संभाव्यता स्थान: Difference between revisions
(→उदाहरण) |
|||
Line 20: | Line 20: | ||
अन्य प्रतिरूपों की तरह, इसका लेखक अंततः परिभाषित करता है कि कौन से तत्व हैं <math>\Omega</math>, <math>\mathcal{F}</math>, और <math>P</math> सम्मिलित है। | अन्य प्रतिरूपों की तरह, इसका लेखक अंततः परिभाषित करता है कि कौन से तत्व हैं <math>\Omega</math>, <math>\mathcal{F}</math>, और <math>P</math> सम्मिलित है। | ||
* प्रतिदर्श स्थान <math>\Omega</math> सभी संभावित परिणामों का समुच्चय है। एक परिणाम (संभावना) प्रतिरूप के एकल निष्पादन का परिणाम है। परिणाम प्रकृति की स्थितियाँ, संभावनाएँ, प्रयोगात्मक परिणाम आदि हो सकते हैं। वास्तविक दुनिया की स्थिति (या प्रयोग चलाने) के प्रत्येक उदाहरण को बिल्कुल एक परिणाम उत्पन्न करना चाहिए। यदि किसी प्रयोग के अलग-अलग दौर के परिणाम किसी भी मायने में भिन्न होते हैं, तो वे अलग-अलग परिणाम होते हैं। कौन सा अंतर मायने रखता है यह इस बात पर निर्भर करता है कि हम किस प्रकार का विश्लेषण करना चाहते हैं। इससे प्रतिदर्श स्थान के विभिन्न विकल्प सामने आते हैं। | * प्रतिदर्श स्थान <math>\Omega</math> सभी संभावित परिणामों का समुच्चय है। एक परिणाम (संभावना) प्रतिरूप के एकल निष्पादन का परिणाम है। परिणाम प्रकृति की स्थितियाँ, संभावनाएँ, प्रयोगात्मक परिणाम आदि हो सकते हैं। वास्तविक दुनिया की स्थिति (या प्रयोग चलाने) के प्रत्येक उदाहरण को बिल्कुल एक परिणाम उत्पन्न करना चाहिए। यदि किसी प्रयोग के अलग-अलग दौर के परिणाम किसी भी मायने में भिन्न होते हैं, तो वे अलग-अलग परिणाम होते हैं। कौन सा अंतर मायने रखता है यह इस बात पर निर्भर करता है कि हम किस प्रकार का विश्लेषण करना चाहते हैं। इससे प्रतिदर्श स्थान के विभिन्न विकल्प सामने आते हैं। | ||
* σ-बीजगणित <math>\mathcal{F}</math> यह उन सभी घटनाओं (संभावना सिद्धांत) का एक संग्रह है जिन पर हम विचार करना चाहेंगे। इस संग्रह में प्रत्येक प्राथमिक | * σ-बीजगणित <math>\mathcal{F}</math> यह उन सभी घटनाओं (संभावना सिद्धांत) का एक संग्रह है जिन पर हम विचार करना चाहेंगे। इस संग्रह में प्रत्येक प्राथमिक फलन सम्मिलित हो भी सकता है और नहीं भी। यहां, एक घटना शून्य या अधिक परिणामों का एक समूह है; वह है, प्रतिदर्श स्थान का एक उपसमुच्चय। किसी घटना को प्रयोग के दौरान घटित तब माना जाता है जब प्रयोग का परिणाम घटना का एक तत्व होता है। चूँकि एक ही परिणाम कई घटनाओं का सदस्य हो सकता है, इसलिए एक ही परिणाम के साथ कई घटनाओं का घटित होना संभव है। उदाहरण के लिए, जब परीक्षण में दो पासे फेंकने होते हैं, तो 7 [[पिप (गिनती)]] के योग के साथ सभी परिणामों का [[सबसेट|उपसमुच्चय]] एक घटना बन सकता है, जबकि विषम संख्या में पिप्स के साथ परिणाम एक और घटना बन सकते हैं। यदि परिणाम पहले पासे पर दो पिप्स और दूसरे पासे पर पांच पिप्स की [[प्राथमिक घटना]] का तत्व है, तो दोनों घटनाएं, 7 पिप्स और विषम संख्या में पिप्स, घटित मानी जाती हैं। | ||
* संभाव्यता माप <math>P</math> एक [[फ़ंक्शन सेट करें|फलन समुच्चय करें]] है जो किसी घटना की संभावना लौटाता है। संभाव्यता शून्य (असंभव घटनाओं की संभाव्यता शून्य होती है, हालांकि संभाव्यता-शून्य घटनाएं आवश्यक रूप से असंभव नहीं होती हैं) और एक (घटना [[लगभग निश्चित रूप से]], लगभग पूर्ण निश्चितता के साथ घटित होती है) के बीच की एक वास्तविक संख्या होती है। इस प्रकार <math>P</math> एक फलन है <math>P : \mathcal{F} \to [0,1].</math> संभाव्यता माप फलन को दो सरल आवश्यकताओं को पूरा करना चाहिए: पहला, परस्पर अनन्य घटनाओं के गणनीय समुच्चय संघ की संभावना इनमें से प्रत्येक घटना की संभावनाओं के गणनीय योग के बराबर होनी चाहिए। उदाहरण के लिए, परस्पर अनन्य घटनाओं के मिलन की संभावना <math>\text{Head}</math> और <math>\text{Tail}</math> एक सिक्के को उछालने के यादृच्छिक प्रयोग में, <math>P(\text{Head}\cup\text{Tail})</math>, के लिए संभाव्यता का योग है <math>\text{Head}</math> और इसकी संभावना <math>\text{Tail}</math>, <math>P(\text{Head}) + P(\text{Tail})</math>. दूसरा, प्रतिदर्श स्थान की संभावना <math>\Omega</math> 1 के बराबर होना चाहिए (जो इस तथ्य को दर्शाता है कि, प्रतिरूप के निष्पादन को देखते हुए, कुछ परिणाम अवश्य घटित होने चाहिए)। पिछले उदाहरण में परिणामों के समुच्चय की संभावना <math>P(\{\text{Head},\text{Tail}\})</math> एक के बराबर होना चाहिए, क्योंकि यह पूरी तरह से निश्चित है कि परिणाम कोई एक ही होगा <math>\text{Head}</math> या <math>\text{Tail}</math> (प्रतिरूप किसी अन्य संभावना की उपेक्षा करता है) एक ही सिक्के को उछालने में। | * संभाव्यता माप <math>P</math> एक [[फ़ंक्शन सेट करें|फलन समुच्चय करें]] है जो किसी घटना की संभावना लौटाता है। संभाव्यता शून्य (असंभव घटनाओं की संभाव्यता शून्य होती है, हालांकि संभाव्यता-शून्य घटनाएं आवश्यक रूप से असंभव नहीं होती हैं) और एक (घटना [[लगभग निश्चित रूप से]], लगभग पूर्ण निश्चितता के साथ घटित होती है) के बीच की एक वास्तविक संख्या होती है। इस प्रकार <math>P</math> एक फलन है <math>P : \mathcal{F} \to [0,1].</math> संभाव्यता माप फलन को दो सरल आवश्यकताओं को पूरा करना चाहिए: पहला, परस्पर अनन्य घटनाओं के गणनीय समुच्चय संघ की संभावना इनमें से प्रत्येक घटना की संभावनाओं के गणनीय योग के बराबर होनी चाहिए। उदाहरण के लिए, परस्पर अनन्य घटनाओं के मिलन की संभावना <math>\text{Head}</math> और <math>\text{Tail}</math> एक सिक्के को उछालने के यादृच्छिक प्रयोग में, <math>P(\text{Head}\cup\text{Tail})</math>, के लिए संभाव्यता का योग है <math>\text{Head}</math> और इसकी संभावना <math>\text{Tail}</math>, <math>P(\text{Head}) + P(\text{Tail})</math>. दूसरा, प्रतिदर्श स्थान की संभावना <math>\Omega</math> 1 के बराबर होना चाहिए (जो इस तथ्य को दर्शाता है कि, प्रतिरूप के निष्पादन को देखते हुए, कुछ परिणाम अवश्य घटित होने चाहिए)। पिछले उदाहरण में परिणामों के समुच्चय की संभावना <math>P(\{\text{Head},\text{Tail}\})</math> एक के बराबर होना चाहिए, क्योंकि यह पूरी तरह से निश्चित है कि परिणाम कोई एक ही होगा <math>\text{Head}</math> या <math>\text{Tail}</math> (प्रतिरूप किसी अन्य संभावना की उपेक्षा करता है) एक ही सिक्के को उछालने में। | ||
Line 88: | Line 88: | ||
0 और 1 के बीच की एक संख्या यादृच्छिक रूप से, समान रूप से चुनी जाती है। यहाँ Ω = [0,1], <math> \mathcal{F}</math> बोरेल का σ-बीजगणित Ω पर समुच्चय है, और P [0,1] पर [[लेब्सेग माप]] है। | 0 और 1 के बीच की एक संख्या यादृच्छिक रूप से, समान रूप से चुनी जाती है। यहाँ Ω = [0,1], <math> \mathcal{F}</math> बोरेल का σ-बीजगणित Ω पर समुच्चय है, और P [0,1] पर [[लेब्सेग माप]] है। | ||
इस स्थिति में प्रपत्र के खुले अंतराल {{open-open|''a'',''b''}}, | इस स्थिति में प्रपत्र के खुले अंतराल {{open-open|''a'',''b''}}, जहां {{math|0 < ''a'' < ''b'' < 1}}, जनित्र समुच्चय के रूप में लिया जा सकता है। ऐसे प्रत्येक समुच्चय को {{math|1=''P''((''a'',''b'')) = (''b'' − ''a'')}} की प्रायिकता बताई जा सकती है, जो [0,1] पर लेबेस्ग माप और Ω पर बोरेल σ-बीजगणित उत्पन्न करता है। | ||
==== उदाहरण 5 ==== | ==== उदाहरण 5 ==== | ||
एक निष्पक्ष सिक्का लगातार उछाला जाता है। यहां कोई Ω = {0,1} | एक निष्पक्ष सिक्का लगातार उछाला जाता है। यहां कोई Ω = {0,1}<sup>∞</sup> ले सकता है, संख्या 0 और 1 के सभी अनंत अनुक्रमों का समुच्चय। [[सिलेंडर सेट|सिलेंडर समुच्चय]] {{math|1={(''x''<sub>1</sub>, ''x''<sub>2</sub>, ...) ∈ Ω : ''x''<sub>1</sub> = ''a''<sub>1</sub>, ..., ''x''<sub>''n''</sub> = ''a''<sub>''n''</sub>}<nowiki/>}} जनित्र समुच्चय के रूप में उपयोग किया जा सकता है। ऐसा प्रत्येक समुच्चय एक घटना का वर्णन करता है जिसमें पहले n टॉस के परिणामस्वरूप एक निश्चित अनुक्रम {{math|(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>)}} होता है, और शेष अनुक्रम स्वेच्छाचारी हो सकता है। ऐसी प्रत्येक घटना को स्वाभाविक रूप से 2<sup>−n</sup> की संभावना दी जा सकती है। | ||
ये दो गैर-परमाणु उदाहरण निकट से संबंधित हैं: एक अनुक्रम {{math|(''x''<sub>1</sub>, ''x''<sub>2</sub>, ...) ∈ {0,1}<sup>∞</sup>}} संख्या | ये दो गैर-परमाणु उदाहरण निकट से संबंधित हैं: एक अनुक्रम {{math|(''x''<sub>1</sub>, ''x''<sub>2</sub>, ...) ∈ {0,1}<sup>∞</sup>}} संख्या {{math|2<sup>−1</sup>''x''<sub>1</sub> + 2<sup>−2</sup>''x''<sub>2</sub> + ⋯ ∈ [0,1]}} की ओर ले जाता है। यह {0,1}<sup>∞</sup> के बीच एक-से-एक समतुल्यता नहीं है और [0,1] हालाँकि: यह एक [[मानक संभाव्यता स्थान]] है, जो दो संभाव्यता स्थानों को एक ही संभाव्यता स्थान के दो रूपों के रूप में मानने की अनुमति देता है। वास्तव में, इस अर्थ में सभी गैर-तर्कहीन गैर-परमाणु संभाव्यता स्थान समान हैं। वे तथाकथित मानक संभाव्यता स्थान हैं। संभाव्यता स्थानों के बुनियादी अनुप्रयोग मानकता के प्रति असंवेदनशील हैं। फिर भी, मानक संभाव्यता स्थानों पर गैर-असतत अनुकूलन आसान और स्वाभाविक है, अन्यथा यह अस्पष्ट हो जाती है। | ||
== संबंधित अवधारणाएँ == | == संबंधित अवधारणाएँ == | ||
Line 101: | Line 101: | ||
=== यादृच्छिक चर === | === यादृच्छिक चर === | ||
एक यादृच्छिक चर | एक यादृच्छिक चर X संभाव्यता स्थान Ω से दूसरे मापने योग्य स्थान S जिसे राज्य स्थान कहा जाता है, तक एक मापने योग्य फ़ंक्शन ''X'': Ω → ''S'' है। | ||
यदि A ⊂ S, तो संकेतन Pr(X ∈ A) आमतौर पर | यदि A ⊂ S, तो संकेतन Pr(X ∈ A) आमतौर पर उपयोग किया जाने वाला संक्षिप्त लिपि <math>\Pr(\{\omega \in \Omega: X(\omega) \in A\})</math> है। | ||
=== प्रतिदर्श स्थान के संदर्भ में घटनाओं को परिभाषित करना === | === प्रतिदर्श स्थान के संदर्भ में घटनाओं को परिभाषित करना === | ||
यदि Ω [[गणनीय]] है तो हम लगभग हमेशा | यदि Ω [[गणनीय]] है तो हम लगभग हमेशा <math> \mathcal{F}</math> को Ω के घात समुच्चय के रूप में परिभाषित करते हैं, यानी <math> \mathcal{F} = 2^\Omega</math> जो कि तुच्छ रूप से एक σ-बीजगणित है और सबसे बड़ा बीजगणित जिसे हम Ω का उपयोग करके बना सकते हैं। इसलिए हम संभाव्यता स्थान को परिभाषित करने के लिए <math> \mathcal{F}</math> को छोड़ सकते हैं और केवल (Ω,P) लिख सकते हैं। | ||
दूसरी ओर, यदि Ω [[बेशुमार]] है और हम | दूसरी ओर, यदि Ω [[बेशुमार|अनगिनत]] है और हम <math> \mathcal{F} = 2^\Omega</math> का उपयोग करते हैं हम अपनी संभाव्यता माप P को परिभाषित करने में परेशानी में पड़ जाते हैं क्योंकि <math> \mathcal{F}</math> बहुत बड़ा है, यानी प्रायः ऐसे समुच्चय होंगे जिनके लिए एक अद्वितीय माप निर्दिष्ट करना असंभव होगा। इस स्थिति में, हमें एक छोटे σ-बीजगणित <math> \mathcal{F}</math> का उपयोग करना होगा, उदाहरण के लिए Ω का [[बोरेल बीजगणित]], जो सबसे छोटा σ-बीजगणित है जो सभी अनिर्णित समुच्चयों को मापने योग्य बनाता है। | ||
===[[सशर्त संभाव्यता]] === | ===[[सशर्त संभाव्यता]] === | ||
कोलमोगोरोव की संभाव्यता स्थानों की परिभाषा सशर्त संभाव्यता की प्राकृतिक अवधारणा को जन्म देती है। हर समुच्चय {{mvar|A}} गैर-शून्य संभावना के साथ (अर्थात्, {{math|''P''(''A'') > 0}}) एक अन्य संभाव्यता माप | कोलमोगोरोव की संभाव्यता स्थानों की परिभाषा सशर्त संभाव्यता की प्राकृतिक अवधारणा को जन्म देती है। हर समुच्चय {{mvar|A}} गैर-शून्य संभावना के साथ (अर्थात्, {{math|''P''(''A'') > 0}}) एक अन्य संभाव्यता माप <math display="block"> P(B \mid A) = {P(B \cap A) \over P(A)} </math> | ||
<math display="block"> P(B \mid A) = {P(B \cap A) \over P(A)} </math> | |||
किसी भी आयोजन के लिए {{math|''A''}} ऐसा है कि {{math|''P''(''A'') > 0}}, | |||
को अंतरिक्ष पर परिभाषित करता है। इसे आमतौर पर "A दिए जाने पर B की संभावना" के रूप में उच्चारित किया जाता है। | |||
किसी भी आयोजन के लिए {{math|''A''}} ऐसा है कि {{math|''P''(''A'') > 0}}, फलन {{math|''Q''}}, {{math|1=''Q''(''B'') = ''P''(''B'' {{!}} ''A'')}} द्वारा परिभाषित सभी घटनाओं के लिए {{mvar|B}} स्वयं एक संभाव्यता माप है। | |||
=== स्वतंत्रता === | === स्वतंत्रता === | ||
दो घटनाओं, ए और बी को [[सांख्यिकीय स्वतंत्रता]] कहा जाता है यदि {{math|1=''P''(''A'' ∩ ''B'') = ''P''(''A'') ''P''(''B'')}} | दो घटनाओं, ए और बी को [[सांख्यिकीय स्वतंत्रता]] कहा जाता है यदि {{math|1=''P''(''A'' ∩ ''B'') = ''P''(''A'') ''P''(''B'')}}। | ||
दो यादृच्छिक चर, {{mvar|X}} और {{mvar|Y}}, | दो यादृच्छिक चर, {{mvar|X}} और {{mvar|Y}}, को स्वतंत्र कहा जाता है यदि {{mvar|X}} के संदर्भ में परिभाषित कोई भी घटना {{mvar|Y}} के संदर्भ में परिभाषित किसी भी घटना से स्वतंत्र है। औपचारिक रूप से, वे स्वतंत्र σ-बीजगणित उत्पन्न करते हैं, जहां दो σ-बीजगणित होते हैं {{mvar|G}} और {{mvar|H}}, जो {{mvar|F}} के उपसमुच्चय हैं, स्वतंत्र कहा जाता है यदि {{mvar|G}} का कोई भी तत्व {{mvar|H}} के किसी भी तत्व से स्वतंत्र है। | ||
===पारस्परिक विशिष्टता === | ===पारस्परिक विशिष्टता === | ||
दो घटनाएँ, {{math|''A''}} और {{math|''B''}} को [[परस्पर अनन्य]] या असंयुक्त कहा जाता है यदि एक की घटना दूसरे की गैर-घटना को दर्शाती है, अर्थात, उनका प्रतिच्छेदन खाली है। यह उनके प्रतिच्छेदन की संभावना शून्य होने की तुलना में अधिक मजबूत स्थिति है। | दो घटनाएँ, {{math|''A''}} और {{math|''B''}} को [[परस्पर अनन्य]] या असंयुक्त कहा जाता है यदि एक की घटना दूसरे की गैर-घटना को दर्शाती है, अर्थात, उनका प्रतिच्छेदन खाली है। यह उनके प्रतिच्छेदन की संभावना शून्य होने की तुलना में अधिक मजबूत स्थिति है। | ||
यदि {{math|''A''}} और {{math|''B''}} असंयुक्त घटनाएँ हैं, तो {{math|1=''P''(''A'' ∪ ''B'') = ''P''(''A'') + ''P''(''B'')}}। यह घटनाओं के एक (सीमित या अनगिनत अनंत) अनुक्रम तक फैला हुआ है। फिर भी, घटनाओं के अनगिनत समूह के मिलन की संभावना उनकी संभावनाओं का योग नहीं है। उदाहरण के लिए, यदि {{mvar|Z}} एक सामान्य रूप से वितरित यादृच्छिक चर है, तो {{math|1=''P''(''Z'' = ''x'')}} किसी {{mvar|x}}क े लिए 0 है, लेकिन {{math|1=''P''(''Z'' ∈ '''R''') = 1}} है। | |||
समारोह {{math|''A'' ∩ ''B''}} को | समारोह {{math|''A'' ∩ ''B''}} को "A और B" और घटना {{math|''A'' ∪ ''B''}} को "A या B" के रूप में जाना जाता है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 13:06, 10 July 2023
Part of a series on statistics |
Probability theory |
---|
संभाव्यता सिद्धांत में, एक संभाव्यता स्थान या संभाव्यता त्रिक एक गणितीय निर्माण है जो यादृच्छिकता प्रक्रिया या "प्रयोग" का एक औपचारिक प्रतिरूप प्रदान करता है। उदाहरण के लिए, कोई एक संभाव्यता स्थान को परिभाषित कर सकता है जो पासे को फेंकने का प्रतिरूप बनाता है।
संभाव्यता स्थान में तीन तत्व होते हैं:[1][2]
- एक प्रतिदर्श स्थान, , जो सभी संभावित परिणामों (संभावना) का समुच्चय है।
- एक इवेंट स्पेस, जो इवेंट, (संभावना सिद्धांत) का एक समुच्चय है, एक घटना प्रतिदर्श स्थान में परिणामों का एक समुच्चय है।
- एक संभाव्यता माप, , जो घटना स्थान में प्रत्येक घटना को एक संभावना निर्दिष्ट करता है, जो 0 और 1 के बीच की एक संख्या है।
संभाव्यता का एक समझदार प्रतिरूप प्रदान करने के लिए, इन तत्वों को इस लेख में विस्तृत कई सिद्धांतों को पूरा करना होगा।
एक मानक पासे को फेंकने के उदाहरण में, हम प्रतिदर्श स्थान लेंगे। इवेंट स्पेस के लिए, हम बस प्रतिदर्श स्थान के सभी उपसमुच्चय का उपयोग कर सकते हैं, जिसमें (पांसा 5 पर उतरता है) जैसी साधारण इवेंट सम्मिलित होंगे, साथ ही साथ जटिल घटनाएँ जैसे (पासा सम संख्या पर गिरता है) भी सम्मिलित होंगे। अंत में, संभाव्यता फलन के लिए, हम प्रत्येक घटना को उस घटना के परिणामों की संख्या को 6 से विभाजित करके मैप करेंगे - इसलिए उदाहरण के लिए, को पर मैप किया जाएगा, और को पर मैप किया जाएगा।
जब कोई प्रयोग किया जाता है, तो हम कल्पना करते हैं कि "प्रकृति" प्रतिदर्श स्थान से एकल परिणाम, , का "चयन" करती है। इवेंट स्पेस में वे सभी घटनाएँ जिनमें चयनित परिणाम सम्मिलित हैं, को "घटित" कहा जाता है। यह "चयन" इस तरह से होता है कि यदि प्रयोग कई बार दोहराया जाता है, तो प्रत्येक घटना की घटनाओं की संख्या, प्रयोगों की कुल संख्या के एक अंश के रूप में, संभावना फलन द्वारा उस घटना को सौंपी गई संभावना की ओर प्रवृत्त होगी।
सोवियत गणितज्ञ एंड्री कोलमोगोरोव ने 1930 के दशक में, संभाव्यता के अन्य सिद्धांतों के साथ, संभाव्यता स्थान की धारणा निवेदित किया। आधुनिक संभाव्यता सिद्धांत में स्वयंसिद्धीकरण के लिए कई वैकल्पिक दृष्टिकोण हैं - उदाहरण के लिए, यादृच्छिक चर का बीजगणित।
परिचय
संभाव्यता स्थान एक गणितीय त्रिक है जो वास्तविक दुनिया की स्थितियों के एक विशेष वर्ग के लिए एक गणितीय प्रतिरूप प्रस्तुत करता है।
अन्य प्रतिरूपों की तरह, इसका लेखक अंततः परिभाषित करता है कि कौन से तत्व हैं , , और सम्मिलित है।
- प्रतिदर्श स्थान सभी संभावित परिणामों का समुच्चय है। एक परिणाम (संभावना) प्रतिरूप के एकल निष्पादन का परिणाम है। परिणाम प्रकृति की स्थितियाँ, संभावनाएँ, प्रयोगात्मक परिणाम आदि हो सकते हैं। वास्तविक दुनिया की स्थिति (या प्रयोग चलाने) के प्रत्येक उदाहरण को बिल्कुल एक परिणाम उत्पन्न करना चाहिए। यदि किसी प्रयोग के अलग-अलग दौर के परिणाम किसी भी मायने में भिन्न होते हैं, तो वे अलग-अलग परिणाम होते हैं। कौन सा अंतर मायने रखता है यह इस बात पर निर्भर करता है कि हम किस प्रकार का विश्लेषण करना चाहते हैं। इससे प्रतिदर्श स्थान के विभिन्न विकल्प सामने आते हैं।
- σ-बीजगणित यह उन सभी घटनाओं (संभावना सिद्धांत) का एक संग्रह है जिन पर हम विचार करना चाहेंगे। इस संग्रह में प्रत्येक प्राथमिक फलन सम्मिलित हो भी सकता है और नहीं भी। यहां, एक घटना शून्य या अधिक परिणामों का एक समूह है; वह है, प्रतिदर्श स्थान का एक उपसमुच्चय। किसी घटना को प्रयोग के दौरान घटित तब माना जाता है जब प्रयोग का परिणाम घटना का एक तत्व होता है। चूँकि एक ही परिणाम कई घटनाओं का सदस्य हो सकता है, इसलिए एक ही परिणाम के साथ कई घटनाओं का घटित होना संभव है। उदाहरण के लिए, जब परीक्षण में दो पासे फेंकने होते हैं, तो 7 पिप (गिनती) के योग के साथ सभी परिणामों का उपसमुच्चय एक घटना बन सकता है, जबकि विषम संख्या में पिप्स के साथ परिणाम एक और घटना बन सकते हैं। यदि परिणाम पहले पासे पर दो पिप्स और दूसरे पासे पर पांच पिप्स की प्राथमिक घटना का तत्व है, तो दोनों घटनाएं, 7 पिप्स और विषम संख्या में पिप्स, घटित मानी जाती हैं।
- संभाव्यता माप एक फलन समुच्चय करें है जो किसी घटना की संभावना लौटाता है। संभाव्यता शून्य (असंभव घटनाओं की संभाव्यता शून्य होती है, हालांकि संभाव्यता-शून्य घटनाएं आवश्यक रूप से असंभव नहीं होती हैं) और एक (घटना लगभग निश्चित रूप से, लगभग पूर्ण निश्चितता के साथ घटित होती है) के बीच की एक वास्तविक संख्या होती है। इस प्रकार एक फलन है संभाव्यता माप फलन को दो सरल आवश्यकताओं को पूरा करना चाहिए: पहला, परस्पर अनन्य घटनाओं के गणनीय समुच्चय संघ की संभावना इनमें से प्रत्येक घटना की संभावनाओं के गणनीय योग के बराबर होनी चाहिए। उदाहरण के लिए, परस्पर अनन्य घटनाओं के मिलन की संभावना और एक सिक्के को उछालने के यादृच्छिक प्रयोग में, , के लिए संभाव्यता का योग है और इसकी संभावना , . दूसरा, प्रतिदर्श स्थान की संभावना 1 के बराबर होना चाहिए (जो इस तथ्य को दर्शाता है कि, प्रतिरूप के निष्पादन को देखते हुए, कुछ परिणाम अवश्य घटित होने चाहिए)। पिछले उदाहरण में परिणामों के समुच्चय की संभावना एक के बराबर होना चाहिए, क्योंकि यह पूरी तरह से निश्चित है कि परिणाम कोई एक ही होगा या (प्रतिरूप किसी अन्य संभावना की उपेक्षा करता है) एक ही सिक्के को उछालने में।
प्रतिदर्श स्थान का प्रत्येक उपसमूह नहीं आवश्यक रूप से एक घटना माना जाना चाहिए: कुछ उपसमुच्चय बिल्कुल रुचि के नहीं हैं, अन्य गैर-मापने योग्य समुच्चय नहीं हो सकते हैं| मापा । सिक्का उछालने जैसे स्थिति में यह इतना स्पष्ट नहीं है। एक अलग उदाहरण में, कोई भाला फेंक की लंबाई पर विचार कर सकता है, जहां घटनाएं आम तौर पर 60 और 65 मीटर के बीच के अंतराल और ऐसे अंतराल के संघ होती हैं, लेकिन 60 और 65 मीटर के बीच अपरिमेय संख्याओं की तरह समुच्चय नहीं होती हैं।
परिभाषा
संक्षेप में, संभाव्यता स्थान एक माप स्थान है जिस्से कि संपूर्ण स्थान का माप एक के बराबर होता है।
विस्तारित परिभाषा निम्नलिखित है: संभाव्यता स्थान एक त्रिगुण है जिसमें निम्न निहित हैं:
- प्रतिदर्श स्थान - एक स्वेच्छाचारी गैर-रिक्त समुच्चय,
- σ-बीजगणित (जिसे σ-फ़ील्ड भी कहा जाता है) - के उप समुच्चय का एक समुच्चय, जिसे घटनाएँ (संभावना सिद्धांत) कहा जाता है, जैसे कि:
- प्रतिदर्श स्थान में सम्मिलित है: ,
- पूरक (समुच्चय सिद्धांत) के तहत बंद है: यदि , तब भी ,
- गणनीय समुच्चय संघ (समुच्चय सिद्धांत) के अंतर्गत बंद है: यदि के लिए , तब भी
- पिछली दो संपत्तियों और डी मॉर्गन के नियम का परिणाम यही है कि गणनीय प्रतिच्छेदन (समुच्चय सिद्धांत) के अंतर्गत भी बंद है: यदि के लिए , तब भी
- संभाव्यता माप - पर एक फ़ंक्शन ऐसा है कि:
- P गणनीय रूप से योगात्मक है (जिसे σ-योजक भी कहा जाता है): यदि जोड़ीवार असंयुक्त समुच्चयों का एक गणनीय संग्रह है तो,
- संपूर्ण प्रतिदर्श स्थान का माप एक के बराबर है: .
असतत स्थिति
असतत संभाव्यता सिद्धांत को केवल गणनीय समुच्चय प्रतिदर्श स्थानों की आवश्यकता होती है। संभाव्यता द्रव्यमान फलन द्वारा संभावनाओं को के बिंदुओं पर अंकित किया जा सकता है जैसे कि है। के सभी उपसमुच्चय घटनाओं के रूप में माना जा सकता है (इस प्रकार, घात समुच्चय है)। संभाव्यता माप सरल रूप
|
(⁎) |
लेता है। सबसे बड़ा σ-बीजगणित पूरी जानकारी बताता है। सामान्य तौर पर, एक σ-बीजगणित किसी समुच्चय के परिमित या गणनीय विभाजन से मेल खाता है , किसी घटना का सामान्य रूप प्राणी . उदाहरण भी देखें.
स्थिति,को परिभाषा द्वारा अनुमति दी गई है, लेकिन इसका उपयोग संभवतया ही कभी किया जाता है, क्योंकि ऐसे को प्रतिदर्श स्थान से सुरक्षित रूप से बाहर रखा जा सकता है।
सामान्य स्थिति
अगर Ω अगणनीय समुच्चय है, फिर भी ऐसा हो सकता है कि कुछ ω के लिए p(ω) ≠ 0; ऐसे ω को परमाणु (माप सिद्धांत) कहा जाता है। वे अधिकतम गणनीय (संभवतया खाली समुच्चय) समुच्चय हैं, जिनकी संभावना सभी परमाणुओं की संभावनाओं का योग है। यदि यह योग 1 के बराबर है तो अन्य सभी बिंदुओं को प्रतिदर्श स्थान से सुरक्षित रूप से बाहर रखा जा सकता है, और हमें असतत स्थिति में वापस लाया जा सकता है। अन्यथा, यदि सभी परमाणुओं की संभावनाओं का योग 0 और 1 के बीच है, तो संभाव्यता स्थान एक असतत (परमाणु) भाग (कदाचित खाली) और गैर-परमाणु भाग में विघटित हो जाता है।
गैर-परमाणु स्थिति
अगर सभी ω ∈ Ω के लिए p(ω) = 0 (इस स्थिति में, Ω अगणनीय होना चाहिए, क्योंकि अन्यथा P(Ω) = 1 संतुष्ट नहीं हो सकता), तो समीकरण (⁎) विफल हो जाता है: किसी समुच्चय की संभावना आवश्यक रूप से उसके तत्वों की संभावनाओं का योग नहीं है, क्योंकि योग केवल तत्वों की गणनीय संख्या के लिए परिभाषित किया गया है। यह संभाव्यता अंतरिक्ष सिद्धांत को और अधिक तकनीकी बनाता है। योग से अधिक सशक्त सूत्रीकरण, माप सिद्धांत लागू होता है। प्रारंभ में संभावनाएं कुछ "जनित्र" (जेनरेटर) समुच्चयों पर आधारित होती हैं (उदाहरण देखें)। फिर एक सीमित प्रक्रिया उन समुच्चयों को संभाव्यताएं निर्दिष्ट करने की अनुमति देती है जो जनित्र समुच्चयों के अनुक्रमों की सीमाएं हैं, या सीमाओं की सीमाएं हैं, इत्यादि। ये सभी समुच्चय σ-बीजगणित हैं। तकनीकी विवरण के लिए कैराथोडोरी का विस्तार प्रमेय देखें। से संबंधित समुच्चय मापने योग्य कहलाते हैं। सामान्य तौर पर वे जनित्र समुच्चयों की तुलना में बहुत अधिक जटिल होते हैं, लेकिन गैर-मापने योग्य समुच्चयों की तुलना में बहुत बेहतर होते हैं।
पूर्ण संभाव्यता स्थिति
एक संभाव्यता स्थान को पूर्ण संभाव्यता स्थान कहा जाता है यदि सभी के लिए और सभी के लिए हो। प्रायः, संभाव्यता स्थानों का अध्ययन पूर्ण संभाव्यता स्थानों तक ही सीमित होता है।
उदाहरण
असतत उदाहरण
उदाहरण 1
यदि प्रयोग में निष्पक्ष सिक्के को केवल एक बार उछालना सम्मिलित है, तो परिणाम या तो चित या पट होगा: । σ-बीजगणित में घटनाएँ समाविष्ट हैं, अर्थात्: (चित), (पट), (न तो चित और न ही पट), और (या तो चित या पट); दूसरे शब्दों में, । चित उछालने की पचास प्रतिशत संभावना है और पट उछालने की पचास प्रतिशत संभावना है, इसलिए इस उदाहरण में संभाव्यता माप , , , है।
उदाहरण 2
निष्पक्ष सिक्के को तीन बार उछाला जाता है। 8 संभावित परिणाम हैं: Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} (उदाहरण के लिए यहां "एच.टी.एच" का मतलब है कि पहली बार सिक्का हेड पर आया, दूसरी बार टेल पर, और आखिरी बार फिर हेड पर)। पूरी जानकारी σ-बीजगणित कि 28 = 256 घटनाएँ द्वारा वर्णित है, जहाँ प्रत्येक घटना Ω का उपसमूह है।
ऐलिस को केवल दूसरे टॉस का नतीजा पता है। इस प्रकार उसकी अधूरी जानकारी विभाजन Ω = A1 ⊔ A2 = {HHH, HHT, THH, THT} ⊔ {HTH, HTT, TTH, TTT} द्वारा वर्णित है, जहां ⊔ असंयुक्त संघ है, और संबंधित σ-बीजगणित है। ब्रायन केवल टेल की कुल संख्या जानता है। उनके विभाजन में चार भाग हैं: Ω = B0 ⊔ B1 ⊔ B2 ⊔ B3 = {HHH} ⊔ {HHT, HTH, THH} ⊔ {TTH, THT, HTT} ⊔ {TTT}; तदनुसार, उसका σ-बीजगणित में 24=16 घटनाएँ सम्मिलित है।
दो σ-बीजगणित अतुलनीय हैं: न तो और न ; दोनों 2Ω के उप-σ-बीजगणित हैं।
उदाहरण 3
यदि कैलिफ़ोर्निया के सभी मतदाताओं में से 100 मतदाताओं को यादृच्छिक रूप से निकाला जाए और पूछा जाए कि वे गवर्नर के लिए किसे वोट देंगे, तो 100 कैलिफ़ोर्नियाई मतदाताओं के सभी अनुक्रमों का समुच्चय प्रतिदर्श स्थान Ω होगा। हम मानते हैं कि प्रतिस्थापन के बिना नमूनाकरण का उपयोग किया जाता है: केवल 100 विभिन्न मतदाताओं के अनुक्रम की अनुमति है। सरलता के लिए एक आदेशित नमूने पर विचार किया जाता है, अर्थात एक अनुक्रम {ऐलिस, ब्रायन}, {ब्रायन, ऐलिस} से भिन्न है। हम यह भी मानते हैं कि प्रत्येक संभावित मतदाता को अपनी भविष्य की पसंद के बारे में ठीक-ठीक पता है, अर्थात वह बिना सोचे-समझे चुनाव नहीं करता है।
ऐलिस सिर्फ यही जानती है कि अर्नाल्ड श्वार्जनेगर को कम से कम 60 वोट मिले हैं या नहीं। उसकी अधूरी जानकारी σ-बीजगणित द ्वारा वर्णित है , समें सम्मिलित हैं: (1) Ω में सभी अनुक्रमों का समुच्चय जहां कम से कम 60 लोग श्वार्ज़नेगर के लिए वोट करते हैं; (2) सभी अनुक्रमों का समुच्चय जहां 60 से कम लोग श्वार्ज़नेगर के लिए वोट करते हैं; (3) संपूर्ण प्रतिदर्श स्थान Ω; और (4) खाली समुच्चय ∅।
ब्रायन को उन मतदाताओं की सटीक संख्या पता है जो श्वार्ज़नेगर को वोट देने जा रहे हैं। उनकी अधूरी जानकारी संबंधित विभाजन Ω = B0 ⊔ B1 ⊔ ⋯ ⊔ B100 द्वारा वर्णित है और σ-बीजगणित 2101इवेंट से मिलकर बनता है।
इस स्थिति में ऐलिस का σ-बीजगणित ब्रायन के σ-बीजगणित का उपसमुच्चय है: । ब्रायन का σ-बीजगणित बदले में बहुत बड़ी "संपूर्ण जानकारी" σ-बीजगणित 2Ω का एक उपसमुच्चय है जो 2n(n−1)⋯(n−99) घटनाएँ से मिलकर बना हैं, जहाँ n कैलिफोर्निया में सभी संभावित मतदाताओं की संख्या है।
गैर-परमाणु उदाहरण
उदाहरण 4
0 और 1 के बीच की एक संख्या यादृच्छिक रूप से, समान रूप से चुनी जाती है। यहाँ Ω = [0,1], बोरेल का σ-बीजगणित Ω पर समुच्चय है, और P [0,1] पर लेब्सेग माप है।
इस स्थिति में प्रपत्र के खुले अंतराल (a,b), जहां 0 < a < b < 1, जनित्र समुच्चय के रूप में लिया जा सकता है। ऐसे प्रत्येक समुच्चय को P((a,b)) = (b − a) की प्रायिकता बताई जा सकती है, जो [0,1] पर लेबेस्ग माप और Ω पर बोरेल σ-बीजगणित उत्पन्न करता है।
उदाहरण 5
एक निष्पक्ष सिक्का लगातार उछाला जाता है। यहां कोई Ω = {0,1}∞ ले सकता है, संख्या 0 और 1 के सभी अनंत अनुक्रमों का समुच्चय। सिलेंडर समुच्चय {(x1, x2, ...) ∈ Ω : x1 = a1, ..., xn = an} जनित्र समुच्चय के रूप में उपयोग किया जा सकता है। ऐसा प्रत्येक समुच्चय एक घटना का वर्णन करता है जिसमें पहले n टॉस के परिणामस्वरूप एक निश्चित अनुक्रम (a1, ..., an) होता है, और शेष अनुक्रम स्वेच्छाचारी हो सकता है। ऐसी प्रत्येक घटना को स्वाभाविक रूप से 2−n की संभावना दी जा सकती है।
ये दो गैर-परमाणु उदाहरण निकट से संबंधित हैं: एक अनुक्रम (x1, x2, ...) ∈ {0,1}∞ संख्या 2−1x1 + 2−2x2 + ⋯ ∈ [0,1] की ओर ले जाता है। यह {0,1}∞ के बीच एक-से-एक समतुल्यता नहीं है और [0,1] हालाँकि: यह एक मानक संभाव्यता स्थान है, जो दो संभाव्यता स्थानों को एक ही संभाव्यता स्थान के दो रूपों के रूप में मानने की अनुमति देता है। वास्तव में, इस अर्थ में सभी गैर-तर्कहीन गैर-परमाणु संभाव्यता स्थान समान हैं। वे तथाकथित मानक संभाव्यता स्थान हैं। संभाव्यता स्थानों के बुनियादी अनुप्रयोग मानकता के प्रति असंवेदनशील हैं। फिर भी, मानक संभाव्यता स्थानों पर गैर-असतत अनुकूलन आसान और स्वाभाविक है, अन्यथा यह अस्पष्ट हो जाती है।
संबंधित अवधारणाएँ
संभाव्यता वितरण
कोई भी संभाव्यता वितरण संभाव्यता माप को परिभाषित करता है।
यादृच्छिक चर
एक यादृच्छिक चर X संभाव्यता स्थान Ω से दूसरे मापने योग्य स्थान S जिसे राज्य स्थान कहा जाता है, तक एक मापने योग्य फ़ंक्शन X: Ω → S है।
यदि A ⊂ S, तो संकेतन Pr(X ∈ A) आमतौर पर उपयोग किया जाने वाला संक्षिप्त लिपि है।
प्रतिदर्श स्थान के संदर्भ में घटनाओं को परिभाषित करना
यदि Ω गणनीय है तो हम लगभग हमेशा को Ω के घात समुच्चय के रूप में परिभाषित करते हैं, यानी जो कि तुच्छ रूप से एक σ-बीजगणित है और सबसे बड़ा बीजगणित जिसे हम Ω का उपयोग करके बना सकते हैं। इसलिए हम संभाव्यता स्थान को परिभाषित करने के लिए को छोड़ सकते हैं और केवल (Ω,P) लिख सकते हैं।
दूसरी ओर, यदि Ω अनगिनत है और हम का उपयोग करते हैं हम अपनी संभाव्यता माप P को परिभाषित करने में परेशानी में पड़ जाते हैं क्योंकि बहुत बड़ा है, यानी प्रायः ऐसे समुच्चय होंगे जिनके लिए एक अद्वितीय माप निर्दिष्ट करना असंभव होगा। इस स्थिति में, हमें एक छोटे σ-बीजगणित का उपयोग करना होगा, उदाहरण के लिए Ω का बोरेल बीजगणित, जो सबसे छोटा σ-बीजगणित है जो सभी अनिर्णित समुच्चयों को मापने योग्य बनाता है।
सशर्त संभाव्यता
कोलमोगोरोव की संभाव्यता स्थानों की परिभाषा सशर्त संभाव्यता की प्राकृतिक अवधारणा को जन्म देती है। हर समुच्चय A गैर-शून्य संभावना के साथ (अर्थात्, P(A) > 0) एक अन्य संभाव्यता माप
को अंतरिक्ष पर परिभाषित करता है। इसे आमतौर पर "A दिए जाने पर B की संभावना" के रूप में उच्चारित किया जाता है।
किसी भी आयोजन के लिए A ऐसा है कि P(A) > 0, फलन Q, Q(B) = P(B | A) द्वारा परिभाषित सभी घटनाओं के लिए B स्वयं एक संभाव्यता माप है।
स्वतंत्रता
दो घटनाओं, ए और बी को सांख्यिकीय स्वतंत्रता कहा जाता है यदि P(A ∩ B) = P(A) P(B)।
दो यादृच्छिक चर, X और Y, को स्वतंत्र कहा जाता है यदि X के संदर्भ में परिभाषित कोई भी घटना Y के संदर्भ में परिभाषित किसी भी घटना से स्वतंत्र है। औपचारिक रूप से, वे स्वतंत्र σ-बीजगणित उत्पन्न करते हैं, जहां दो σ-बीजगणित होते हैं G और H, जो F के उपसमुच्चय हैं, स्वतंत्र कहा जाता है यदि G का कोई भी तत्व H के किसी भी तत्व से स्वतंत्र है।
पारस्परिक विशिष्टता
दो घटनाएँ, A और B को परस्पर अनन्य या असंयुक्त कहा जाता है यदि एक की घटना दूसरे की गैर-घटना को दर्शाती है, अर्थात, उनका प्रतिच्छेदन खाली है। यह उनके प्रतिच्छेदन की संभावना शून्य होने की तुलना में अधिक मजबूत स्थिति है।
यदि A और B असंयुक्त घटनाएँ हैं, तो P(A ∪ B) = P(A) + P(B)। यह घटनाओं के एक (सीमित या अनगिनत अनंत) अनुक्रम तक फैला हुआ है। फिर भी, घटनाओं के अनगिनत समूह के मिलन की संभावना उनकी संभावनाओं का योग नहीं है। उदाहरण के लिए, यदि Z एक सामान्य रूप से वितरित यादृच्छिक चर है, तो P(Z = x) किसी xक े लिए 0 है, लेकिन P(Z ∈ R) = 1 है।
समारोह A ∩ B को "A और B" और घटना A ∪ B को "A या B" के रूप में जाना जाता है।
यह भी देखें
- अंतरिक्ष (गणित)
- जगह मापें
- फ़ज़ी माप सिद्धांत
- फ़िल्टर की गई संभाव्यता स्थान
- टैलाग्रैंड की सांद्रता असमानता
संदर्भ
ग्रन्थसूची
- Pierre Simon de Laplace (1812) Analytical Theory of Probability
- The first major treatise blending calculus with probability theory, originally in French: Théorie Analytique des Probabilités.
- Andrei Nikolajevich Kolmogorov (1950) Foundations of the Theory of Probability
- The modern measure-theoretic foundation of probability theory; the original German version (Grundbegriffe der Wahrscheinlichkeitrechnung) appeared in 1933.
- Harold Jeffreys (1939) The Theory of Probability
- An empiricist, Bayesian approach to the foundations of probability theory.
- Edward Nelson (1987) Radically Elementary Probability Theory
- Foundations of probability theory based on nonstandard analysis. Downloadable. http://www.math.princeton.edu/~nelson/books.html
- Patrick Billingsley: Probability and Measure, John Wiley and Sons, New York, Toronto, London, 1979.
- Henk Tijms (2004) Understanding Probability
- A lively introduction to probability theory for the beginner, Cambridge Univ. Press.
- David Williams (1991) Probability with martingales
- An undergraduate introduction to measure-theoretic probability, Cambridge Univ. Press.
- Gut, Allan (2005). Probability: A Graduate Course. Springer. ISBN 0-387-22833-0.
बाहरी संबंध
- Sazonov, V.V. (2001) [1994], "Probability space", Encyclopedia of Mathematics, EMS Press
- Animation demonstrating probability space of dice
- Virtual Laboratories in Probability and Statistics (principal author Kyle Siegrist), especially, Probability Spaces
- Citizendium
- Complete probability space
- Weisstein, Eric W. "संभाव्यता स्थान". MathWorld.