हेगनर संख्या: Difference between revisions
(Created page with "संख्या सिद्धांत में, एक हेगनर संख्या (जैसा कि जॉन हॉर्टन कॉनवे औ...") |
No edit summary |
||
Line 1: | Line 1: | ||
[[संख्या सिद्धांत]] में, | [[संख्या सिद्धांत]] में, हेगनर संख्या (जैसा कि [[जॉन हॉर्टन कॉनवे]] और गाइ द्वारा कहा गया है) [[वर्ग-मुक्त पूर्णांक]] है | वर्ग-मुक्त धनात्मक पूर्णांक ''d'' इस प्रकार है कि काल्पनिक [[द्विघात क्षेत्र]] <math>\Q\left[\sqrt{-d}\right]</math> [[आदर्श वर्ग समूह]] 1 है। समतुल्य, पूर्णांकों का वलय <math>\Q\left[\sqrt{-d}\right]</math> [[अद्वितीय गुणनखंडन]] है।<ref>{{cite book | ||
| last = Conway | | last = Conway | ||
| first = John Horton | | first = John Horton | ||
Line 12: | Line 12: | ||
}} | }} | ||
</ref> | </ref> | ||
ऐसी संख्याओं का निर्धारण [[वर्ग संख्या समस्या]] का | ऐसी संख्याओं का निर्धारण [[वर्ग संख्या समस्या]] का विशेष मामला है, और वे संख्या सिद्धांत में कई आश्चर्यजनक परिणामों का आधार हैं। | ||
(बेकर-)स्टार्क-हीगनर प्रमेय के अनुसार, वास्तव में नौ हीगनर संख्याएँ हैं: | (बेकर-)स्टार्क-हीगनर प्रमेय के अनुसार, वास्तव में नौ हीगनर संख्याएँ हैं: | ||
{{block indent|left=1.6|1, 2, 3, 7, 11, 19, 43, 67, and 163. {{OEIS|A003173}}}} | {{block indent|left=1.6|1, 2, 3, 7, 11, 19, 43, 67, and 163. {{OEIS|A003173}}}} | ||
इस परिणाम का अनुमान [[कार्ल फ्रेडरिक गॉस]] द्वारा लगाया गया था और 1952 में [[कर्ट हेगनर]] द्वारा इसे छोटी खामियों तक साबित किया गया था। एलन बेकर (गणितज्ञ) और [[हेरोल्ड स्टार्क]] ने 1966 में स्वतंत्र रूप से परिणाम को साबित किया, और स्टार्क ने आगे संकेत दिया कि हेगनर के प्रमाण में अंतर मामूली था।<ref>{{citation|last=Stark|first=H. M.|authorlink=Harold Stark|year=1969|url=http://deepblue.lib.umich.edu/bitstream/2027.42/33039/1/0000425.pdf|title=On the gap in the theorem of Heegner|journal=[[Journal of Number Theory]]|volume=1|issue=1|pages=16–27|doi=10.1016/0022-314X(69)90023-7|bibcode=1969JNT.....1...16S|hdl=2027.42/33039|hdl-access=free}}</ref> | इस परिणाम का अनुमान [[कार्ल फ्रेडरिक गॉस]] द्वारा लगाया गया था और 1952 में [[कर्ट हेगनर]] द्वारा इसे छोटी खामियों तक साबित किया गया था। एलन बेकर (गणितज्ञ) और [[हेरोल्ड स्टार्क]] ने 1966 में स्वतंत्र रूप से परिणाम को साबित किया, और स्टार्क ने आगे संकेत दिया कि हेगनर के प्रमाण में अंतर मामूली था।<ref>{{citation|last=Stark|first=H. M.|authorlink=Harold Stark|year=1969|url=http://deepblue.lib.umich.edu/bitstream/2027.42/33039/1/0000425.pdf|title=On the gap in the theorem of Heegner|journal=[[Journal of Number Theory]]|volume=1|issue=1|pages=16–27|doi=10.1016/0022-314X(69)90023-7|bibcode=1969JNT.....1...16S|hdl=2027.42/33039|hdl-access=free}}</ref> | ||
==यूलर का अभाज्य-जनक बहुपद== | ==यूलर का अभाज्य-जनक बहुपद== | ||
अभाज्यों के लिए यूलर का सूत्र#अभाज्य सूत्र और बहुपद फलन|अभाज्य-जनक बहुपद | अभाज्यों के लिए यूलर का सूत्र#अभाज्य सूत्र और बहुपद फलन|अभाज्य-जनक बहुपद | ||
Line 31: | Line 29: | ||
1, 2, और 3 आवश्यक रूप में नहीं हैं, इसलिए हेगनर संख्याएँ जो काम करती हैं वे 7, 11, 19, 43, 67, 163 हैं, जो 2, 3, 5, 11, 17, के लिए यूलर फॉर्म के प्राइम जनरेटिंग फ़ंक्शन प्रदान करती हैं। 41; इन बाद वाले नंबरों को फ्रांकोइस ले लियोनिस|एफ द्वारा यूलर के भाग्यशाली नंबर कहा जाता है। ले लियोनिस।<ref>Le Lionnais, F. Les nombres remarquables. Paris: Hermann, pp. 88 and 144, 1983.</ref> | 1, 2, और 3 आवश्यक रूप में नहीं हैं, इसलिए हेगनर संख्याएँ जो काम करती हैं वे 7, 11, 19, 43, 67, 163 हैं, जो 2, 3, 5, 11, 17, के लिए यूलर फॉर्म के प्राइम जनरेटिंग फ़ंक्शन प्रदान करती हैं। 41; इन बाद वाले नंबरों को फ्रांकोइस ले लियोनिस|एफ द्वारा यूलर के भाग्यशाली नंबर कहा जाता है। ले लियोनिस।<ref>Le Lionnais, F. Les nombres remarquables. Paris: Hermann, pp. 88 and 144, 1983.</ref> | ||
==लगभग पूर्णांक और रामानुजन का स्थिरांक== | ==लगभग पूर्णांक और रामानुजन का स्थिरांक== | ||
रामानुजन का स्थिरांक [[पारलौकिक संख्या]] है<ref>{{MathWorld|title=Transcendental Number|urlname=TranscendentalNumber}} gives <math>e^{\pi\sqrt{d}}, d \in Z^*</math>, based on | रामानुजन का स्थिरांक [[पारलौकिक संख्या]] है<ref>{{MathWorld|title=Transcendental Number|urlname=TranscendentalNumber}} gives <math>e^{\pi\sqrt{d}}, d \in Z^*</math>, based on | ||
Nesterenko, Yu. V. "On Algebraic Independence of the Components of Solutions of a System of Linear Differential Equations." Izv. Akad. Nauk SSSR, Ser. Mat. 38, 495–512, 1974. English translation in Math. USSR 8, 501–518, 1974.</ref> | Nesterenko, Yu. V. "On Algebraic Independence of the Components of Solutions of a System of Linear Differential Equations." Izv. Akad. Nauk SSSR, Ser. Mat. 38, 495–512, 1974. English translation in Math. USSR 8, 501–518, 1974.</ref> | ||
<math>e^{\pi \sqrt{163}}</math>, जो | <math>e^{\pi \sqrt{163}}</math>, जो [[लगभग [[पूर्णांक]]]] है, इसमें यह गणितीय संयोग है#पूर्णांक में पाई या ई और संख्या 163 शामिल है:<ref>[http://mathworld.wolfram.com/RamanujanConstant.html Ramanujan Constant – from Wolfram MathWorld<!-- Bot-generated title -->]</ref> | ||
<math display=block>e^{\pi \sqrt{163}} = 262\,537\,412\,640\,768\,743.999\,999\,999\,999\,25\ldots\approx 640\,320^3+744.</math> | <math display=block>e^{\pi \sqrt{163}} = 262\,537\,412\,640\,768\,743.999\,999\,999\,999\,25\ldots\approx 640\,320^3+744.</math> | ||
इस संख्या की खोज 1859 में गणितज्ञ [[चार्ल्स हर्मिट]] ने की थी।<ref>{{cite book | इस संख्या की खोज 1859 में गणितज्ञ [[चार्ल्स हर्मिट]] ने की थी।<ref>{{cite book | ||
Line 47: | Line 43: | ||
| isbn = 0-224-06135-6 }} | | isbn = 0-224-06135-6 }} | ||
</ref> | </ref> | ||
[[ अमेरिकी वैज्ञानिक ]] पत्रिका में 1975 अप्रैल फूल्स डे लेख में,<ref>{{cite journal | [[ अमेरिकी वैज्ञानिक | अमेरिकी वैज्ञानिक]] पत्रिका में 1975 अप्रैल फूल्स डे लेख में,<ref>{{cite journal | ||
| last = Gardner | | last = Gardner | ||
| first = Martin | | first = Martin | ||
Line 59: | Line 55: | ||
| bibcode = 1975SciAm.232e.102G | | bibcode = 1975SciAm.232e.102G | ||
}} | }} | ||
</ref> गणितीय खेलों के स्तंभकार [[मार्टिन गार्डनर]] ने झूठा दावा किया कि संख्या वास्तव में | </ref> गणितीय खेलों के स्तंभकार [[मार्टिन गार्डनर]] ने झूठा दावा किया कि संख्या वास्तव में पूर्णांक थी, और भारतीय गणितीय प्रतिभा [[श्रीनिवास रामानुजन]] ने इसकी भविष्यवाणी की थी - इसलिए इसका नाम रखा गया। | ||
इस संयोग को [[जटिल गुणन]] और j-अपरिवर्तनीय के q-विस्तार|q-विस्तार द्वारा समझाया गया है। | इस संयोग को [[जटिल गुणन]] और j-अपरिवर्तनीय के q-विस्तार|q-विस्तार द्वारा समझाया गया है। | ||
===विस्तार=== | ===विस्तार=== | ||
निम्नलिखित में, j(z) सम्मिश्र संख्या z के j-अपरिवर्तनीय को दर्शाता है। संक्षेप में, <math>\textstyle j\left(\frac{1+\sqrt{-d}}{2}\right)</math> d हेगनर संख्या के लिए | निम्नलिखित में, j(z) सम्मिश्र संख्या z के j-अपरिवर्तनीय को दर्शाता है। संक्षेप में, <math>\textstyle j\left(\frac{1+\sqrt{-d}}{2}\right)</math> d हेगनर संख्या के लिए पूर्णांक है, और | ||
<math display=block>e^{\pi \sqrt{d}} \approx -j\left(\frac{1+\sqrt{-d}}{2}\right) + 744</math> | <math display=block>e^{\pi \sqrt{d}} \approx -j\left(\frac{1+\sqrt{-d}}{2}\right) + 744</math> | ||
क्यू-विस्तार के माध्यम से। | क्यू-विस्तार के माध्यम से। | ||
अगर <math>\tau</math> | अगर <math>\tau</math> द्विघात अपरिमेय है, तो j-अपरिवर्तनीय डिग्री का [[बीजगणितीय पूर्णांक]] है <math>\left|\mathrm{Cl}\bigl(\mathbf{Q}(\tau)\bigr)\right|</math>, [[वर्ग संख्या (संख्या सिद्धांत)]] की <math>\mathbf{Q}(\tau)</math> और जिस न्यूनतम (मोनिक इंटीग्रल) बहुपद को यह संतुष्ट करता है उसे 'हिल्बर्ट वर्ग बहुपद' कहा जाता है। इस प्रकार यदि काल्पनिक द्विघात विस्तार <math>\mathbf{Q}(\tau)</math> इसकी कक्षा संख्या 1 है (इसलिए d हेगनर संख्या है), j-अपरिवर्तनीय पूर्णांक है। | ||
जे का क्यू-विस्तार|क्यू-विस्तार, इसके फूरियर श्रृंखला विस्तार के साथ [[लॉरेंट श्रृंखला]] के रूप में लिखा गया है <math>q=e^{2 \pi i \tau}</math>, इस प्रकार शुरू होता है: | जे का क्यू-विस्तार|क्यू-विस्तार, इसके फूरियर श्रृंखला विस्तार के साथ [[लॉरेंट श्रृंखला]] के रूप में लिखा गया है <math>q=e^{2 \pi i \tau}</math>, इस प्रकार शुरू होता है: | ||
Line 85: | Line 81: | ||
<math display=block>\frac{-196\,884}{e^{\pi \sqrt{163}}} \approx \frac{-196\,884}{640\,320^3+744} | <math display=block>\frac{-196\,884}{e^{\pi \sqrt{163}}} \approx \frac{-196\,884}{640\,320^3+744} | ||
\approx -0.000\,000\,000\,000\,75</math> | \approx -0.000\,000\,000\,000\,75</math> | ||
क्यों समझा रहा हूँ <math>e^{\pi \sqrt{163}}</math> | क्यों समझा रहा हूँ <math>e^{\pi \sqrt{163}}</math> पूर्णांक होने के लगभग ऊपर के भीतर है। | ||
== पाई सूत्र == | == पाई सूत्र == | ||
Line 91: | Line 87: | ||
चुडनोव्स्की बंधुओं ने 1987 में इसकी खोज की | चुडनोव्स्की बंधुओं ने 1987 में इसकी खोज की | ||
<math display=block>\frac{1}{\pi} = \frac{12}{640\,320^\frac32} \sum_{k=0}^\infty \frac{(6k)! (163 \cdot 3\,344\,418k + 13\,591\,409)}{(3k)!(k!)^3 (-640\,320)^{3k}},</math> | <math display=block>\frac{1}{\pi} = \frac{12}{640\,320^\frac32} \sum_{k=0}^\infty \frac{(6k)! (163 \cdot 3\,344\,418k + 13\,591\,409)}{(3k)!(k!)^3 (-640\,320)^{3k}},</math> | ||
जिसका | जिसका प्रमाण इस तथ्य का उपयोग करता है | ||
<math display=block>j\left(\frac{1+\sqrt{-163}}{2}\right) = -640\,320^3.</math> | <math display=block>j\left(\frac{1+\sqrt{-163}}{2}\right) = -640\,320^3.</math> | ||
समान सूत्रों के लिए, रामानुजन-सातो श्रृंखला देखें। | समान सूत्रों के लिए, रामानुजन-सातो श्रृंखला देखें। | ||
Line 97: | Line 93: | ||
==अन्य हेगनर संख्याएँ== | ==अन्य हेगनर संख्याएँ== | ||
चार सबसे बड़ी हेगनर संख्याओं के लिए, जो सन्निकटन प्राप्त होता है<ref>These can be checked by computing | चार सबसे बड़ी हेगनर संख्याओं के लिए, जो सन्निकटन प्राप्त होता है<ref>These can be checked by computing | ||
<math display=block>\sqrt[3]{e^{\pi\sqrt{d}}-744}</math> | <math display="block">\sqrt[3]{e^{\pi\sqrt{d}}-744}</math> | ||
on a calculator, and | on a calculator, and | ||
<math display=block>\frac{196\,884}{e^{\pi\sqrt{d}}}</math> | <math display="block">\frac{196\,884}{e^{\pi\sqrt{d}}}</math> | ||
for the linear term of the error.</ref> निम्नानुसार हैं। | for the linear term of the error.</ref> निम्नानुसार हैं। | ||
<math display=block>\begin{align} | <math display=block>\begin{align} | ||
Line 134: | Line 130: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
क्यूबिक्स के | क्यूबिक्स के फ़ंक्शन का मूल बिल्कुल [[डेडेकाइंड और फ़ंक्शन]] η(τ) के भागफल द्वारा दिया जा सकता है, मॉड्यूलर फ़ंक्शन जिसमें 24वां रूट शामिल है, और जो सन्निकटन में 24 की व्याख्या करता है। उन्हें घात 4 की बीजगणितीय संख्याओं द्वारा भी बारीकी से अनुमानित किया जा सकता है,<ref>{{cite web|url=http://sites.google.com/site/tpiezas/ramanujan|title=Extending Ramanujan's Dedekind Eta Quotients}}</ref> | ||
<math display=block>\begin{align} | <math display=block>\begin{align} | ||
e^{\pi \sqrt{19}} &\approx 3^5 \left(3-\sqrt{2\left(1- \tfrac{96}{24}+1\sqrt{3\cdot19}\right)} \right)^{-2}-12.000\,06\dots\\ | e^{\pi \sqrt{19}} &\approx 3^5 \left(3-\sqrt{2\left(1- \tfrac{96}{24}+1\sqrt{3\cdot19}\right)} \right)^{-2}-12.000\,06\dots\\ | ||
Line 200: | Line 196: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
==लगातार अभाज्य== | ==लगातार अभाज्य== | ||
यदि कोई गणना करता है, तो उसे | यदि कोई गणना करता है, तो उसे विषम अभाज्य p दिया गया है <math>k^2 \mod p</math> के लिए <math>\textstyle k=0,1,\dots,\frac{p-1}{2}</math> (यह पर्याप्त है क्योंकि <math>\left(p-k\right)^2\equiv k^2\mod p</math>), किसी को लगातार कंपोजिट मिलता है, उसके बाद लगातार अभाज्य संख्याएं मिलती हैं, यदि और केवल यदि पी हेगनर संख्या है।<ref>{{Cite web|url=http://www.mathpages.com/home/kmath263.htm|title=Simple Complex Quadratic Fields}}</ref> | ||
विवरण के लिए, [[रिचर्ड मोलिन]] द्वारा लिखित द्विघात बहुपद, जो लगातार विशिष्ट अभाज्य और जटिल द्विघात क्षेत्रों के वर्ग समूहों का निर्माण करते हैं, देखें।<ref>{{cite journal|author=Mollin, R. A.|title=द्विघात बहुपद, जटिल द्विघात क्षेत्रों के क्रमागत, विशिष्ट अभाज्य और वर्ग समूहों का निर्माण करते हैं|journal=Acta Arithmetica|volume=74|year=1996|pages=17–30|doi=10.4064/aa-74-1-17-30|url=http://matwbn.icm.edu.pl/ksiazki/aa/aa74/aa7412.pdf}}</ref> | विवरण के लिए, [[रिचर्ड मोलिन]] द्वारा लिखित द्विघात बहुपद, जो लगातार विशिष्ट अभाज्य और जटिल द्विघात क्षेत्रों के वर्ग समूहों का निर्माण करते हैं, देखें।<ref>{{cite journal|author=Mollin, R. A.|title=द्विघात बहुपद, जटिल द्विघात क्षेत्रों के क्रमागत, विशिष्ट अभाज्य और वर्ग समूहों का निर्माण करते हैं|journal=Acta Arithmetica|volume=74|year=1996|pages=17–30|doi=10.4064/aa-74-1-17-30|url=http://matwbn.icm.edu.pl/ksiazki/aa/aa74/aa7412.pdf}}</ref> | ||
==नोट्स और संदर्भ== | ==नोट्स और संदर्भ== | ||
{{reflist}} | {{reflist}} |
Revision as of 19:28, 5 July 2023
संख्या सिद्धांत में, हेगनर संख्या (जैसा कि जॉन हॉर्टन कॉनवे और गाइ द्वारा कहा गया है) वर्ग-मुक्त पूर्णांक है | वर्ग-मुक्त धनात्मक पूर्णांक d इस प्रकार है कि काल्पनिक द्विघात क्षेत्र आदर्श वर्ग समूह 1 है। समतुल्य, पूर्णांकों का वलय अद्वितीय गुणनखंडन है।[1] ऐसी संख्याओं का निर्धारण वर्ग संख्या समस्या का विशेष मामला है, और वे संख्या सिद्धांत में कई आश्चर्यजनक परिणामों का आधार हैं।
(बेकर-)स्टार्क-हीगनर प्रमेय के अनुसार, वास्तव में नौ हीगनर संख्याएँ हैं:
इस परिणाम का अनुमान कार्ल फ्रेडरिक गॉस द्वारा लगाया गया था और 1952 में कर्ट हेगनर द्वारा इसे छोटी खामियों तक साबित किया गया था। एलन बेकर (गणितज्ञ) और हेरोल्ड स्टार्क ने 1966 में स्वतंत्र रूप से परिणाम को साबित किया, और स्टार्क ने आगे संकेत दिया कि हेगनर के प्रमाण में अंतर मामूली था।[2]
यूलर का अभाज्य-जनक बहुपद
अभाज्यों के लिए यूलर का सूत्र#अभाज्य सूत्र और बहुपद फलन|अभाज्य-जनक बहुपद
जॉर्ज यूरी रेनिच[3] यह साबित कर दिया
(ध्यान दें कि पैदावार , इसलिए अधिकतम है.)
1, 2, और 3 आवश्यक रूप में नहीं हैं, इसलिए हेगनर संख्याएँ जो काम करती हैं वे 7, 11, 19, 43, 67, 163 हैं, जो 2, 3, 5, 11, 17, के लिए यूलर फॉर्म के प्राइम जनरेटिंग फ़ंक्शन प्रदान करती हैं। 41; इन बाद वाले नंबरों को फ्रांकोइस ले लियोनिस|एफ द्वारा यूलर के भाग्यशाली नंबर कहा जाता है। ले लियोनिस।[4]
लगभग पूर्णांक और रामानुजन का स्थिरांक
रामानुजन का स्थिरांक पारलौकिक संख्या है[5] , जो [[लगभग पूर्णांक]] है, इसमें यह गणितीय संयोग है#पूर्णांक में पाई या ई और संख्या 163 शामिल है:[6]
इस संयोग को जटिल गुणन और j-अपरिवर्तनीय के q-विस्तार|q-विस्तार द्वारा समझाया गया है।
विस्तार
निम्नलिखित में, j(z) सम्मिश्र संख्या z के j-अपरिवर्तनीय को दर्शाता है। संक्षेप में, d हेगनर संख्या के लिए पूर्णांक है, और
अगर द्विघात अपरिमेय है, तो j-अपरिवर्तनीय डिग्री का बीजगणितीय पूर्णांक है , वर्ग संख्या (संख्या सिद्धांत) की और जिस न्यूनतम (मोनिक इंटीग्रल) बहुपद को यह संतुष्ट करता है उसे 'हिल्बर्ट वर्ग बहुपद' कहा जाता है। इस प्रकार यदि काल्पनिक द्विघात विस्तार इसकी कक्षा संख्या 1 है (इसलिए d हेगनर संख्या है), j-अपरिवर्तनीय पूर्णांक है।
जे का क्यू-विस्तार|क्यू-विस्तार, इसके फूरियर श्रृंखला विस्तार के साथ लॉरेंट श्रृंखला के रूप में लिखा गया है , इस प्रकार शुरू होता है:
पाई सूत्र
चुडनोव्स्की बंधुओं ने 1987 में इसकी खोज की
अन्य हेगनर संख्याएँ
चार सबसे बड़ी हेगनर संख्याओं के लिए, जो सन्निकटन प्राप्त होता है[9] निम्नानुसार हैं।
और कारक के रूप में,
पूर्णांकों के पुनः प्रकटन पर ध्यान दें साथ ही यह तथ्य भी
इसी प्रकार घात 6 की बीजगणितीय संख्याओं के लिए,
कक्षा 2 संख्या
तीन संख्याएँ 88, 148, 232, जिसके लिए काल्पनिक द्विघात क्षेत्र आदर्श वर्ग समूह 2 है, हेगनर संख्याएं नहीं हैं लेकिन लगभग पूर्णांकों के संदर्भ में कुछ समान गुण हैं। उदाहरण के लिए,
और
लगातार अभाज्य
यदि कोई गणना करता है, तो उसे विषम अभाज्य p दिया गया है के लिए (यह पर्याप्त है क्योंकि ), किसी को लगातार कंपोजिट मिलता है, उसके बाद लगातार अभाज्य संख्याएं मिलती हैं, यदि और केवल यदि पी हेगनर संख्या है।[14] विवरण के लिए, रिचर्ड मोलिन द्वारा लिखित द्विघात बहुपद, जो लगातार विशिष्ट अभाज्य और जटिल द्विघात क्षेत्रों के वर्ग समूहों का निर्माण करते हैं, देखें।[15]
नोट्स और संदर्भ
- ↑ Conway, John Horton; Guy, Richard K. (1996). The Book of Numbers. Springer. p. 224. ISBN 0-387-97993-X.
- ↑ Stark, H. M. (1969), "On the gap in the theorem of Heegner" (PDF), Journal of Number Theory, 1 (1): 16–27, Bibcode:1969JNT.....1...16S, doi:10.1016/0022-314X(69)90023-7, hdl:2027.42/33039
- ↑ Rabinovitch, Georg "Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern." Proc. Fifth Internat. Congress Math. ( Cambridge) 1, 418–421, 1913.
- ↑ Le Lionnais, F. Les nombres remarquables. Paris: Hermann, pp. 88 and 144, 1983.
- ↑ Weisstein, Eric W. "Transcendental Number". MathWorld. gives , based on Nesterenko, Yu. V. "On Algebraic Independence of the Components of Solutions of a System of Linear Differential Equations." Izv. Akad. Nauk SSSR, Ser. Mat. 38, 495–512, 1974. English translation in Math. USSR 8, 501–518, 1974.
- ↑ Ramanujan Constant – from Wolfram MathWorld
- ↑ Barrow, John D (2002). The Constants of Nature. London: Jonathan Cape. ISBN 0-224-06135-6.
- ↑ Gardner, Martin (April 1975). "Mathematical Games". Scientific American. Scientific American, Inc. 232 (4): 127. Bibcode:1975SciAm.232e.102G. doi:10.1038/scientificamerican0575-102.
- ↑ These can be checked by computing
on a calculator, andfor the linear term of the error.
- ↑ "More on e^(pi*SQRT(163))".
- ↑ The absolute deviation of a random real number (picked uniformly from [[unit interval|[0,1]]], say) is a uniformly distributed variable on [0, 0.5], so it has absolute average deviation and median absolute deviation of 0.25, and a deviation of 0.22 is not exceptional.
- ↑ "Pi Formulas".
- ↑ "Extending Ramanujan's Dedekind Eta Quotients".
- ↑ "Simple Complex Quadratic Fields".
- ↑ Mollin, R. A. (1996). "द्विघात बहुपद, जटिल द्विघात क्षेत्रों के क्रमागत, विशिष्ट अभाज्य और वर्ग समूहों का निर्माण करते हैं" (PDF). Acta Arithmetica. 74: 17–30. doi:10.4064/aa-74-1-17-30.
बाहरी संबंध
- Weisstein, Eric W. "Heegner Number". MathWorld.
- OEIS sequence A003173 (Heegner numbers: imaginary quadratic fields with unique factorization)
- Gauss' Class Number Problem for Imaginary Quadratic Fields, by Dorian Goldfeld: Detailed history of problem.
- Clark, Alex. "163 and Ramanujan Constant". Numberphile. Brady Haran. Archived from the original on 2013-05-16. Retrieved 2013-04-02.