोषजनक मात्रा प्राप्त नहीं की जा सकती है। इस विषय पर विभिन्न बूलियन प्राइम आदर्श प्रमेयों में चर्चा की गई है, जो कई अनुप्रयोगों के लिए आवश्यक हैं जिनके लिए प्राइम आदर्शों की आवश्यकता होती है।

अधिकतम आदर्श

आदर्श I अधिकतम आदर्श है यदि यह उचित है एवं कोई उचित आदर्श J नहीं है जो कि I का यह सख्त सुपरसमुच्चय है। इसी प्रकार फिल्टर F अधिकतम है यदि यह उचित है एवं कोई उचित फिल्टर नहीं है जो सख्त सुपरसमुच्चय है।

जब पोसेट वितरणात्मक जाली होता है, तो अधिकतम आदर्श एवं फ़िल्टर आवश्यक रूप से अभाज्य होते हैं, जबकि इस कथन का विपरीत सामान्य रूप से उचित है।

मैक्सिमम फिल्टर को कभी-कभी अल्ट्राफ़िल्टर कहा जाता है, परन्तु यह शब्दावली प्रायः बूलियन बीजगणित के लिए आरक्षित होती है, जहां मैक्सिमम फिल्टर (आदर्श), फिल्टर (आदर्श) होता है जिसमें प्रत्येक तत्व a के लिए बिल्कुल तत्व {a, ¬a} होता है। बूलियन बीजगणित में, प्राइम आदर्श एवं मैक्सिमम आदर्श शब्द समान होते हैं, जैसे कि प्राइम फिल्टर एवं मैक्सिमम फिल्टर शब्द समान होते हैं।

आदर्शों की अधिकतमता की दिलचस्प धारणा है: आदर्श I एवं फ़िल्टर F पर विचार करें जैसे कि I, F से असंयुक्त समुच्चय है। हम ऐसे आदर्श M में रुचि रखते हैं जो सभी आदर्शों में अधिकतम है इसमें I सम्मिलित है एवं F से असंयुक्त हैं। वितरणात्मक जालकों के विषय में ऐसा M सदैव प्रमुख आदर्श होता है। इस कथन का प्रमाण इस प्रकार है।

Proof

मान लें कि फिल्टर M से असंबद्धता के संबंध में आदर्श M अधिकतम है। विरोधाभास के लिए मान लीजिए कि M अभाज्य नहीं है, अर्थात a और b तत्वों की जोड़ी सम्मिलित है जैसे कि aM में b परन्तु M में न तो a और न ही b हैं। इस विषय पर विचार करें कि M में सभी m के लिए, ma F में नहीं है।


इस फॉर्म के सभी बाइनरी जॉइन के सेट को नीचे की ओर बंद करके आदर्श N का निर्माण किया जा सकता है, अर्थातTemplate:गणित। यह सरलता से लिया जाता है कि N वास्तव में M से आदर्श विच्छेदन है जो M से सख्ती से बड़ा है। यह M की अधिकतमता का खंडन करता है और इस प्रकार यह धारणा कि M अभाज्य नहीं है।

दूसरे विषय के लिए, मान लें कि M में m ∨ के साथ कुछ m है। a' F में। अब यदि M में कोई तत्व n ऐसा है कि nb F में है, कोई पाता है कि (mn) ∨ b और Template:गणित दोनों F में हैं। तब उनका मिलना F में होता है और, वितरण के अनुसार, Template:गणित F में भी है। दूसरी ओर, एम के तत्वों का यह सीमित जुड़ाव स्पष्ट रूप से M में है, जैसे कि N का अनुमानित अस्तित्व दो सेटों की असंगति का खंडन करता है। इसलिए M के सभी तत्वों n का संबंध b से है जो कि F में नहीं है। कोई उपरोक्त निर्माण को A के स्थान पर B के साथ प्रस्तुत कर सकता है जिससे आदर्श प्राप्त किया जा सके जो F से असंबद्ध होते हुए M से सख्ती से बड़ा हो। इससे प्रमाण समाप्त हो जाता है।

चूँकि, सामान्यतः यह स्पष्ट नहीं है कि क्या कोई आदर्श M सम्मिलित है जो इस अर्थ में अधिकतम है। फिर भी, यदि हम अपने समुच्चय सिद्धांत में पसंद के सिद्धांत को मानते हैं, तो प्रत्येक असंयुक्त फिल्टर आदर्श जोड़ी के लिए M का अस्तित्व प्रदर्शित किया जा सकता है। विशेष विषय में कि माना गया क्रम बूलियन बीजगणित (संरचना) है, इस प्रमेय को बूलियन प्राइम आदर्श प्रमेय कहा जाता है। यह पसंद के स्वयंसिद्ध से सख्ती से कमजोर है एवं यह पता चलता है कि आदर्शों के कई आदेश-सैद्धांतिक अनुप्रयोगों के लिए एवं कुछ भी आवश्यक नहीं है।

अनुप्रयोग

ऑर्डर सिद्धांत के कई अनुप्रयोगों में आदर्शों एवं फिल्टर का निर्माण महत्वपूर्ण उपकरण है।

  • बूलियन बीजगणित के लिए स्टोन के प्रतिनिधित्व प्रमेय में, अधिकतम आदर्शों (या, समकक्ष रूप से निषेध मानचित्र, अल्ट्राफिल्टर के माध्यम से) का उपयोग टोपोलॉजिकल स्पेस के बिंदुओं के समुच्चय को प्राप्त करने के लिए किया जाता है, जिनके क्लोपेन समुच्चय मूल बूलियन बीजगणित के समरूपता हैं।
  • आदेश सिद्धांत पोसेट को अतिरिक्त पूर्णता (आदेश सिद्धांत) गुणों के साथ पोसेट में परिवर्तित करने के लिए कई पूर्णता (आदेश सिद्धांत) जानता है। उदाहरण के लिए, किसी दिए गए आंशिक क्रम P का आदर्श समापन उपसमुच्चय समावेशन द्वारा क्रमित P के सभी आदर्शों का समुच्चय है। यह निर्माण P द्वारा उत्पन्न मुक्त वस्तु निर्देशित पूर्ण आंशिक क्रम उत्पन्न करता है। आदर्श प्रमुख है यदि एवं केवल यदि यह आदर्श पूर्णता में सघन तत्व है, तो मूल पोसेट को सघन तत्वों से युक्त उपपोसेट के रूप में पुनर्प्राप्त किया जा सकता है। इसके अतिरिक्त, प्रत्येक बीजगणितीय स्थिति को उसके सघन तत्वों के समुच्चय के आदर्श समापन के रूप में पुनर्निर्मित किया जा सकता है।

इतिहास

बूलियन बीजगणित (संरचना) के लिए सबसे पूर्व आदर्श मार्शल एच. स्टोन द्वारा प्रस्तुत किए गए थे,[6] जहां यह नाम अमूर्त बीजगणित के वलय आदर्शों से लिया गया था। उन्होंने इस शब्दावली को इसलिए स्वीकारा क्योंकि, बूलियन बीजगणित (संरचना) एवं बूलियन रिंगों की श्रेणियों की समरूपता का उपयोग करते हुए, दोनों धारणाएँ वास्तव में समान होती हैं।

किसी भी पोसेट का सामान्यीकरण ऑरिन फ्रिंक द्वारा किया गया था।[7]


यह भी देखें

टिप्पणियाँ

  1. 1.0 1.1 Burris & Sankappanavar 1981, Def. 8.2.
  2. Davey & Priestley 2002, pp. 20, 44.
  3. Frenchman & Hart 2020, pp. 2, 7.
  4. Partial Order Ideal, Wolfram MathWorld, 2002, retrieved 2023-02-26
  5. George M. Bergman (2008), "On lattices and their ideal lattices, and posets and their ideal posets" (PDF), Tbilisi Math. J., 1: 89
  6. Stone (1934) and Stone (1935)
  7. Frink (1954)


संदर्भ



इतिहास के बारे में

श्रेणी:साक्ष्य युक्त लेख श्रेणी:आदर्श (रिंग सिद्धांत) श्रेणी:आदेश सिद्धांत