वास्तविक अनन्तता: Difference between revisions

From Vigyanwiki
No edit summary
Line 67: Line 67:


==आधुनिक युग==
==आधुनिक युग==
वास्तविक अनन्तता को अब आम तौर पर स्वीकार कर लिया गया है। 19वीं सदी में बोल्ज़ानो और कैंटर द्वारा व्यापक परिवर्तन की शुरुआत की गई थी।
वास्तविक अनन्तता को अब सामान्यतः स्वीकार कर लिया गया है। 19वीं सदी में बोल्ज़ानो और कैंटर द्वारा व्यापक परिवर्तन का प्रारंभ किया गया था ।


[[बर्नार्ड बोलजानो]], जिन्होंने सेट की धारणा पेश की (जर्मन में: मेन्ज), और जॉर्ज कैंटर, जिन्होंने सेट सिद्धांत पेश किया, ने सामान्य दृष्टिकोण का विरोध किया। कैंटर ने अनंत के तीन क्षेत्रों को प्रतिष्ठित किया: (1) ईश्वर की अनंतता (जिसे उन्होंने निरपेक्षता कहा), (2) वास्तविकता की अनंतता (जिसे उन्होंने प्रकृति कहा) और (3) अनंत संख्याएं और गणित के सेट।
[[बर्नार्ड बोलजानो]], जिन्होंने सेट की धारणा को प्रस्तुत किया था, और जॉर्ज कैंटर, जिन्होंने सेट सिद्धांत की प्रस्तावना की, सामान्य नियम के विपरीत थे। कैंटर ने तीन अवरों की अनंतता का विभाजन किया: (1) ईश्वर की अनंतता जिसे उन्होंने "अब्सोलूटम" कहा, (2) वास्तविकता की अनंतता जिसे उन्होंने "प्रकृति" कहा और (3) गणित के पारितानिक संख्याओं और सेट्स की अनंतता।


<blockquote>एक भीड़ जो किसी भी परिमित भीड़ से बड़ी है, यानी, एक भीड़ जिसकी संपत्ति यह है कि प्रत्येक परिमित सेट [प्रश्नाधीन प्रकार के सदस्यों का] केवल इसका एक हिस्सा है, मैं एक अनंत भीड़ कहूंगा। (बी. बोलजानो [2, पृ. 6])</blockquote>
<blockquote>"जो किसी निर्धारित प्रकार के सदस्यों के सेट का प्रत्येक सीमित सेट केवल उसका एक भाग होता है, उसे एक असीमित संख्या कहूँगा, जो कि किसी भी सीमित संख्या से अधिक संख्या की होती है।" ब. बोल्जानो [2, पृष्ठ 6]</blockquote>


<ब्लॉककोट> तदनुसार, मैं एक शाश्वत अनिर्मित अनंत या निरपेक्षता को अलग करता हूं, जो ईश्वर और उसके गुणों के कारण है, और एक निर्मित अनंत या ट्रांसफिनिटम, जिसका उपयोग निर्मित प्रकृति में जहां भी वास्तविक अनंत को नोटिस करना है, उदाहरण के लिए, मेरे दृढ़ विश्वास के अनुसार, ब्रह्मांड के साथ-साथ हमारी पृथ्वी पर और, संभवतः, अंतरिक्ष के हर छोटे से विस्तारित टुकड़े में भी, वास्तव में अनंत संख्या में निर्मित व्यक्ति हैं। (जॉर्ज कैंटर)<ref>{{Cite book|title=Gesammelte abhandlungen: Mathematischen und philosophischen inhalts|last=Cantor|first=Georg|publisher=Georg Olms Verlag|year=1966|editor-last=Zermelo|editor-first=Ernst|pages=399}}</ref> (जी. कैंटर [8, पृष्ठ 252])<!-- Need to convert to proper footnote citation. --></ब्लॉककोट>
तदनुसार, मैं एक शाश्वत अनिर्मित अनंत या निरपेक्षता को अलग करता हूं, जो ईश्वर और उसके गुणों के कारण है, और एक निर्मित अनंत या ट्रांसफिनिटम, जिसका उपयोग निर्मित प्रकृति में जहां भी वास्तविक अनंत को नोटिस करना है, उदाहरण के लिए, मेरे दृढ़ विश्वास के अनुसार, ब्रह्मांड के साथ-साथ हमारी पृथ्वी पर और, संभवतः, अंतरिक्ष के हर छोटे से विस्तारित टुकड़े में भी, वास्तव में अनंत संख्या में निर्मित व्यक्ति हैं। (जॉर्ज कैंटर)<ref>{{Cite book|title=Gesammelte abhandlungen: Mathematischen und philosophischen inhalts|last=Cantor|first=Georg|publisher=Georg Olms Verlag|year=1966|editor-last=Zermelo|editor-first=Ernst|pages=399}}</ref> (जी. कैंटर [8, पृष्ठ 252])


<blockquote>संख्याएँ मानव मस्तिष्क की एक स्वतंत्र रचना हैं। (रिचर्ड डेडेकाइंड|आर. डेडेकाइंड [3ए, पृ. III])</blockquote>
<blockquote>संख्याएँ मानव मस्तिष्क की एक स्वतंत्र रचना हैं। (रिचर्ड डेडेकाइंड|आर. डेडेकाइंड [3ए, पृ. III])</blockquote>
Line 83: Line 83:


== वर्तमान गणितीय अभ्यास ==
== वर्तमान गणितीय अभ्यास ==
वास्तविक अनंत को अब आम तौर पर स्वीकार कर लिया गया है, क्योंकि गणितज्ञों ने इसका उपयोग करके बीजगणितीय कथन बनाना सीख लिया है। उदाहरण के लिए, कोई एक प्रतीक लिख सकता है, <math>\omega</math>, मौखिक विवरण के साथ कि<math>\omega</math> पूर्ण ([[गणनीय अनंत]]) अनंत को दर्शाता है। इस प्रतीक को किसी भी सेट में यूआर-तत्व के रूप में जोड़ा जा सकता है। कोई [[स्वयंसिद्ध]] सिद्धांत भी प्रदान कर सकता है जो जोड़, गुणा और असमानता को परिभाषित करता है; विशेष रूप से, [[क्रमसूचक अंकगणित]], जैसे कि भाव <math>n<\omega</math> इसकी व्याख्या इस प्रकार की जा सकती है कि कोई भी [[प्राकृतिक संख्या]] पूर्ण अनंत से कम है। यहाँ तक कि सामान्य ज्ञान जैसे कथन भी <math>\omega < \omega+1</math> संभव और सुसंगत हैं. सिद्धांत पर्याप्त रूप से अच्छी तरह से विकसित है, बल्कि जटिल बीजगणितीय अभिव्यक्तियाँ, जैसे कि <math>\omega^2</math>, <math>\omega^\omega</math> और भी <math>2^\omega</math> वैध बीजगणितीय अभिव्यक्तियों के रूप में व्याख्या की जा सकती है, मौखिक विवरण दिया जा सकता है, और सुसंगत और सार्थक फैशन में विभिन्न प्रकार के प्रमेयों और दावों में उपयोग किया जा सकता है। क्रमिक संख्याओं को सुसंगत, सार्थक तरीके से परिभाषित करने की क्षमता, अधिकांश बहस को विवादास्पद बना देती है; अनंतता या रचनाशीलता के बारे में किसी की जो भी व्यक्तिगत राय हो, बीजगणित और तर्क के उपकरणों का उपयोग करके अनंत के साथ काम करने के लिए एक समृद्ध सिद्धांत का अस्तित्व स्पष्ट रूप से हाथ में है।
वास्तविक अनंत को अब सामान्यतः  स्वीकार कर लिया गया है, क्योंकि गणितज्ञों ने इसका उपयोग करके बीजगणितीय कथन बनाना सीख लिया है। उदाहरण के लिए, कोई एक प्रतीक लिख सकता है, <math>\omega</math>, मौखिक विवरण के साथ कि<math>\omega</math> पूर्ण ([[गणनीय अनंत]]) अनंत को दर्शाता है। इस प्रतीक को किसी भी सेट में यूआर-तत्व के रूप में जोड़ा जा सकता है। कोई [[स्वयंसिद्ध]] सिद्धांत भी प्रदान कर सकता है जो जोड़, गुणा और असमानता को परिभाषित करता है; विशेष रूप से, [[क्रमसूचक अंकगणित]], जैसे कि भाव <math>n<\omega</math> इसकी व्याख्या इस प्रकार की जा सकती है कि कोई भी [[प्राकृतिक संख्या]] पूर्ण अनंत से कम है। यहाँ तक कि सामान्य ज्ञान जैसे कथन भी <math>\omega < \omega+1</math> संभव और सुसंगत हैं. सिद्धांत पर्याप्त रूप से अच्छी तरह से विकसित है, बल्कि जटिल बीजगणितीय अभिव्यक्तियाँ, जैसे कि <math>\omega^2</math>, <math>\omega^\omega</math> और भी <math>2^\omega</math> वैध बीजगणितीय अभिव्यक्तियों के रूप में व्याख्या की जा सकती है, मौखिक विवरण दिया जा सकता है, और सुसंगत और सार्थक फैशन में विभिन्न प्रकार के प्रमेयों और दावों में उपयोग किया जा सकता है। क्रमिक संख्याओं को सुसंगत, सार्थक तरीके से परिभाषित करने की क्षमता, अधिकांश बहस को विवादास्पद बना देती है; अनंतता या रचनाशीलता के बारे में किसी की जो भी व्यक्तिगत राय हो, बीजगणित और तर्क के उपकरणों का उपयोग करके अनंत के साथ काम करने के लिए एक समृद्ध सिद्धांत का अस्तित्व स्पष्ट रूप से हाथ में है।


==अंतर्ज्ञानवादी स्कूल का विरोध==
==अंतर्ज्ञानवादी स्कूल का विरोध==
Line 92: Line 92:
अंतर्ज्ञानवादियों के लिए, अनंत को ''संभावित'' के रूप में वर्णित किया गया है; इस धारणा के पर्यायवाची शब्द ''बनना'' या ''रचनात्मक'' हैं।<रेफ नाम = क्लेन 1952/1971:48। /> उदाहरण के लिए, [[स्टीफन क्लेन]] [[ट्यूरिंग मशीन]] टेप की धारणा को एक रैखिक 'टेप' के रूप में वर्णित करते हैं, (संभवतः) दोनों दिशाओं में अनंत। संदर्भ>क्लीन 1952/1971:48 पी. 357; साथ ही मशीन... को एक टेप के साथ आपूर्ति की जाती है जिसमें (संभावित) अनंत प्रिंटिंग होती है... (पृ. 363)। चरण: इसलिए टेप केवल संभावित रूप से अनंत है, क्योंकि — जबकि हमेशा एक और कदम उठाने की क्षमता होती है — वास्तव में अनंत तक कभी नहीं पहुंचा जा सकता है। रेफरी>या, टेप को ठीक किया जा सकता है और रीडिंग हेड हिल सकता है। रोजर पेनरोज़ इसका सुझाव देते हैं क्योंकि: अपनी ओर से, मैं अपने सीमित उपकरण द्वारा संभावित अनंत टेप को पीछे और आगे ले जाने को लेकर थोड़ा असहज महसूस करता हूं। इससे कोई फर्क नहीं पड़ता कि इसकी सामग्री कितनी हल्की है, एक अनंत टेप को स्थानांतरित करना कठिन हो सकता है! पेनरोज़ के चित्र में बक्से से टीएम रीडिंग लंग टेप लेबल वाला एक निश्चित टेप हेड दिखाया गया है जो दृश्य लुप्त बिंदु तक फैला हुआ है। (सीएफ पेज 36, रोजर पेनरोज़, 1989, द एम्परर्स न्यू माइंड, ऑक्सफ़ोर्ड यूनिवर्सिटी प्रेस, ऑक्सफ़ोर्ड यूके, {{ISBN|0-19-851973-7}}). अन्य लेखक{{Who?|date=December 2022}} जब मशीन ख़त्म होने वाली हो तो अधिक टेप लगाकर इस समस्या का समाधान करें।</ref>
अंतर्ज्ञानवादियों के लिए, अनंत को ''संभावित'' के रूप में वर्णित किया गया है; इस धारणा के पर्यायवाची शब्द ''बनना'' या ''रचनात्मक'' हैं।<रेफ नाम = क्लेन 1952/1971:48। /> उदाहरण के लिए, [[स्टीफन क्लेन]] [[ट्यूरिंग मशीन]] टेप की धारणा को एक रैखिक 'टेप' के रूप में वर्णित करते हैं, (संभवतः) दोनों दिशाओं में अनंत। संदर्भ>क्लीन 1952/1971:48 पी. 357; साथ ही मशीन... को एक टेप के साथ आपूर्ति की जाती है जिसमें (संभावित) अनंत प्रिंटिंग होती है... (पृ. 363)। चरण: इसलिए टेप केवल संभावित रूप से अनंत है, क्योंकि — जबकि हमेशा एक और कदम उठाने की क्षमता होती है — वास्तव में अनंत तक कभी नहीं पहुंचा जा सकता है। रेफरी>या, टेप को ठीक किया जा सकता है और रीडिंग हेड हिल सकता है। रोजर पेनरोज़ इसका सुझाव देते हैं क्योंकि: अपनी ओर से, मैं अपने सीमित उपकरण द्वारा संभावित अनंत टेप को पीछे और आगे ले जाने को लेकर थोड़ा असहज महसूस करता हूं। इससे कोई फर्क नहीं पड़ता कि इसकी सामग्री कितनी हल्की है, एक अनंत टेप को स्थानांतरित करना कठिन हो सकता है! पेनरोज़ के चित्र में बक्से से टीएम रीडिंग लंग टेप लेबल वाला एक निश्चित टेप हेड दिखाया गया है जो दृश्य लुप्त बिंदु तक फैला हुआ है। (सीएफ पेज 36, रोजर पेनरोज़, 1989, द एम्परर्स न्यू माइंड, ऑक्सफ़ोर्ड यूनिवर्सिटी प्रेस, ऑक्सफ़ोर्ड यूके, {{ISBN|0-19-851973-7}}). अन्य लेखक{{Who?|date=December 2022}} जब मशीन ख़त्म होने वाली हो तो अधिक टेप लगाकर इस समस्या का समाधान करें।</ref>


गणितज्ञ आम तौर पर वास्तविक अनन्तताओं को स्वीकार करते हैं।
गणितज्ञ सामान्यतः  वास्तविक अनन्तताओं को स्वीकार करते हैं।
संदर्भ>वास्तविक अनन्तता, उदाहरण के लिए, एक सेट के रूप में पूर्णांकों की धारणा की स्वीकृति से आती है, जे जे ओ'कॉनर और ईएफ रॉबर्टसन देखें, [http://www-groups.dcs.st-and.ac.uk/ ~history/HistTopics/Infinity.html Infinity ].</ref> [[जॉर्ज कैंटर]] सबसे महत्वपूर्ण गणितज्ञ हैं जिन्होंने वास्तविक अनंतता का बचाव किया। उन्होंने निर्णय लिया कि प्राकृतिक और वास्तविक संख्याओं का निश्चित समुच्चय होना संभव है, और यदि कोई यूक्लिडियन परिमितता के सिद्धांत को अस्वीकार करता है (जो बताता है कि वास्तविकताएं, अकेले और समुच्चय में, आवश्यक रूप से सीमित हैं), तो वह किसी भी [[विरोधाभास]] में शामिल नहीं है .
संदर्भ>वास्तविक अनन्तता, उदाहरण के लिए, एक सेट के रूप में पूर्णांकों की धारणा की स्वीकृति से आती है, जे जे ओ'कॉनर और ईएफ रॉबर्टसन देखें, [http://www-groups.dcs.st-and.ac.uk/ ~history/HistTopics/Infinity.html Infinity ].</ref> [[जॉर्ज कैंटर]] सबसे महत्वपूर्ण गणितज्ञ हैं जिन्होंने वास्तविक अनंतता का बचाव किया। उन्होंने निर्णय लिया कि प्राकृतिक और वास्तविक संख्याओं का निश्चित समुच्चय होना संभव है, और यदि कोई यूक्लिडियन परिमितता के सिद्धांत को अस्वीकार करता है (जो बताता है कि वास्तविकताएं, अकेले और समुच्चय में, आवश्यक रूप से सीमित हैं), तो वह किसी भी [[विरोधाभास]] में शामिल नहीं है .



Revision as of 14:10, 6 July 2023

गणित के दर्शन में, वास्तविक अनंत के अमूर्तन में दी गई, वास्तविक और पूर्ण वस्तुओं के रूप में अनंत संस्थाओं की स्वीकृति सम्मिलित होती है, इनमें प्राकृतिक संख्याओं का समूह, विस्तारित वास्तविक संख्याएँ, अनंत संख्याएँ या तर्कसंगत संख्याओं का अनंत अनुक्रम भी सम्मिलित हो सकती है। इसमें प्राकृतिक संख्याओं का समूह, विस्तारित वास्तविक संख्याएँ, एक असीमित भिन्न संख्याओं की अनंत श्रृंखला की सूची समाविष्ट हो सकती है। वास्तविक अनंतता को संभालने के लिए संभावित अनंतता के साथ तुलना की जा सकती है, जिसमें एक का अंत नहीं होता है और जहां प्रत्येक व्यक्तिगत परिणाम सीमित होता है और एक सीमित संख्या में प्राप्त किया जाता है। इसके परिणामस्वरूप, संभावित अनंतता को अक्षम करने के लिए सीमा की अवधारणा का उपयोग करके समारूपीकृत किया जाता है।[1]


एनाक्सिमेंडर

[2] पूर्वदार्शनिक ग्रीक शब्द "एपिरॉन" को क्षमता अनंतता या अयोग्य अनंतता के लिए प्रयोग किया जाता था, जबकि वास्तविक या उचित अनंतता को "आफ़ोरिस्मेनॉन" कहा जाता था। एपिरॉन परास (सीमा) वाले तत्व के विपरीत होता है।प्रायः इन धारणाओं को संभावित अनंत और वास्तविक अनंत के रूप में दर्शाया जाता है।

एनाक्सिमेंडर (610–546 ईसा पूर्व) का कथन था कि एपिरॉन सभी वस्तुओं को संरचित करने वाला मुख्य तत्व था। स्पष्ट रूप से, 'एपिरॉन' एक प्रकार का मूलभूत पदार्थ था। प्लेटो की एपीरॉन की धारणा अधिक अप्रत्यक्ष होती है, जो अनिश्चित परिवर्तनशीलता से संबंधित है। प्लेटो द्वारा 'अपैरॉन' पर चर्चा की जाने वाली 'पारमेनिडीज' और 'फिलेबस' प्रमुख संवाद कृतियाँ हैं

अरस्तू

अरस्तू ने अनंत पर अपने पूर्ववर्तियों के विचारों को इस प्रकार संक्षेप में प्रस्तुत किया है:

केवल पाइथोगोरस इंद्रियों के विषयों के बीच अनंत को स्थानित करते हैं, और कहते हैं कि जो आकाश के बाहर है वह अनंत है। प्लेटो, विपरीत, यह कहते हैं कि आकाश के बाहर कोई शरीर नहीं है, यद्यपि अनंत न केवल इंद्रियों के विषयों में उपस्थित है बल्कि प्रारूपों में भी।" (अरस्तू)[3]

अरस्तू ने गणित और भौतिकी (प्रकृति का अध्ययन) के संदर्भ में अपेरोन के विचार को आगे ले जाने के द्वारा यह विषय प्रस्तुत किया था।

अनंत ऐसा नहीं होता है जैसा लोग कहते हैं। यह 'जिसके बाहर कुछ नहीं होता है' नहीं है, बल्कि 'जिसके बाहर सदैव कुछ होता है'।" (अरस्तू)[4]

अनंत के अस्तित्व में विश्वास मुख्य रूप से पांच विचारों से आता है:[5]

  1. समय की प्रकृति से - क्योंकि यह अनंत है।
  2. परिमाण के विभाजन से - गणितज्ञ अनंत की धारणा का भी उपयोग करते हैं।
  3. अगर आना और ख़त्म हो जाना, हार नहीं मानता, तो सिर्फ इसलिए कि जिससे वस्तु बनती हैं, वह अनंत है।
  4. क्योंकि सीमित हमेशा किसी न किसी वस्तु में अपनी सीमा पाता है, इसलिए कोई सीमा नहीं होनी चाहिए, यदि हर वस्तु सदैव अपने से अलग किसी वस्तु से सीमित होती है।
  5. सबसे बढ़कर, एक कारण जो विशेष रूप से उपयुक्त है और उस कठिनाई को प्रस्तुत करता है जिसे हर कोई महसूस करता है - न केवल संख्या बल्कि गणितीय परिमाण भी और जो स्वर्ग के बाहर है उसे अनंत माना जाता है क्योंकि वे कभी भी हमारे विचार में नहीं आते हैं। (अरस्तू)

अरस्तूने प्रस्तावित किया कि एक वास्तविक अनंत असंभव है, क्योंकि अगर यह संभव होता तो कुछ अनंत परिमाण प्राप्त हो गया होता, और वह "आकाश से भी बड़ा" होता। यद्यपि, उन्होंने कहा कि इस असंभावना के कारण अनंतता के संबंधित गणित में उपयोगिता की कमी नहीं हुई, क्योंकि गणितज्ञों को अपने सिद्धांतों के लिए अनंत की ज़रूरत नहीं होती, केवल एक सीमित, अनिश्चित परिमाण की आवश्यकता होती है।[6]


अरस्तू की क्षमता-वास्तविक भेद

अरस्तू ने भौतिकी और तत्वशास्त्र में अनंतता के विषय को संघटित किया। उन्होंने वास्तविक और संभावित अनंत के बीच अंतर किया। वास्तविक अनंत पूर्ण और निश्चित होता है, और इसमें अनंत संख्या में तत्व होते हैं। संभावित अनंत कभी पूर्ण नहीं होता है: तत्व सदैव जोड़े जा सकते हैं, परंतु कभी भी अनंत संख्या में नहीं होते।

"क्योंकि सामान्यतः अनंत का यह अस्तित्व रहता है: एक वस्तु सदैव एक के बाद ली जाती है, और हर एक वस्तु जो ली जाती है, सदैव सीमित होती है, लेकिन हमेशा अलग होती है।"

— अरस्तू, भौतिकी, पुस्तक 3, अध्याय 6

अरस्तू ने जोड़ और विभाजन के संबंध में अनंत के बीच अंतर किया।

लेकिन प्लेटो की दो अनन्तताएँ हैं, महान और लघु।

— भौतिकी, पुस्तक 3, अध्याय 4.

वृद्धि के संबंध में संभावित अनंत श्रृंखला के उदाहरण के रूप में, 1,2,3,... से प्रारंभ होने वाली श्रृंखला में सदैव एक संख्या के बाद दूसरी संख्या जोड़ी जा सकती है, लेकिन अधिक से अधिक संख्याओं को जोड़ने की प्रक्रिया नहीं की जा सकती समाप्त या पूरा हुआ हुआ।[citation needed]विभाजन के संबंध में, विभाजनों का एक संभावित अनंत क्रम प्रारंभ हो सकता है, उदाहरण के लिए, 1, 1/2, 1/4, 1/8, 1/16, लेकिन विभाजन की प्रक्रिया समाप्त या पूरी नहीं की जा सकती .

"इस तथ्य के लिए कि विभाजन की प्रक्रिया कभी समाप्त नहीं होती है, यह सुनिश्चित करता है कि यह गतिविधि संभावित रूप से उपस्थित है, लेकिन यह नहीं कि अनंत अलग से उपस्थित है।"

— तत्वमीमांसा, पुस्तक 9, अध्याय 6.

अरस्तू ने यह भी तर्क दिया कि ग्रीक गणितज्ञ वास्तविक अनंत और संभावित अनंत के बीच अंतर जानते थे, परंतु उन्हें अनंत की आवश्यकता नहीं है और वे इसका उपयोग नहीं करते हैं (भौतिकी III 2079 29)।[7]


शैक्षिक, पुनर्जागरण और प्रबोधन विचारक

अधिकांश विद्वान दार्शनिकों ने आदर्श वाक्य अनन्त एक्टू नॉन डाटुर का पालन किया। इसका अर्थ है कि केवल एक संभावित अनंत होता है, परंतु एक वास्तविक अनंत नहीं होता है। यद्यपि, इस दृष्टिकोण में अपवाद भी थे, उदाहरण के लिए इंग्लैंड में।

यह ज्ञात है कि मध्ययुग में सभी विद्वान दर्शनशास्त्रीय अरस्तू के अनन्त एक्टू नॉन डाटुर को एक अखण्डनीय सिद्धांत के रूप में समर्थन करते थे। (जी. कैंटर के )

वास्तविक अनंतता संख्या, समय और मात्रा में मौजूद है। (जे. बेकनथोरपे [9, पृष्ठ 96])

पुनर्जागरणकाल और आधुनिक काल में वास्तविक अनंत के पक्षधारी वाणिज्य द्वारा काफी कम थे।

"अनंतर प्रतिक्षेप्टं से निर्मित होता है, जिसमें वास्तव में अनंत संख्या में तत्व होते हैं।" ग. गैलिली [9, पृष्ठ 97]

मैं वास्तविक अनंत के पक्ष में हूं। जी.डब्ल्यू. लाइबनिट्स [9, पृष्ठ 97])

यद्यपि, अधिकांश पूर्व-आधुनिक विचारक गॉस के प्रसिद्ध उद्धरण से सहमत थे:

"मैं अनंत परिमाण के सम्पूर्ण रूप के उपयोग के विरुद्ध आपत्ति दर्ज करता हूँ, जो गणित में कभी अनुमति नहीं होता। अनंत केवल एक वाक्यिक ढंग है, वास्तविक अर्थ होता है कि कुछ अनुपात अनंतता के अत्यंत नजदीक पहुंचते हैं, जबकि कुछ अनुपात असीमित बढ़ते रहते हैं।" सी.एफ. गौस [शुमाकर को पत्र, 12 जुलाई 1831]

आधुनिक युग

वास्तविक अनन्तता को अब सामान्यतः स्वीकार कर लिया गया है। 19वीं सदी में बोल्ज़ानो और कैंटर द्वारा व्यापक परिवर्तन का प्रारंभ किया गया था ।

बर्नार्ड बोलजानो, जिन्होंने सेट की धारणा को प्रस्तुत किया था, और जॉर्ज कैंटर, जिन्होंने सेट सिद्धांत की प्रस्तावना की, सामान्य नियम के विपरीत थे। कैंटर ने तीन अवरों की अनंतता का विभाजन किया: (1) ईश्वर की अनंतता जिसे उन्होंने "अब्सोलूटम" कहा, (2) वास्तविकता की अनंतता जिसे उन्होंने "प्रकृति" कहा और (3) गणित के पारितानिक संख्याओं और सेट्स की अनंतता।

"जो किसी निर्धारित प्रकार के सदस्यों के सेट का प्रत्येक सीमित सेट केवल उसका एक भाग होता है, उसे एक असीमित संख्या कहूँगा, जो कि किसी भी सीमित संख्या से अधिक संख्या की होती है।" ब. बोल्जानो [2, पृष्ठ 6]

तदनुसार, मैं एक शाश्वत अनिर्मित अनंत या निरपेक्षता को अलग करता हूं, जो ईश्वर और उसके गुणों के कारण है, और एक निर्मित अनंत या ट्रांसफिनिटम, जिसका उपयोग निर्मित प्रकृति में जहां भी वास्तविक अनंत को नोटिस करना है, उदाहरण के लिए, मेरे दृढ़ विश्वास के अनुसार, ब्रह्मांड के साथ-साथ हमारी पृथ्वी पर और, संभवतः, अंतरिक्ष के हर छोटे से विस्तारित टुकड़े में भी, वास्तव में अनंत संख्या में निर्मित व्यक्ति हैं। (जॉर्ज कैंटर)[8] (जी. कैंटर [8, पृष्ठ 252])

संख्याएँ मानव मस्तिष्क की एक स्वतंत्र रचना हैं। (रिचर्ड डेडेकाइंड|आर. डेडेकाइंड [3ए, पृ. III])

<ब्लॉककोट>एक प्रमाण ईश्वर की धारणा पर आधारित है। सबसे पहले, ईश्वर की सर्वोच्च पूर्णता से, हम अनंत के निर्माण की संभावना का अनुमान लगाते हैं, फिर, उसकी सर्व-कृपा और महिमा से, हम इस आवश्यकता का अनुमान लगाते हैं कि वास्तव में अनंत का निर्माण हुआ है। (जी. कैंटर [3, पृ. 400])

कैंटर ने दो प्रकार की वास्तविक अनंतता को प्रतिष्ठित किया, अनंत और निरपेक्ष, जिसके बारे में उन्होंने पुष्टि की: <ब्लॉककोट>इन अवधारणाओं को सख्ती से अलग किया जाना चाहिए, जहां तक ​​कि पूर्व, निश्चित रूप से, अनंत है, फिर भी वृद्धि करने में सक्षम है, जबकि बाद वाली वृद्धि में असमर्थ है और इसलिए गणितीय अवधारणा के रूप में अनिश्चित है। उदाहरण के लिए, यह गलती हमें सर्वेश्वरवाद में मिलती है। (जी. कैंटर, उबेर वर्शिडीन स्टैंडपंकटे इन बेजुग औफ दास एक्टुएल अनेंड्लिचे, इन गेसमेल्टे एबंडलुंगेन मैथेमेटिसचेन अंड फिलोसोफिसचेन इनहाल्ट्स, पीपी. 375, 378)[9]</ब्लॉककोट>

वर्तमान गणितीय अभ्यास

वास्तविक अनंत को अब सामान्यतः स्वीकार कर लिया गया है, क्योंकि गणितज्ञों ने इसका उपयोग करके बीजगणितीय कथन बनाना सीख लिया है। उदाहरण के लिए, कोई एक प्रतीक लिख सकता है, , मौखिक विवरण के साथ कि पूर्ण (गणनीय अनंत) अनंत को दर्शाता है। इस प्रतीक को किसी भी सेट में यूआर-तत्व के रूप में जोड़ा जा सकता है। कोई स्वयंसिद्ध सिद्धांत भी प्रदान कर सकता है जो जोड़, गुणा और असमानता को परिभाषित करता है; विशेष रूप से, क्रमसूचक अंकगणित, जैसे कि भाव इसकी व्याख्या इस प्रकार की जा सकती है कि कोई भी प्राकृतिक संख्या पूर्ण अनंत से कम है। यहाँ तक कि सामान्य ज्ञान जैसे कथन भी संभव और सुसंगत हैं. सिद्धांत पर्याप्त रूप से अच्छी तरह से विकसित है, बल्कि जटिल बीजगणितीय अभिव्यक्तियाँ, जैसे कि , और भी वैध बीजगणितीय अभिव्यक्तियों के रूप में व्याख्या की जा सकती है, मौखिक विवरण दिया जा सकता है, और सुसंगत और सार्थक फैशन में विभिन्न प्रकार के प्रमेयों और दावों में उपयोग किया जा सकता है। क्रमिक संख्याओं को सुसंगत, सार्थक तरीके से परिभाषित करने की क्षमता, अधिकांश बहस को विवादास्पद बना देती है; अनंतता या रचनाशीलता के बारे में किसी की जो भी व्यक्तिगत राय हो, बीजगणित और तर्क के उपकरणों का उपयोग करके अनंत के साथ काम करने के लिए एक समृद्ध सिद्धांत का अस्तित्व स्पष्ट रूप से हाथ में है।

अंतर्ज्ञानवादी स्कूल का विरोध

वास्तविक अनंत में वास्तविक शब्द का गणितीय अर्थ निश्चित, पूर्ण, विस्तारित या अस्तित्वगत का पर्याय है, <रेफ नाम = क्लेन 1952/1971:48। >क्लीन 1952/1971:48.</ref> परंतु शारीरिक रूप से विद्यमान समझने की भूल नहीं की जानी चाहिए। यह प्रश्न कि क्या प्राकृतिक संख्या या वास्तविक संख्याएँ निश्चित समुच्चय बनाती हैं, इस प्रश्न से स्वतंत्र है कि क्या प्रकृति में अनंत वस्तु ़ें भौतिक रूप से मौजूद हैं।

लियोपोल्ड क्रोनकर से लेकर अंतर्ज्ञानवाद के समर्थक इस दावे को खारिज करते हैं कि वास्तव में अनंत गणितीय वस्तुएं या सेट हैं। नतीजतन, वे गणित की नींव को इस तरह से पुनर्निर्मित करते हैं जो वास्तविक अनन्तताओं के अस्तित्व को नहीं मानता है। दूसरी ओर, रचनात्मक विश्लेषण पूर्णांकों की पूर्ण अनंतता के अस्तित्व को स्वीकार करता है।

अंतर्ज्ञानवादियों के लिए, अनंत को संभावित के रूप में वर्णित किया गया है; इस धारणा के पर्यायवाची शब्द बनना या रचनात्मक हैं।<रेफ नाम = क्लेन 1952/1971:48। /> उदाहरण के लिए, स्टीफन क्लेन ट्यूरिंग मशीन टेप की धारणा को एक रैखिक 'टेप' के रूप में वर्णित करते हैं, (संभवतः) दोनों दिशाओं में अनंत। संदर्भ>क्लीन 1952/1971:48 पी. 357; साथ ही मशीन... को एक टेप के साथ आपूर्ति की जाती है जिसमें (संभावित) अनंत प्रिंटिंग होती है... (पृ. 363)। चरण: इसलिए टेप केवल संभावित रूप से अनंत है, क्योंकि — जबकि हमेशा एक और कदम उठाने की क्षमता होती है — वास्तव में अनंत तक कभी नहीं पहुंचा जा सकता है। रेफरी>या, टेप को ठीक किया जा सकता है और रीडिंग हेड हिल सकता है। रोजर पेनरोज़ इसका सुझाव देते हैं क्योंकि: अपनी ओर से, मैं अपने सीमित उपकरण द्वारा संभावित अनंत टेप को पीछे और आगे ले जाने को लेकर थोड़ा असहज महसूस करता हूं। इससे कोई फर्क नहीं पड़ता कि इसकी सामग्री कितनी हल्की है, एक अनंत टेप को स्थानांतरित करना कठिन हो सकता है! पेनरोज़ के चित्र में बक्से से टीएम रीडिंग लंग टेप लेबल वाला एक निश्चित टेप हेड दिखाया गया है जो दृश्य लुप्त बिंदु तक फैला हुआ है। (सीएफ पेज 36, रोजर पेनरोज़, 1989, द एम्परर्स न्यू माइंड, ऑक्सफ़ोर्ड यूनिवर्सिटी प्रेस, ऑक्सफ़ोर्ड यूके, ISBN 0-19-851973-7). अन्य लेखक[who?] जब मशीन ख़त्म होने वाली हो तो अधिक टेप लगाकर इस समस्या का समाधान करें।</ref>

गणितज्ञ सामान्यतः वास्तविक अनन्तताओं को स्वीकार करते हैं। संदर्भ>वास्तविक अनन्तता, उदाहरण के लिए, एक सेट के रूप में पूर्णांकों की धारणा की स्वीकृति से आती है, जे जे ओ'कॉनर और ईएफ रॉबर्टसन देखें, ~history/HistTopics/Infinity.html Infinity .</ref> जॉर्ज कैंटर सबसे महत्वपूर्ण गणितज्ञ हैं जिन्होंने वास्तविक अनंतता का बचाव किया। उन्होंने निर्णय लिया कि प्राकृतिक और वास्तविक संख्याओं का निश्चित समुच्चय होना संभव है, और यदि कोई यूक्लिडियन परिमितता के सिद्धांत को अस्वीकार करता है (जो बताता है कि वास्तविकताएं, अकेले और समुच्चय में, आवश्यक रूप से सीमित हैं), तो वह किसी भी विरोधाभास में शामिल नहीं है .

क्रमसूचक संख्या और कार्डिनल संख्याओं की वर्तमान पारंपरिक वित्तीय व्याख्या यह है कि उनमें विशेष प्रतीकों का संग्रह और एक संबद्ध औपचारिक भाषा शामिल होती है, जिसके भीतर बयान दिए जा सकते हैं। ऐसे सभी कथन आवश्यक रूप से लंबाई में सीमित हैं। हेरफेर की सुदृढ़ता केवल औपचारिक भाषा के बुनियादी सिद्धांतों पर आधारित होती है: शब्द बीजगणित, शब्द पुनर्लेखन, और इसी तरह। अधिक संक्षेप में, दोनों (परिमित) मॉडल सिद्धांत और प्रमाण सिद्धांत अनंत के साथ काम करने के लिए आवश्यक उपकरण प्रदान करते हैं। अनंत के लिए प्रतीकों का उपयोग करके बीजगणितीय रूप से मान्य अभिव्यक्तियों को लिखने के लिए किसी को अनंत में विश्वास करने की आवश्यकता नहीं है।

शास्त्रीय समुच्चय सिद्धांत

वास्तविक अनंत की दार्शनिक समस्या इस बात से संबंधित है कि क्या यह धारणा सुसंगत और ज्ञानमीमांसीय रूप से सही है।

शास्त्रीय समुच्चय सिद्धांत वास्तविक, पूर्ण अनन्तताओं की धारणा को स्वीकार करता है। हालाँकि, गणित के कुछ परिमितवाद दार्शनिकों और रचनावादियों ने इस धारणा पर आपत्ति जताई है। यदि सकारात्मक संख्या n असीम रूप से बड़ी हो जाती है, तो अभिव्यक्ति 1/n शून्य हो जाती है (या असीम रूप से छोटी हो जाती है)। इस अर्थ में कोई अनुचित या संभावित अनंत की बात करता है। तीव्र और स्पष्ट विपरीतता में जिस सेट पर अभी विचार किया गया है वह एक आसानी से तैयार किया गया, लॉक किया गया अनंत सेट है, जो अपने आप में स्थिर है, जिसमें अनंत रूप से कई बिल्कुल परिभाषित तत्व (प्राकृतिक संख्याएं) हैं, न कोई अधिक और न कोई कम। (एडॉल्फ अब्राहम हलेवी फ्रेंकेल|ए. फ्रेंकेल [4, पृष्ठ 6])

इस प्रकार वास्तविक अनंत की विजय को हमारे वैज्ञानिक क्षितिज का विस्तार माना जा सकता है जो कोपर्निकन हेलियोसेंट्रिज्म या सिद्धांत से कम क्रांतिकारी नहीं है सापेक्षता का, या यहाँ तक कि क्वांटम और परमाणु भौतिकी का भी। (ए. फ्रेंकेल [4, पृष्ठ 245])</ब्लॉककोट> <ब्लॉककोट>सभी सेटों के ब्रह्मांड को एक निश्चित इकाई के रूप में नहीं बल्कि बढ़ने में सक्षम इकाई के रूप में देखने के लिए, यानी, हम बड़े और बड़े सेट का उत्पादन करने में सक्षम हैं। (ए. फ्रैन्केल एट अल. [5, पृ.118])

<ब्लॉकक्वोट>(लुइत्ज़ेन एगबर्टस जान ब्रौवर) का मानना ​​है कि एक वास्तविक सातत्य जो गणना योग्य नहीं है, उसे मुक्त विकास के माध्यम के रूप में प्राप्त किया जा सकता है; कहने का तात्पर्य यह है कि, उन बिंदुओं के अलावा जो कानूनों द्वारा उनकी परिभाषा के कारण मौजूद हैं (तैयार हैं), जैसे कि ई, पाई, आदि, सातत्य के अन्य बिंदु तैयार नहीं हैं, परंतु तथाकथित विकल्प अनुक्रम के रूप में विकसित होते हैं। (ए. फ्रेंकेल एट अल. [5, पृष्ठ 255])</ब्लॉककोट>

<ब्लॉककोट>अंतर्ज्ञानवादी पूर्णांकों के एक मनमाने अनुक्रम की धारणा को अस्वीकार करते हैं, जो कि किसी समाप्त और निश्चित वस्तु ़ को नाजायज दर्शाता है। इस तरह के अनुक्रम को केवल बढ़ती हुई वस्तु माना जाता है, समाप्त नहीं। (ए. फ्रेंकेल एट अल. [5, पृष्ठ 236])</ब्लॉककोट>

<ब्लॉककोट>तब तक, किसी ने भी इस संभावना की कल्पना नहीं की थी कि अनंत विभिन्न आकारों में आते हैं, और इसके अलावा, गणितज्ञों के पास वास्तविक अनंत के लिए कोई उपयोग नहीं था। आइजैक न्यूटन और गॉटफ्राइड लीबनिज़ के डिफरेंशियल कैलकुलस सहित अनंत का उपयोग करने वाले तर्कों को अनंत सेटों के उपयोग की आवश्यकता नहीं होती है। (टी. जेच [1])

<ब्लॉककोट>गॉटलोब फ्रेगे, रिचर्ड डेडेकाइंड और कैंटर के विशाल एक साथ प्रयासों के कारण, अनंत को सिंहासन पर बिठाया गया और अपनी पूरी जीत का जश्न मनाया गया। अपनी साहसी उड़ान में अनंत सफलता की बुलंदियों तक पहुंच गया। (डेविड हिल्बर्ट|डी. हिल्बर्ट [6, पृष्ठ 169])</ब्लॉकउद्धरण>

<ब्लॉककोट>गणित की सबसे सशक्त और फलदायी शाखाओं में से एक [...] कैंटर द्वारा बनाया गया एक स्वर्ग जहां से कोई भी हमें कभी नहीं निकालेगा [...] गणितीय दिमाग का सबसे प्रशंसनीय विकास और कुल मिलाकर उत्कृष्ट उपलब्धियों में से एक मनुष्य की विशुद्ध बौद्धिक गतिविधि का। (सेट सिद्धांत पर डी. हिल्बर्ट [6])

<ब्लॉककोट>अंत में, आइए हम अपने मूल विषय पर वापस आएं, और अनंत पर अपने सभी प्रतिबिंबों से निष्कर्ष निकालें। तब समग्र परिणाम यह होता है: अनंत का कहीं भी एहसास नहीं होता है। न तो यह प्रकृति में मौजूद है और न ही यह हमारी तर्कसंगत सोच की नींव के रूप में स्वीकार्य है - अस्तित्व और सोच के बीच एक उल्लेखनीय सामंजस्य। (डी. हिल्बर्ट [6, 190])</ब्लॉककोट>

<ब्लॉककोट>अनंत समग्रताएं शब्द के किसी भी अर्थ में मौजूद नहीं हैं (यानी, वास्तव में या आदर्श रूप से)। अधिक सटीक रूप से, अनंत समग्रताओं का कोई भी उल्लेख, या कथित उल्लेख, वस्तुतः अर्थहीन है। (अब्राहम रॉबिन्सन|ए. रॉबिन्सन [10, पृष्ठ 507])</ब्लॉकउद्धरण>

<ब्लॉककोट>वास्तव में, मुझे लगता है कि औपचारिकता और अन्य जगहों पर, गणित की हमारी समझ को भौतिक दुनिया की हमारी समझ के साथ जोड़ने की वास्तविक आवश्यकता है। (ए. रॉबिन्सन)

<ब्लॉककोट>जॉर्ज कैंटर की भव्य मेटा-कथा, सेट थ्योरी, द्वारा बनाई गईलगभग पंद्रह वर्षों की अवधि में वह लगभग अकेले ही एक वैज्ञानिक सिद्धांत से अधिक उच्च कला के नमूने जैसा दिखता है। (यूरी मनिन|वाई. मनिन [2])

<ब्लॉककोट>इस प्रकार, अभिव्यंजक साधनों के उत्कृष्ट अतिसूक्ष्मवाद का उपयोग कैंटर द्वारा एक उत्कृष्ट लक्ष्य को प्राप्त करने के लिए किया जाता है: अनंत को समझना, या बल्कि अनंत की अनंतता को समझना। (वाई. मनिन [3])

<ब्लॉककोट>कोई वास्तविक अनंतता नहीं है, जिसे कैंटोरियन भूल गए हैं और विरोधाभासों में फंस गए हैं। (हेनरी पोंकारे|एच. पोंकारे [लेस मैथमैटिक्स एट ला लॉजिक III, रेव. मेटाफिज. मनोबल '14' (1906) पृष्ठ 316])</ब्लॉककोट>

<ब्लॉककोट>जब चर्चा की वस्तुएँ भाषाई इकाइयाँ होती हैं [...] तो उनके बारे में चर्चा के परिणामस्वरूप संस्थाओं का संग्रह भिन्न हो सकता है। इसका परिणाम यह है कि आज की प्राकृतिक संख्याएँ कल की प्राकृतिक संख्याओं के समान नहीं हैं। (डी. आइल्स [4])

<ब्लॉककोट>संख्याओं को देखने के कम से कम दो अलग-अलग तरीके हैं: पूर्ण अनंत के रूप में और अपूर्ण अनंत के रूप में... संख्याओं को अपूर्ण अनंत के रूप में देखने से संख्याओं को पूर्ण अनंत के रूप में देखने का एक व्यवहार्य और दिलचस्प विकल्प मिलता है। वह जो गणित के कुछ क्षेत्रों में महान सरलीकरण की ओर ले जाता है और जिसका कम्प्यूटेशनल जटिलता की समस्याओं के साथ मजबूत संबंध है। (ई. नेल्सन [5])

<ब्लॉककोट>पुनर्जागरण के दौरान, विशेष रूप से जियोर्डानो ब्रूनो के साथ, वास्तविक अनंत ईश्वर से दुनिया में स्थानांतरित हो जाता है। समकालीन विज्ञान के सीमित विश्व मॉडल स्पष्ट रूप से दिखाते हैं कि शास्त्रीय (आधुनिक) भौतिकी के साथ वास्तविक अनंत के विचार की यह शक्ति कैसे समाप्त हो गई है। इस पहलू के तहत, गणित में वास्तविक अनंत का समावेश, जो स्पष्ट रूप से पिछली शताब्दी के अंत में जी. कैंटर के साथ ही शुरू हुआ था, अप्रसन्नतापूर्ण लगता है। हमारी सदी की बौद्धिक समग्र तस्वीर के भीतर... वास्तविक अनंतता कालभ्रम की छाप लाती है। (पॉल लोरेंजेन|पी. लोरेंजेन[6])</ब्लॉककोट>

यह भी देखें

संदर्भ

  1. Schechter, Eric (December 5, 2009). "संभावित बनाम पूर्ण अनन्तता". math.vanderbilt.edu. Retrieved 2019-11-12.
  2. Fenves, Peter David (2001). Arresting Language: From Leibniz to Benjamin (in English). Stanford University Press. p. 331. ISBN 9780804739603.
  3. Thomas, Kenneth W.; Thomas, Thomas, Aquinas (2003-06-01). अरस्तू की भौतिकी पर टिप्पणी (in English). A&C Black. p. 163. ISBN 9781843715450.{{cite book}}: CS1 maint: multiple names: authors list (link)
  4. Padovan, Richard (2002-09-11). Proportion: Science, Philosophy, Architecture (in English). Taylor & Francis. p. 123. ISBN 9781135811112.
  5. Thomas, Kenneth W.; Thomas, Thomas, Aquinas (2003-06-01). अरस्तू की भौतिकी पर टिप्पणी (in English). A&C Black. ISBN 9781843715450.{{cite book}}: CS1 maint: multiple names: authors list (link)
  6. "Logos Virtual Library: Aristotle: Physics, III, 7". logoslibrary.org. Retrieved 2017-11-14.
  7. Allen, Reginald E. (1998). प्लेटो के पारमेनाइड्स. The Dialogues of Plato. Vol. 4. New Haven: Yale University Press. p. 256. ISBN 9780300138030. OCLC 47008500.
  8. Cantor, Georg (1966). Zermelo, Ernst (ed.). Gesammelte abhandlungen: Mathematischen und philosophischen inhalts. Georg Olms Verlag. p. 399.
  9. Kohanski, Alexander Sissel (June 6, 2021). पश्चिमी दर्शन में यूनानी विचार पद्धति. Fairleigh Dickinson University Press. p. 271. ISBN 9780838631393. OCLC 230508222.


स्रोत

  • द मैकट्यूटर हिस्ट्री ऑफ मैथमैटिक्स आर्काइव में अनंतता, समस्या सहित अनंत की धारणा के इतिहास का इलाज वास्तविक अनंत का.
  • अरस्तू, भौतिकी [7]
  • बर्नार्ड बोल्ज़ानो, 1851, पैराडॉक्सेज़ ऑफ़ द इनफ़िनिट, रेक्लम, लीपज़िग।
  • बर्नार्ड बोल्ज़ानो 1837, विसेनशाफ्टस्लेह्रे, सुल्ज़बैक।
  • ई. ज़र्मेलो (सं.) 1966 में जॉर्ज कैंटर ने गणितीय और दार्शनिक सामग्री, ओल्म्स, हिल्डेशाइम पर ग्रंथ एकत्र किए।
  • 1960 में रिचर्ड डेडेकाइंड, संख्याएँ क्या हैं और क्या हैं?, व्यूएग, ब्राउनश्वेग।
  • एडॉल्फ अब्राहम फ्रेंकेल 1923, सेट सिद्धांत का परिचय, स्प्रिंगर, बर्लिन।
  • एडॉल्फ अब्राहम फ्रेंकेल, वाई बार-हिलेल, ए लेवी 1984, फ़ाउंडेशन ऑफ़ सेट थ्योरी, दूसरा संस्करण, नॉर्थ हॉलैंड, एम्स्टर्डम न्यूयॉर्क।
  • स्टीफ़न सी. क्लेन 1952 (1971 संस्करण, 10वीं प्रिंटिंग), मेटामैथेमेटिक्स का परिचय, नॉर्थ-हॉलैंड पब्लिशिंग कंपनी, एम्स्टर्डम न्यूयॉर्क। ISBN 0-444-10088-1.
  • एच. मेशकोव्स्की 1981, जॉर्ज कैंटर: जीवन, कार्य और प्रभाव (दूसरा संस्करण), बीआई, मैनहेम।
  • एच. मेशकोव्स्की, डब्ल्यू. निल्सन (संस्करण) 1991, जॉर्ज कैंटर - ब्रीफ, स्प्रिंगर, बर्लिन।
  • अब्राहम रॉबिन्सन 1979, सेलेक्टेड पेपर्स, खंड 2, डब्ल्यू.ए.जे. लक्ज़मबर्ग, एस. कोर्नर (सं.), नॉर्थ हॉलैंड, एम्स्टर्डम।

श्रेणी:अनंत श्रेणी:तत्वमीमांसा में अवधारणाएँ श्रेणी:गणित का दर्शन