फ़र्मेट संख्या: Difference between revisions

From Vigyanwiki
(No difference)

Revision as of 12:28, 12 July 2023

Fermat prime
Named afterPierre de Fermat
No. of known terms5
Conjectured no. of terms5
Subsequence ofFermat numbers
First terms3, 5, 17, 257, 65537
Largest known term65537
OEIS indexA019434

गणित में एक फ़र्मेट संख्या जिसका नाम पियरे डी फ़र्मेट के नाम पर रखा गया है जिन्होंने सबसे पहले उनका अध्ययन किया था इस रूप की एक प्राकृतिक संख्या है

जहाँ n एक गैर-ऋणात्मक पूर्णांक है। पहले कुछ फ़र्मेट नंबर हैं:

3 (संख्या), 5 (संख्या), 17 (संख्या), 257 (संख्या), 65537 (संख्या), 4294967297, 18446744073709551617, ... (sequence A000215 in the OEIS).

यदि 2k+1 अभाज्य संख्या है और k > 0, तो k 2 की घात होनी चाहिए, इसलिए 2k + 1 एक फ़र्मेट संख्या है; ऐसे अभाज्यों को फर्मेट अभाज्य कहा जाता है। As of 2023, एकमात्र ज्ञात फ़र्मेट प्राइम हैं F0 = 3, F1 = 5, F2 = 17, F3 = 257, और F4 = 65537 (sequence A019434 in the OEIS); अनुमान बताते हैं कि अब और नहीं हैं।

मूलभूत गुण

फ़र्मेट संख्याएँ निम्नलिखित पुनरावृत्ति संबंध को संतुष्ट करती हैं:

n ≥ 1 के लिए,


n ≥ 2 के लिए इनमें से प्रत्येक संबंध को गणितीय प्रेरण द्वारा सिद्ध किया जा सकता है। दूसरे समीकरण से हम गोल्डबैक के प्रमेय (क्रिश्चियन गोल्डबैक के नाम पर) का अनुमान लगा सकते हैं: कोई भी दो फ़र्मेट संख्याएं 1 से अधिक एक सामान्य पूर्णांक कारक साझा नहीं करती हैं। इसे देखने के लिए मान लें कि 0 ≤ i < j और Fi और Fj का एक सामान्य कारक a > 1 है फिर a दोनों को विभाजित करता है

और Fj इसलिए a उनके अंतर को विभाजित करता है, 2. चूँकि a > 1, यह a = 2 को बल देता है। यह एक विरोधाभास है, क्योंकि प्रत्येक फ़र्मेट संख्या स्पष्ट रूप से विषम है। परिणाम के रूप में हमें अभाज्य संख्याओं की अनंतता का एक और प्रमाण मिलता है: प्रत्येक Fn के लिए, एक अभाज्य गुणनखंड pn चुनें; तो अनुक्रम {pn} अलग-अलग अभाज्य संख्याओं का एक अनंत अनुक्रम है।

अतिरिक्त गुण

  • किसी भी फ़र्मेट प्राइम को दो pth घातों के अंतर के रूप में व्यक्त नहीं किया जा सकता है, जहाँ p एक विषम प्राइम है।
  • F0 और F1 के अपवाद के साथ फ़र्मेट संख्या का अंतिम अंक 7 है।
  • सभी फ़र्मेट संख्याओं के व्युत्क्रमों का योग (sequence A051158 in the OEIS) अपरिमेय संख्या है. (सोलोमन डब्ल्यू गोलोम्ब, 1963)

प्राचीनता

फ़र्मेट संख्याओं और फ़र्मेट प्राइम का अध्ययन सबसे पहले पियरे डी फ़र्मेट द्वारा किया गया था, जिन्होंने अनुमान लगाया था कि सभी फ़र्मेट संख्याएँ अभाज्य हैं। वास्तव में पहले पांच फ़र्मेट नंबर F0, ..., F4 को आसानी से अभाज्य दिखाया गया है। 1732 में लियोनहार्ड यूलर ने फ़र्मेट के अनुमान का खंडन किया जब उन्होंने दिखाया कि

यूलर ने सिद्ध किया कि n ≥ 2 के लिए Fn के प्रत्येक कारक का रूप k2n+1 + 1 होना चाहिए (बाद में लुकास द्वारा इसे k2n+2 + 1 में सुधार किया गया)।


यह कि 641, F5 का एक गुणनखंड है, समानता 641 = 27 × 5 + 1 और 641 = 24 + 54 से निकाला जा सकता है। यह पहली समानता से पता चलता है कि 27 × 5 ≡ −1 (मॉड 641) और इसलिए (बढ़ाते हुए) चौथी शक्ति) वह 228 × 54 ≡ 1 (मॉड 641)दूसरी ओर, दूसरी समानता का तात्पर्य है कि 54 ≡ −24 (मॉड 641)। इन सर्वांगसमताओं का अर्थ है कि 232 ≡ −1 (मॉड 641)।

फ़र्मेट को संभवतः यूलर द्वारा बाद में सिद्ध किए गए कारकों के स्वरूप के बारे में पता था, इसलिए यह उत्सुक लगता है कि वह कारक को खोजने के लिए सीधी गणना का पालन करने में विफल रहा था।[1] एक सामान्य व्याख्या यह है कि फ़र्मेट ने एक कम्प्यूटेशनल गलती की है।

n > 4 के साथ कोई अन्य ज्ञात फ़र्मेट अभाज्य Fn नहीं है, किन्तु बड़े n के लिए फ़र्मेट संख्याओं के बारे में बहुत कम जानकारी है। वास्तव में, निम्नलिखित में से प्रत्येक एक खुली समस्या है:



2014 तक, यह ज्ञात है कि Fn 5 ≤ n ≤ 32 के लिए मिश्रित है, चूँकि इनमें से, Fn का पूर्ण गुणनखंडन केवल 0 ≤ n ≤ 11 के लिए जाना जाता है, और n = 20 और n = 24 के लिए कोई ज्ञात अभाज्य कारक नहीं हैं।[3] समग्र के रूप में ज्ञात सबसे बड़ी फ़र्मेट संख्या F18233954 है, और इसका अभाज्य कारक 7 × 218233956 + 1 अक्टूबर 2020 में खोजा गया था।

विवेकपूर्ण तर्क

अनुमान बताते हैं कि F4 अंतिम फ़र्मेट प्राइम है।

अभाज्य संख्या प्रमेय का तात्पर्य है कि N के चारों ओर एक उपयुक्त अंतराल में एक यादृच्छिक पूर्णांक संभावना 1 / ln N के साथ अभाज्य है। यदि कोई अनुमान का उपयोग करता है कि एक फ़र्मेट संख्या अपने आकार के यादृच्छिक पूर्णांक के समान संभावना के साथ अभाज्य है, और वह F5, ..., F32 समग्र हैं, तो F4 से परे (या समकक्ष, F32 से परे) फ़र्मेट प्राइम की अपेक्षित संख्या होनी चाहिए

कोई इस संख्या की व्याख्या इस संभावना की ऊपरी सीमा के रूप में कर सकता है कि F4 से परे एक फ़र्मेट प्राइम उपस्थित है।

यह तर्क कोई कठोर प्रमाण नहीं है. एक बात के लिए, यह माना जाता है कि फ़र्मेट संख्याएँ यादृच्छिक रूप से व्यवहार करती हैं, किन्तु फ़र्मेट संख्याओं के कारकों में विशेष गुण होते हैं। बोकलान और जॉन एच. कॉनवे ने एक अधिक स्पष्ट विश्लेषण प्रकाशित किया जिसमें बताया गया कि एक और फ़र्मेट प्राइम होने की संभावना एक अरब में एक से भी कम है।[4]

समतुल्य स्थितियाँ

मान लीजिए nवाँ फ़र्मेट संख्या है। पेपिन का परीक्षण बताता है कि n > 0 के लिए,

अभाज्य है यदि और केवल यदि

व्यंजक का मूल्यांकन बार-बार वर्ग करके मॉड्यूल किया जा सकता है। यह परीक्षण को एक तेज़ बहुपद-समय एल्गोरिथ्म बनाता है। किन्तु फ़र्मेट संख्याएँ इतनी तेज़ी से बढ़ती हैं कि उनमें से केवल मुट्ठी भर का ही उचित मात्रा और स्थान में परीक्षण किया जा सकता है।

k2m + 1 के रूप की संख्याओं के लिए कुछ परीक्षण हैं जैसे कि प्रारंभिकता के लिए फ़र्मेट संख्याओं के कारक है।

प्रोथ का प्रमेय (1878)। मान लीजिए N = k2m + 1 विषम k < 2m के साथ यदि कोई पूर्णांक ऐसा है
तब अभाज्य है. इसके विपरीत, यदि उपरोक्त अनुरूपता कायम नहीं है, और इसके अतिरिक्त
(जेकोबी प्रतीक देखें)
तब समग्र है.

यदि N = Fn > 3, तो उपरोक्त जैकोबी प्रतीक सदैव −1 के समान होता है a = 3, और प्रोथ के प्रमेय के इस विशेष स्थिति को पेपिन परीक्षण के रूप में जाना जाता है। चूँकि पेपिन के परीक्षण और प्रोथ के प्रमेय को कुछ फ़र्मेट संख्याओं की समग्रता को सिद्ध करने के लिए कंप्यूटर पर प्रयुक्त किया गया है, किन्तु कोई भी परीक्षण एक विशिष्ट गैर-तुच्छ कारक नहीं देता है। वास्तव में, n = 20 और 24 के लिए कोई विशिष्ट अभाज्य गुणनखंड ज्ञात नहीं है।

गुणनखंडीकरण

फ़र्मेट संख्याओं के आकार के कारण, गुणनखंड बनाना या यहां तक ​​कि प्रारंभिकता की जांच करना भी कठिन है। पेपिन का परीक्षण फ़र्मेट संख्याओं की प्रारंभिकता के लिए एक आवश्यक और पर्याप्त स्थिति देता है, और इसे आधुनिक कंप्यूटरों द्वारा कार्यान्वित किया जा सकता है। अण्डाकार वक्र विधि संख्याओं के छोटे अभाज्य विभाजक ज्ञात करने की एक तेज़ विधि है। वितरित कंप्यूटिंग परियोजना फर्माटसर्च ने फर्मेट संख्याओं के कुछ कारक खोजे हैं। यवेस गैलोट के proth.exe का उपयोग बड़े फ़र्मेट संख्याओं के गुणनखंडों को खोजने के लिए किया गया है। एडौर्ड लुकास ने यूलर के उपर्युक्त परिणाम में सुधार करते हुए 1878 में सिद्ध किया कि फ़र्मेट संख्या का प्रत्येक कारक , कम से कम 2 के साथ, फॉर्म का है (प्रोथ संख्या देखें), जहां k एक धनात्मक पूर्णांक है। अपने आप में, इससे ज्ञात फ़र्मेट अभाज्यों की आदिमता को सिद्ध करना आसान हो जाता है।

पहले बारह फ़र्मेट संख्याओं के गुणनखंडन इस प्रकार हैं:

F0 = 21 + 1 = 3 अभाज्य है
F1 = 22 + 1 = 5 अभाज्य है
F2 = 24 + 1 = 17 अभाज्य है
F3 = 28 + 1 = 257 अभाज्य है
F4 = 216 + 1 = 65,537 सबसे बड़ा ज्ञात फ़र्मेट प्राइम है
F5 = 232 + 1 = 4,294,967,297
= 641 × 6,700,417 (पूरी तरह से तथ्यात्मक 1732[5])
F6 = 264 + 1 = 18,446,744,073,709,551,617 (20 डिजिट्स )
= 274,177 × 67,280,421,310,721 (14 डिजिट्स ) (पूरी तरह से तथ्यात्मक 1855)
F7 = 2128 + 1 = 340,282,366,920,938,463,463,374,607,431,768,211,457 (39 डिजिट्स )
= 59,649,589,127,497,217 (17 डिजिट्स ) × 5,704,689,200,685,129,054,721 (22 डिजिट्स ) (पूरी तरह से तथ्यात्मक 1970)
F8 = 2256 + 1 = 115,792,089,237,316,195,423,570,985,008,687,907,853,269,984,665,640,564,039,457,584,007,913,129,
639,937 (78 डिजिट्स )
= 1,238,926,361,552,897 (16 डिजिट्स ) ×
93,461,639,715,357,977,769,163,558,199,606,896,584,051,237,541,638,188,580,280,321 (62 डिजिट्स ) (पूरी तरह से तथ्यात्मक 1980)
F9 = 2512 + 1 = 13,407,807,929,942,597,099,574,024,998,205,846,127,479,365,820,592,393,377,723,561,443,721,764,0
30,073,546,976,801,874,298,166,903,427,690,031,858,186,486,050,853,753,882,811,946,569,946,433,6
49,006,084,097 (155 डिजिट्स )
= 2,424,833 × 7,455,602,825,647,884,208,337,395,736,200,454,918,783,366,342,657 (49 डिजिट्स ) ×
741,640,062,627,530,801,524,787,141,901,937,474,059,940,781,097,519,023,905,821,316,144,415,759,
504,705,008,092,818,711,693,940,737 (99 डिजिट्स ) (पूरी तरह से तथ्यात्मक 1990)
F10 = 21024 + 1 = 179,769,313,486,231,590,772,930...304,835,356,329,624,224,137,217 (309 डिजिट्स )
= 45,592,577 × 6,487,031,809 × 4,659,775,785,220,018,543,264,560,743,076,778,192,897 (40 डिजिट्स ) ×
130,439,874,405,488,189,727,484...806,217,820,753,127,014,424,577 (252 डिजिट्स ) (पूरी तरह से तथ्यात्मक 1995)
F11 = 22048 + 1 = 32,317,006,071,311,007,300,714,8...193,555,853,611,059,596,230,657 (617 डिजिट्स )
= 319,489 × 974,849 × 167,988,556,341,760,475,137 (21 डिजिट्स ) × 3,560,841,906,445,833,920,513 (22 डिजिट्स ) ×
173,462,447,179,147,555,430,258...491,382,441,723,306,598,834,177 (564 डिजिट्स ) (पूरी तरह से तथ्यात्मक 1988)


अप्रैल 2023 तक, केवल F0 से F11 को पूरी तरह से सम्मिलित किया गया है।[3] वितरित कंप्यूटिंग प्रोजेक्ट फ़र्मेट सर्च फ़र्मेट संख्याओं के नए कारकों की खोज कर रहा है।[6] ओईआईएस में सभी फ़र्मेट कारकों का सेट A050922 (या, क्रमबद्ध, A023394) है।

फ़र्मेट संख्या के निम्नलिखित कारक 1950 से पहले ज्ञात थे (तब से, डिजिटल कंप्यूटर ने अधिक कारकों को खोजने में सहायता की है):

वर्ष खोजक फ़र्मेट संख्या कारक
1732 यूलर
1732 यूलर (पूरी तरह से तथ्यात्मक)
1855 क्लॉसन
1855 क्लॉसन (पूरी तरह से तथ्यात्मक)
1877 परवुशिन
1878 परवुशिन
1886 सीलहॉफ
1899 कनिंघम
1899 कनिंघम
1903 वेस्टर्न
1903 वेस्टर्न
1903 वेस्टर्न
1903 वेस्टर्न
1903 कुलेन
1906 मोरेहेड
1925 क्रैचिक

As of April 2023, फ़र्मेट संख्याओं के 362 अभाज्य गुणनखंड ज्ञात हैं, और 318 फ़र्मेट संख्याओं को मिश्रित माना जाता है।[3] हर साल कई नए फ़र्मेट कारक पाए जाते हैं।[7]


स्यूडोप्राइम्स और फ़र्मेट संख्याएँ

फॉर्म 2p − 1, की मिश्रित संख्याओं की तरह, प्रत्येक मिश्रित फ़र्मेट संख्या आधार 2 के लिए एक शसक्त छद्म अभाज्य है। ऐसा इसलिए है क्योंकि आधार 2 के सभी शसक्त छद्म अभाज्य भी फ़र्मेट छद्म अभाज्य हैं - अर्थात,

सभी फ़र्मेट नंबरों के लिए.

1904 में, सिपोला ने दिखाया कि कम से कम दो अलग-अलग अभाज्य या मिश्रित फ़र्मेट संख्याओं का उत्पाद आधार 2 के लिए एक फ़र्मेट स्यूडोप्राइम होगा यदि और केवल यदि [8]

फ़र्मेट संख्याओं के बारे में अन्य प्रमेय

Lemma. — यदि n एक धनात्मक पूर्णांक है,

Proof

Theorem —  यदि तो फिर यह एक विचित्र अभाज्य है 2 की पॉवर है.

Proof

If एक धनात्मक पूर्णांक है किन्तु 2 की घात नहीं है, इसमें एक विषम अभाज्य गुणनखंड होना चाहिए, and we may write where .

पूर्ववर्ती लेम्मा द्वारा, सकारात्मक पूर्णांक के लिए,

जहाँ का अर्थ है "समान रूप से विभाजित"। स्थानापन्न , and और उसका उपयोग कर रहे हैं is odd,

और इस तरह

क्यूंकि ,यह इस प्रकार है कि प्रमुख नहीं है. इसलिए, द्वारा contraposition 2 की पॉवर होनी चाहिए.

Theorem — एक फ़र्मेट प्राइम नहीं हो सकता Wieferich prime.

Proof

हम दिखाते हैं यदि एक फ़र्मेट प्राइम है (और इसलिए उपरोक्त के अनुसार, m 2 की घात है), तो सर्वांगसमता नहीं रखता.

इसलिए हम लिख सकते हैं. यदि दी गई सर्वांगसमता कायम रहती है, तो , और इसलिए

इस तरह, और इसलिए . इससे ये होता है , जो तब से असंभव है .

Theorem (Édouard Lucas) —  पी का कोई अभाज्य भाजक स्वरूप का है जब कभी भी n > 1.

Sketch of proof

Let Gpगुणन के अंतर्गत गैर-शून्य पूर्णांकों के समूह p को निरूपित करें, जिसका क्रम p − 1 है। ध्यान दें कि 2 (सख्ती से कहें तो, इसकी छवि मॉड्यूलो पी) का गुणक क्रम बराबर है in Gp (since का वर्ग है जो −1 मॉड्यूलो है Fn),ताकि, लैग्रेंज का प्रमेय, p − 1 से विभाज्य हो और पी का रूप है कुछ पूर्णांक k के लिए, जैसा कि यूलर जानता था। एडौर्ड लुकास और आगे बढ़ गये। चूँकि n > 1, ऊपर का अभाज्य p 1 मॉड्यूल 8 के सर्वांगसम है। इसलिए (जैसा कि कार्ल फ्रेडरिक गॉस को ज्ञात था), 2 एक है द्विघात अवशेष मोडुलो पी, अर्थात पूर्णांक a ऐसा है फिर की छवि में क्रम है समूह Gp में और (लैग्रेंज के प्रमेय का फिर से उपयोग करके), p − 1 द्वारा विभाज्य है और पी का रूप है कुछ पूर्णांक के लिए s.

वास्तव में, यह प्रत्यक्ष रूप से देखा जा सकता है कि 2 एक द्विघात अवशेष मॉड्यूलो पी है, क्योंकि

चूँकि 2 की एक विषम घात एक द्विघात अवशेष मॉड्यूलो p है, इसलिए 2 भी स्वयं है।

एक फ़र्मेट नंबर एक पूर्ण संख्या या सौहार्दपूर्ण संख्याओं की जोड़ी का भाग नहीं हो सकता है। (लुका 2000)

फ़र्मेट संख्याओं के सभी अभाज्य विभाजकों के व्युत्क्रमों की श्रृंखला अभिसारी श्रृंखला है। (Křížek, Luca & Somer 2002)

यदि nn + 1 अभाज्य है, तो एक पूर्णांक m उपस्थित है जैसे कि n = 22m। उस स्थिति में समीकरण nn + 1 = F(2m+m) उस स्थिति में रखता है[9][10]

माना कि फ़र्मेट संख्या Fn का सबसे बड़ा अभाज्य गुणनखंड P(Fn) है। तब,

(Grytczuk, Luca & Wójtowicz 2001)

रचनात्मक बहुभुजों से संबंध

1000 भुजाओं तक ज्ञात निर्माण योग्य बहुभुजों की भुजाओं की संख्या (बोल्ड) या विषम भुजाओं की संख्या (लाल)

कार्ल फ्रेडरिक गॉस ने अपने अंकगणितीय विवेचन में गॉसियन काल के सिद्धांत को विकसित किया और नियमित बहुभुजों की रचना के लिए पर्याप्त नियम तैयार की। गॉस ने कहा कि यह नियम भी आवश्यक नियम थी,[11] किन्तु कभी कोई प्रमाण प्रकाशित नहीं किया। पियरे वांटज़ेल ने 1837 में आवश्यकता का पूर्ण प्रमाण दिया+ परिणाम को गॉस-वांटज़ेल प्रमेय के रूप में जाना जाता है:

एक n -पक्षीय नियमित बहुभुज का निर्माण कम्पास और स्ट्रेटएज के साथ किया जा सकता है यदि और केवल यदि n 2 की शक्ति और अलग-अलग फ़र्मेट प्राइम का उत्पाद है: दूसरे शब्दों में, यदि और केवल यदि एन फॉर्म n = 2kp1p2...ps का है ... ps, जहाँ k, s अऋणात्मक पूर्णांक हैं और pi विशिष्ट फ़र्मेट अभाज्य हैं।

एक धनात्मक पूर्णांक n उपरोक्त रूप का है यदि और केवल यदि इसका यूलर का टोटिएंट फ़ंक्शन φ(n) 2 की शक्ति है।

फ़र्मेट संख्याओं का अनुप्रयोग

छद्म यादृच्छिक संख्या पीढ़ी

फ़र्मेट प्राइम्स विशेष रूप से 1, ..., एन की श्रेणी में संख्याओं के छद्म-यादृच्छिक अनुक्रम उत्पन्न करने में उपयोगी होते हैं, जहां एन 2 की शक्ति है। उपयोग की जाने वाली सबसे समान्य विधि 1 और के बीच किसी भी बीज मूल्य को लेना है P − 1, जहां P एक फ़र्मेट प्राइम है। अब इसे एक संख्या A से गुणा करें, जो P के वर्गमूल से अधिक है और एक आदिम मूल मॉड्यूलो P है (अथार्त , यह एक द्विघात अवशेष नहीं है)। फिर परिणाम मॉड्यूल पी लें। परिणाम आरएनजी के लिए नया मान है।

(रैखिक सर्वांगसम जनरेटर, आरएएनडीयू देखें)

यह कंप्यूटर विज्ञान में उपयोगी है, क्योंकि अधिकांश डेटा संरचनाओं में 2X संभावित मान वाले सदस्य होते हैं। उदाहरण के लिए, एक बाइट में 256 (28) संभावित मान (0-255) होते हैं। इसलिए, किसी बाइट या बाइट्स को यादृच्छिक मानों से भरने के लिए, एक यादृच्छिक संख्या जनरेटर का उपयोग किया जा सकता है जो 1-256 मान उत्पन्न करता है, बाइट आउटपुट मान -1 लेता है। इस कारण से बहुत बड़े फ़र्मेट प्राइम डेटा एन्क्रिप्शन में विशेष रुचि रखते हैं। यह विधि केवल छद्म यादृच्छिक मान उत्पन्न करती है, क्योंकि P - 1 दोहराव के बाद, अनुक्रम दोहराता है। खराब विधि से चुने गए गुणक के परिणामस्वरूप अनुक्रम P - 1 से पहले दोहराया जा सकता है।

सामान्यीकृत फ़र्मेट संख्या

फॉर्म के नंबर a, b के साथ कोई सहअभाज्य पूर्णांक, a > b > 0, सामान्यीकृत फ़र्मेट संख्याएँ कहलाती हैं। एक विषम अभाज्य p एक सामान्यीकृत फ़र्मेट संख्या है यदि और केवल तभी जब p पायथागॉरियन अभाज्य या 1 (मॉड 4) के सर्वांगसम हो। (यहां हम केवल स्थिति पर विचार करते हैं n > 0, इसलिए 3 = एक प्रतिउदाहरण नहीं है।)

इस फॉर्म के संभावित अभाज्य का एक उदाहरण 1215131072 + 242131072 (केलेन शेंटन द्वारा पाया गया) है।[12]

सामान्य फ़र्मेट संख्याओं के अनुरूप, फॉर्म के सामान्यीकृत फ़र्मेट संख्याओं को Fn(a) के रूप में लिखना समान्य बात है। उदाहरण के लिए, इस नोटेशन में संख्या 100,000,001 को F3(10) के रूप में लिखा जाएगा। निम्नलिखित में हम स्वयं को इस रूप के अभाज्य संख्याओं तक ही सीमित रखेंगे,

, , ऐसे अभाज्यों को फ़र्मेट अभाज्य आधार a कहा जाता है। निःसंदेह, ये अभाज्य संख्याएँ केवल तभी उपस्थित होती हैं जब a समता (गणित) हो।

यदि हमें n > 0 की आवश्यकता है, तो लैंडौ की चौथी समस्या पूछती है कि क्या अनंत रूप से कई सामान्यीकृत फ़र्मेट अभाज्य Fn(a) हैं।

सामान्यीकृत फ़र्मेट अभाज्य

अपनी आदिमता को सिद्ध करने में आसानी के कारण, सामान्यीकृत फ़र्मेट प्राइम हाल के वर्षों में संख्या सिद्धांत के क्षेत्र में शोध का विषय बन गए हैं। आज के सबसे बड़े ज्ञात अभाज्यों में से कई सामान्यीकृत फ़र्मेट अभाज्य हैं।

सामान्यीकृत फ़र्मेट संख्याएँ केवल सम a के लिए अभाज्य हो सकती हैं, क्योंकि यदि a विषम है तो प्रत्येक सामान्यीकृत फ़र्मेट संख्या 2 से विभाज्य होगी। n>4 के साथ सबसे छोटी अभाज्य संख्या (a) या 3032 + 1 है। इसके अतिरिक्त हम एक विषम आधार के लिए "आधे सामान्यीकृत फ़र्मेट संख्या" को परिभाषित कर सकते हैं, आधार a के लिए एक आधा सामान्यीकृत फ़र्मेट संख्या (विषम a के लिए) है और यह भी उम्मीद की जानी चाहिए कि प्रत्येक विषम आधार के लिए केवल सीमित संख्या में आधे सामान्यीकृत फ़र्मेट अभाज्य होंगे।

(सूची में, सम a के लिए सामान्यीकृत फ़र्मेट संख्या हैं, विषम a के लिए, वे हैं। यदि OEIS में विषम घातांक ((sequence A070265 in the OEIS), तो सभी सामान्यीकृत फ़र्मेट संख्या को बीजगणितीय गुणनखंडित किया जा सकता है, इसलिए वे अभाज्य नहीं हो सकते है

(सबसे छोटी संख्या के लिए ऐसा है कि अभाज्य है, देखिये OEISA253242)

नंबर
ऐसा है कि
अभाज्य है
नंबर
ऐसा है कि
अभाज्य है
नंबर
ऐसा है कि
अभाज्य है
नंबर
ऐसा है कि
अभाज्य है
2 0, 1, 2, 3, 4, ... 18 0, ... 34 2, ... 50 ...
3 0, 1, 2, 4, 5, 6, ... 19 1, ... 35 1, 2, 6, ... 51 1, 3, 6, ...
4 0, 1, 2, 3, ... 20 1, 2, ... 36 0, 1, ... 52 0, ...
5 0, 1, 2, ... 21 0, 2, 5, ... 37 0, ... 53 3, ...
6 0, 1, 2, ... 22 0, ... 38 ... 54 1, 2, 5, ...
7 2, ... 23 2, ... 39 1, 2, ... 55 ...
8 (none) 24 1, 2, ... 40 0, 1, ... 56 1, 2, ...
9 0, 1, 3, 4, 5, ... 25 0, 1, ... 41 4, ... 57 0, 2, ...
10 0, 1, ... 26 1, ... 42 0, ... 58 0, ...
11 1, 2, ... 27 (none) 43 3, ... 59 1, ...
12 0, ... 28 0, 2, ... 44 4, ... 60 0, ...
13 0, 2, 3, ... 29 1, 2, 4, ... 45 0, 1, ... 61 0, 1, 2, ...
14 1, ... 30 0, 5, ... 46 0, 2, 9, ... 62 ...
15 1, ... 31 ... 47 3, ... 63 ...
16 0, 1, 2, ... 32 (none) 48 2, ... 64 (none)
17 2, ... 33 0, 3, ... 49 1, ... 65 1, 2, 5, ...
b ज्ञात सामान्यीकृत (आधा) फ़र्मेट प्राइम बेस बी
2 3, 5, 17, 257, 65537
3 2, 5, 41, 21523361, 926510094425921, 1716841910146256242328924544641
4 5, 17, 257, 65537
5 3, 13, 313
6 7, 37, 1297
7 1201
8 (संभव नहीं)
9 5, 41, 21523361, 926510094425921, 1716841910146256242328924544641
10 11, 101
11 61, 7321
12 13
13 7, 14281, 407865361
14 197
15 113
16 17, 257, 65537
17 41761
18 19
19 181
20 401, 160001
21 11, 97241, 1023263388750334684164671319051311082339521
22 23
23 139921
24 577, 331777
25 13, 313
26 677
27 (संभव नहीं)
28 29, 614657
29 421, 353641, 125123236840173674393761
30 31, 185302018885184100000000000000000000000000000001
31
32 (संभव नहीं)
33 17, 703204309121
34 1336337
35 613, 750313, 330616742651687834074918381127337110499579842147487712949050636668246738736343104392290115356445313
36 37, 1297
37 19
38
39 761, 1156721
40 41, 1601
41 31879515457326527173216321
42 43
43 5844100138801
44 197352587024076973231046657
45 23, 1013
46 47, 4477457, 46512+1 (852 डिजिट्स : 214787904487...289480994817)
47 11905643330881
48 5308417
49 1201
50

(देखना [13][14] अधिक जानकारी के लिए (1000 तक के आधार भी), यह भी देखें [15] विषम आधारों के लिए)

(प्रपत्र के सबसे छोटे अभाज्य के लिए (विषम के लिए ), यह सभी देखें OEISA111635)

नंबर ऐसा है कि

अभाज्य है
2 1 0, 1, 2, 3, 4, ...
3 1 0, 1, 2, 4, 5, 6, ...
3 2 0, 1, 2, ...
4 1 0, 1, 2, 3, ...
4 3 0, 2, 4, ...
5 1 0, 1, 2, ...
5 2 0, 1, 2, ...
5 3 1, 2, 3, ...
5 4 1, 2, ...
6 1 0, 1, 2, ...
6 5 0, 1, 3, 4, ...
7 1 2, ...
7 2 1, 2, ...
7 3 0, 1, 8, ...
7 4 0, 2, ...
7 5 1, 4, ...
7 6 0, 2, 4, ...
8 1 (none)
8 3 0, 1, 2, ...
8 5 0, 1, 2, ...
8 7 1, 4, ...
9 1 0, 1, 3, 4, 5, ...
9 2 0, 2, ...
9 4 0, 1, ...
9 5 0, 1, 2, ...
9 7 2, ...
9 8 0, 2, 5, ...
10 1 0, 1, ...
10 3 0, 1, 3, ...
10 7 0, 1, 2, ...
10 9 0, 1, 2, ...
11 1 1, 2, ...
11 2 0, 2, ...
11 3 0, 3, ...
11 4 1, 2, ...
11 5 1, ...
11 6 0, 1, 2, ...
11 7 2, 4, 5, ...
11 8 0, 6, ...
11 9 1, 2, ...
11 10 5, ...
12 1 0, ...
12 5 0, 4, ...
12 7 0, 1, 3, ...
12 11 0, ...
13 1 0, 2, 3, ...
13 2 1, 3, 9, ...
13 3 1, 2, ...
13 4 0, 2, ...
13 5 1, 2, 4, ...
13 6 0, 6, ...
13 7 1, ...
13 8 1, 3, 4, ...
13 9 0, 3, ...
13 10 0, 1, 2, 4, ...
13 11 2, ...
13 12 1, 2, 5, ...
14 1 1, ...
14 3 0, 3, ...
14 5 0, 2, 4, 8, ...
14 9 0, 1, 8, ...
14 11 1, ...
14 13 2, ...
15 1 1, ...
15 2 0, 1, ...
15 4 0, 1, ...
15 7 0, 1, 2, ...
15 8 0, 2, 3, ...
15 11 0, 1, 2, ...
15 13 1, 4, ...
15 14 0, 1, 2, 4, ...
16 1 0, 1, 2, ...
16 3 0, 2, 8, ...
16 5 1, 2, ...
16 7 0, 6, ...
16 9 1, 3, ...
16 11 2, 4, ...
16 13 0, 3, ...
16 15 0, ...

(सबसे छोटे सम आधार के लिए a ऐसा है कि अभाज्य है, देखिये OEISA056993)

आधार a ऐसा है कि अभाज्य है (केवल a पर भी विचार करें) ओईआईएस अनुक्रम
0 2, 4, 6, 10, 12, 16, 18, 22, 28, 30, 36, 40, 42, 46, 52, 58, 60, 66, 70, 72, 78, 82, 88, 96, 100, 102, 106, 108, 112, 126, 130, 136, 138, 148, 150, ... A006093
1 2, 4, 6, 10, 14, 16, 20, 24, 26, 36, 40, 54, 56, 66, 74, 84, 90, 94, 110, 116, 120, 124, 126, 130, 134, 146, 150, 156, 160, 170, 176, 180, 184, ... A005574
2 2, 4, 6, 16, 20, 24, 28, 34, 46, 48, 54, 56, 74, 80, 82, 88, 90, 106, 118, 132, 140, 142, 154, 160, 164, 174, 180, 194, 198, 204, 210, 220, 228, ... A000068
3 2, 4, 118, 132, 140, 152, 208, 240, 242, 288, 290, 306, 378, 392, 426, 434, 442, 508, 510, 540, 542, 562, 596, 610, 664, 680, 682, 732, 782, ... A006314
4 2, 44, 74, 76, 94, 156, 158, 176, 188, 198, 248, 288, 306, 318, 330, 348, 370, 382, 396, 452, 456, 470, 474, 476, 478, 560, 568, 598, 642, ... A006313
5 30, 54, 96, 112, 114, 132, 156, 332, 342, 360, 376, 428, 430, 432, 448, 562, 588, 726, 738, 804, 850, 884, 1068, 1142, 1198, 1306, 1540, 1568, ... A006315
6 102, 162, 274, 300, 412, 562, 592, 728, 1084, 1094, 1108, 1120, 1200, 1558, 1566, 1630, 1804, 1876, 2094, 2162, 2164, 2238, 2336, 2388, ... A006316
7 120, 190, 234, 506, 532, 548, 960, 1738, 1786, 2884, 3000, 3420, 3476, 3658, 4258, 5788, 6080, 6562, 6750, 7692, 8296, 9108, 9356, 9582, ... A056994
8 278, 614, 892, 898, 1348, 1494, 1574, 1938, 2116, 2122, 2278, 2762, 3434, 4094, 4204, 4728, 5712, 5744, 6066, 6508, 6930, 7022, 7332, ... A056995
9 46, 1036, 1318, 1342, 2472, 2926, 3154, 3878, 4386, 4464, 4474, 4482, 4616, 4688, 5374, 5698, 5716, 5770, 6268, 6386, 6682, 7388, 7992, ... A057465
10 824, 1476, 1632, 2462, 2484, 2520, 3064, 3402, 3820, 4026, 6640, 7026, 7158, 9070, 12202, 12548, 12994, 13042, 15358, 17646, 17670, ... A057002
11 150, 2558, 4650, 4772, 11272, 13236, 15048, 23302, 26946, 29504, 31614, 33308, 35054, 36702, 37062, 39020, 39056, 43738, 44174, 45654, ... A088361
12 1534, 7316, 17582, 18224, 28234, 34954, 41336, 48824, 51558, 51914, 57394, 61686, 62060, 89762, 96632, 98242, 100540, 101578, 109696, ... A088362
13 30406, 71852, 85654, 111850, 126308, 134492, 144642, 147942, 150152, 165894, 176206, 180924, 201170, 212724, 222764, 225174, 241600, ... A226528
14 67234, 101830, 114024, 133858, 162192, 165306, 210714, 216968, 229310, 232798, 422666, 426690, 449732, 462470, 468144, 498904, 506664, ... A226529
15 70906, 167176, 204462, 249830, 321164, 330716, 332554, 429370, 499310, 524552, 553602, 743788, 825324, 831648, 855124, 999236, 1041870, ... A226530
16 48594, 108368, 141146, 189590, 255694, 291726, 292550, 357868, 440846, 544118, 549868, 671600, 843832, 857678, 1024390, 1057476, 1087540, ... A251597
17 62722, 130816, 228188, 386892, 572186, 689186, 909548, 1063730, 1176694, 1361244, 1372930, 1560730, 1660830, 1717162, 1722230, 1766192, ... A253854
18 24518, 40734, 145310, 361658, 525094, 676754, 773620, 1415198, 1488256, 1615588, 1828858, 2042774, 2514168, 2611294, 2676404, 3060772, ... A244150
19 75898, 341112, 356926, 475856, 1880370, 2061748, 2312092, 2733014, 2788032, 2877652, 2985036, 3214654, 3638450, 4896418, 5897794, ... A243959
20 919444, 1059094, 1951734, 1963736, ... A321323

सबसे छोटा आधार b इस प्रकार है कि b2n + 1 अभाज्य हैं

2, 2, 2, 2, 2, 30, 102, 120, 278, 46, 824, 150, 1534, 30406, 67234, 70906, 48594, 62722, 24518, 75898, 919444, ... (sequence A056993 in the OEIS)

सबसे छोटा k ऐसा है कि (2n)k+1 अभाज्य हैं

1, 1, 1, 0, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 0, 4, 1, ... (अगला पद अज्ञात है) (sequence A079706 in the OEIS) (यह भी देखें OEISA228101 और OEISA084712)

जिसके लिए आधारों की संख्या की भविष्यवाणी करने के लिए एक अधिक विस्तृत सिद्धांत का उपयोग किया जा सकता है तय के लिए प्रमुख होगा . सामान्यीकृत फ़र्मेट प्राइम की संख्या मोटे तौर पर आधी होने की उम्मीद की जा सकती है 1 से बढ़ गया है.

सबसे बड़ा ज्ञात सामान्यीकृत फ़र्मेट अभाज्य

निम्नलिखित 5 सबसे बड़े ज्ञात सामान्यीकृत फ़र्मेट अभाज्यों की सूची है।[16] संपूर्ण शीर्ष-5 की खोज प्राइमग्रिड परियोजना में प्रतिभागियों द्वारा की गई है।

श्रेणी प्रमुख संख्या सामान्यीकृत फ़र्मेट संकेतन अंकों की संख्या खोज तिथि सन्दर्भ
1 19637361048576 + 1 F20(1963736) 6,598,776 Sep 2022 [17]
2 19517341048576 + 1 F20(1951734) 6,595,985 Aug 2022 [18]
3 10590941048576 + 1 F20(1059094) 6,317,602 Nov 2018 [19]
4 9194441048576 + 1 F20(919444) 6,253,210 Sep 2017 [20]
5 81 × 220498148 + 1 F2(3 × 25124537) 6,170,560 Jun 2023 [21]

प्राइम पेज पर कोई भी वर्तमान शीर्ष 100 सामान्यीकृत फ़र्मेट प्राइम पा सकता है।

यह भी देखें

टिप्पणियाँ

  1. Křížek, Luca & Somer 2001, p. 38, Remark 4.15
  2. Ribenboim 1996, p. 88.
  3. 3.0 3.1 3.2 Keller, Wilfrid (January 18, 2021), "Prime Factors of Fermat Numbers", ProthSearch.com, retrieved January 19, 2021
  4. Boklan, Kent D.; Conway, John H. (2017). "नये फ़र्मेट प्राइम के अधिकतम एक अरबवें हिस्से की अपेक्षा करें!". The Mathematical Intelligencer. 39 (1): 3–5. arXiv:1605.01371. doi:10.1007/s00283-016-9644-3. S2CID 119165671.
  5. Sandifer, Ed. "How Euler Did it" (PDF). MAA Online. Mathematical Association of America. Archived (PDF) from the original on 2022-10-09. Retrieved 2020-06-13.
  6. ":: F E R M A T S E A R C H . O R G :: Home page". www.fermatsearch.org. Retrieved 7 April 2018.
  7. "::FERMATSEARCH.ORG:: News". www.fermatsearch.org. Retrieved 7 April 2018.
  8. Krizek, Michal; Luca, Florian; Somer, Lawrence (14 March 2013). 17 Lectures on Fermat Numbers: From Number Theory to Geometry. Springer Science & Business Media. ISBN 9780387218502. Retrieved 7 April 2018 – via Google Books.
  9. Jeppe Stig Nielsen, "S(n) = n^n + 1".
  10. Weisstein, Eric W. "Sierpiński Number of the First Kind". MathWorld.
  11. Gauss, Carl Friedrich (1966). अंकगणितीय पूछताछ. New Haven and London: Yale University Press. pp. 458–460. Retrieved 25 January 2023.
  12. PRP Top Records, search for x^131072+y^131072, by Henri & Renaud Lifchitz.
  13. "सामान्यीकृत फ़र्मेट प्राइम्स". jeppesn.dk. Retrieved 7 April 2018.
  14. "Generalized Fermat primes for bases up to 1030". noprimeleftbehind.net. Retrieved 7 April 2018.
  15. "विषम आधारों में सामान्यीकृत फ़र्मेट अभाज्य". fermatquotient.com. Retrieved 7 April 2018.
  16. Caldwell, Chris K. "The Top Twenty: Generalized Fermat". The Prime Pages. Retrieved 11 July 2019.
  17. 19637361048576 + 1
  18. 19517341048576 + 1
  19. 10590941048576 + 1
  20. 9194441048576 + 1
  21. 81*220498148 + 1


संदर्भ


बाहरी संबंध