स्यूडोस्केलर: Difference between revisions
(Created page with "{{Short description|Scalar quantity, changing sign in mirrored coordinates}} {{Use American English|date=March 2019}}{{More citations needed|date=January 2021}} रैखि...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Scalar quantity, changing sign in mirrored coordinates}} | {{Short description|Scalar quantity, changing sign in mirrored coordinates}} | ||
{{Use American English|date=March 2019}}{{More citations needed|date=January 2021}} | {{Use American English|date=March 2019}}{{More citations needed|date=January 2021}} | ||
रैखिक बीजगणित में, एक | [[रैखिक बीजगणित]] में, एक '''छद्मअदिश''' एक राशि है जो एक [[अदिश]] के जैसा व्यवहार करती है, अतिरिक्त इसके कि यह यह [[समता व्युत्क्रम]] के अंतर्गत संकेत (चिन्ह) बदलता है<ref>{{cite book |last=Zee |first=Anthony|author-link=Anthony Zee|title=संक्षेप में क्वांटम क्षेत्र सिद्धांत|edition=2nd|publisher=Princeton University Press|year=2010 |chapter=II. Dirac and the Spinor II.1 The Dirac Equation § Parity |chapter-url=https://archive.org/details/isbn_9780691140346/page/98 |page=98 |url=https://archive.org/details/isbn_9780691140346|url-access=registration |isbn=978-0-691-14034-6}}</ref><ref>{{cite book|last=Weinberg |first=Steven|author-link=Steven Weinberg|title=क्षेत्रों का क्वांटम सिद्धांत|volume=1: Foundations|publisher=Cambridge University Press|year=1995|page=228|isbn=9780521550017 |chapter=5.5 Causal Dirac Fields §5.5.57 |chapter-url=https://books.google.com/books?id=doeDB3_WLvwC&pg=PA228}}</ref> जबकि एक यथार्थ अदिश ऐसा नहीं करता है। | ||
एक [[छद्मवेक्टर]] और एक साधारण [[वेक्टर (गणित और भौतिकी)]] के | एक [[छद्मवेक्टर|छद्म सदिश]] और एक साधारण [[वेक्टर (गणित और भौतिकी)|सदिश]] के मध्य कोई भी अदिश गुणनफल एक छद्म अदिश होता है। छद्म अदिश का प्रोटोटाइप उदाहरण [[अदिश त्रिक गुणनफल]] है, जिसे त्रिक गुणनफल में एक सदिश के मध्य अदिश गुणनफल और दो अन्य सदिशों के मध्य सदिश गुणनफल के रूप में लिखा जा सकता है, जहां बाद वाला एक छद्म सदिश है। एक छद्म अदिश, जब एक साधारण [[ सदिश स्थल |सदिश]] से गुणा किया जाता है, तो एक [[छद्म सदिश]] बन जाता है ([[अक्षीय सदिश]] ); एक समान निर्माण [[ स्यूडोटेन्सर |छद्मप्रदिश]] बनाता है। | ||
गणितीय रूप से, एक | गणितीय रूप से, एक छद्म अदिश एक [[सदिश समष्टि]] की मुख्य [[बाहरी शक्ति|बाह्य घात]], या [[क्लिफ़ोर्ड बीजगणित]] की मुख्य [[बाहरी शक्ति|घात]] का एक अवयव है; [[स्यूडोस्केलर (क्लिफ़ोर्ड बीजगणित)|छद्म अदिश (क्लिफ़ोर्ड बीजगणित)]] देखें। अधिक सामान्यतः, यह [[अवलकनीय मैनिफोल्ड]] के [[विहित बंडल]] का एक अवयव है। | ||
==भौतिकी में== | ==भौतिकी में== | ||
भौतिकी में, एक | भौतिकी में, एक छद्म अदिश एक अदिश(भौतिकी) के अनुरूप [[भौतिक मात्रा]] को दर्शाता है। दोनों भौतिक मात्राएँ हैं जो एक ही मान मानती हैं जो [[उचित घुमाव]] के तहत अपरिवर्तनीय है। हालाँकि, [[समता परिवर्तन]] के तहत, छद्म अदिश अपने संकेतों को फ़्लिप करते हैं जबकि अदिशऐसा नहीं करते हैं। चूँकि एक समतल के माध्यम से परावर्तन (गणित) समता परिवर्तन के साथ एक घूर्णन का संयोजन है, छद्मअदिशभी परावर्तन के तहत संकेत बदलते हैं। | ||
===प्रेरणा=== | ===प्रेरणा=== | ||
भौतिकी में सबसे शक्तिशाली विचारों में से एक यह है कि जब कोई इन कानूनों का वर्णन करने के लिए उपयोग की जाने वाली समन्वय प्रणाली को बदलता है तो भौतिक कानून नहीं बदलते हैं। जब निर्देशांक अक्ष उलटे होते हैं तो एक | भौतिकी में सबसे शक्तिशाली विचारों में से एक यह है कि जब कोई इन कानूनों का वर्णन करने के लिए उपयोग की जाने वाली समन्वय प्रणाली को बदलता है तो भौतिक कानून नहीं बदलते हैं। जब निर्देशांक अक्ष उलटे होते हैं तो एक छद्म अदिश अपने संकेत को उलट देता है, यह बताता है कि यह भौतिक मात्रा का वर्णन करने के लिए सबसे अच्छी वस्तु नहीं है। 3डी-स्पेस में, छद्म सदिश द्वारा वर्णित मात्राएं क्रम 2 के [[एंटीसिमेट्रिक टेंसर]] हैं, जो व्युत्क्रम के तहत अपरिवर्तनीय हैं। छद्म सदिश उस मात्रा का एक सरल प्रतिनिधित्व हो सकता है, लेकिन व्युत्क्रम के तहत संकेत के परिवर्तन से ग्रस्त है। इसी तरह, 3डी-स्पेस में, एक अदिश का [[ हॉज दोहरे ]] 3-आयामी [[लेवी-सिविटा प्रतीक]] के स्थिर समय के बराबर होता है|लेवी-सिविटा स्यूडोटेंसर (या क्रमपरिवर्तन स्यूडोटेंसर); जबकि छद्म अदिश का हॉज डुअल क्रम तीन का एक एंटी-सिमेट्रिक (शुद्ध) टेंसर है। लेवी-सिविटा स्यूडोटेंसर एक पूरी तरह से एंटीसिमेट्रिक टेन्सर है | ऑर्डर 3 का एंटी-सिमेट्रिक स्यूडोटेंसर है। चूंकि छद्म अदिश का दोहरा दो छद्म-मात्राओं का उत्पाद है, परिणामी टेन्सर एक सच्चा टेन्सर है, और व्युत्क्रमण पर संकेत नहीं बदलता है कुल्हाड़ियों का. स्थिति स्यूडोसदिश और ऑर्डर 2 के एंटी-सिमेट्रिक टेन्सर की स्थिति के समान है। स्यूडोसदिश का डुअल ऑर्डर 2 (और इसके विपरीत) का एंटी-सिमेट्रिक टेन्सर है। समन्वय व्युत्क्रम के तहत टेंसर एक अपरिवर्तनीय भौतिक मात्रा है, जबकि छद्म सदिश अपरिवर्तनीय नहीं है। | ||
स्थिति को किसी भी आयाम तक बढ़ाया जा सकता है। आम तौर पर एन-डायमेंशनल स्पेस में ऑर्डर आर टेंसर का हॉज डुअल ऑर्डर का एक एंटी-सिमेट्रिक स्यूडोटेंसर होगा {{nowrap|(''n'' − ''r'')}} और इसके विपरीत। विशेष रूप से, विशेष सापेक्षता के चार-आयामी स्पेसटाइम में, एक | स्थिति को किसी भी आयाम तक बढ़ाया जा सकता है। आम तौर पर एन-डायमेंशनल स्पेस में ऑर्डर आर टेंसर का हॉज डुअल ऑर्डर का एक एंटी-सिमेट्रिक स्यूडोटेंसर होगा {{nowrap|(''n'' − ''r'')}} और इसके विपरीत। विशेष रूप से, विशेष सापेक्षता के चार-आयामी स्पेसटाइम में, एक छद्म अदिश चौथे क्रम के टेंसर का दोहरा होता है और चार-आयामी लेवी-सिविटा प्रतीक | लेवी-सिविटा स्यूडोटेंसर के समानुपाती होता है। | ||
===उदाहरण=== | ===उदाहरण=== | ||
* [[स्ट्रीम फ़ंक्शन]] <math>\psi(x,y)</math> द्वि-आयामी, असंपीड्य द्रव प्रवाह के लिए <math>\mathbf{v}\left(x,y\right)=\left\langle \partial_{y}\psi,-\partial_{x}\psi\right\rangle </math>. | * [[स्ट्रीम फ़ंक्शन]] <math>\psi(x,y)</math> द्वि-आयामी, असंपीड्य द्रव प्रवाह के लिए <math>\mathbf{v}\left(x,y\right)=\left\langle \partial_{y}\psi,-\partial_{x}\psi\right\rangle </math>. | ||
* [[चुंबकीय आवेश]] एक | * [[चुंबकीय आवेश]] एक छद्मअदिशहै क्योंकि इसे गणितीय रूप से परिभाषित किया गया है, भले ही यह भौतिक रूप से मौजूद हो या नहीं। | ||
* [[चुंबकीय प्रवाह]] एक | * [[चुंबकीय प्रवाह]] एक सदिश ([[सतह सामान्य]]) और स्यूडोसदिश ([[चुंबकीय क्षेत्र]]) के बीच एक [[डॉट उत्पाद]] का परिणाम है। | ||
* हेलिसिटी (कण भौतिकी) एक [[स्पिन (भौतिकी)]] | * हेलिसिटी (कण भौतिकी) एक [[स्पिन (भौतिकी)]] स्यूडोसदिश का संवेग की दिशा (एक सच्चा सदिश ) पर प्रक्षेपण (डॉट उत्पाद) है। | ||
* | * छद्म अदिश कण, यानी स्पिन 0 और विषम समता वाले कण, यानी, तरंग फ़ंक्शन के साथ कोई आंतरिक स्पिन वाला कण जो पैरिटी (भौतिकी) के तहत संकेत बदलता है। उदाहरण [[स्यूडोस्केलर मेसन|छद्म अदिश मेसन]] हैं। | ||
==ज्यामितीय बीजगणित में== | ==ज्यामितीय बीजगणित में== | ||
{{See also|Pseudoscalar (Clifford algebra)}} | {{See also|Pseudoscalar (Clifford algebra)}} | ||
[[ज्यामितीय बीजगणित]] में एक | [[ज्यामितीय बीजगणित]] में एक छद्म अदिश बीजगणित का उच्चतम श्रेणी वाला सदिश स्पेस तत्व है। उदाहरण के लिए, दो आयामों में दो ऑर्थोगोनल आधार सदिश हैं, <math>e_1</math>, <math>e_2</math> और संबंधित उच्चतम श्रेणी का आधार तत्व है | ||
:<math>e_1 e_2 = e_{12}.</math> | :<math>e_1 e_2 = e_{12}.</math> | ||
तो एक | तो एक छद्म अदिश ई का गुणज है<sub>12</sub>. तत्व ई<sub>12</sub> वर्ग -1 तक और सभी सम तत्वों के साथ भ्रमण करता है - इसलिए जटिल संख्याओं में काल्पनिक अदिश i की तरह व्यवहार करता है। ये अदिश-जैसे गुण ही हैं जो इसके नाम को जन्म देते हैं। | ||
इस सेटिंग में, एक | इस सेटिंग में, एक छद्म अदिश समता व्युत्क्रम के तहत चिह्न बदलता है, यदि | ||
:(इ<sub>1</sub>, यह है<sub>2</sub>) → (में<sub>1</sub>, में<sub>2</sub>) | :(इ<sub>1</sub>, यह है<sub>2</sub>) → (में<sub>1</sub>, में<sub>2</sub>) | ||
Line 38: | Line 38: | ||
:इ<sub>1</sub>e<sub>2</sub> → यू<sub>1</sub>u<sub>2</sub> = ±e<sub>1</sub>e<sub>2</sub>, | :इ<sub>1</sub>e<sub>2</sub> → यू<sub>1</sub>u<sub>2</sub> = ±e<sub>1</sub>e<sub>2</sub>, | ||
जहां संकेत परिवर्तन के निर्धारक पर निर्भर करता है। इस प्रकार ज्यामितीय बीजगणित में | जहां संकेत परिवर्तन के निर्धारक पर निर्भर करता है। इस प्रकार ज्यामितीय बीजगणित में छद्म अदिश भौतिकी में छद्म अदिश के अनुरूप होते हैं। | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 10:48, 8 July 2023
This article needs additional citations for verification. (January 2021) (Learn how and when to remove this template message) |
रैखिक बीजगणित में, एक छद्मअदिश एक राशि है जो एक अदिश के जैसा व्यवहार करती है, अतिरिक्त इसके कि यह यह समता व्युत्क्रम के अंतर्गत संकेत (चिन्ह) बदलता है[1][2] जबकि एक यथार्थ अदिश ऐसा नहीं करता है।
एक छद्म सदिश और एक साधारण सदिश के मध्य कोई भी अदिश गुणनफल एक छद्म अदिश होता है। छद्म अदिश का प्रोटोटाइप उदाहरण अदिश त्रिक गुणनफल है, जिसे त्रिक गुणनफल में एक सदिश के मध्य अदिश गुणनफल और दो अन्य सदिशों के मध्य सदिश गुणनफल के रूप में लिखा जा सकता है, जहां बाद वाला एक छद्म सदिश है। एक छद्म अदिश, जब एक साधारण सदिश से गुणा किया जाता है, तो एक छद्म सदिश बन जाता है (अक्षीय सदिश ); एक समान निर्माण छद्मप्रदिश बनाता है।
गणितीय रूप से, एक छद्म अदिश एक सदिश समष्टि की मुख्य बाह्य घात, या क्लिफ़ोर्ड बीजगणित की मुख्य घात का एक अवयव है; छद्म अदिश (क्लिफ़ोर्ड बीजगणित) देखें। अधिक सामान्यतः, यह अवलकनीय मैनिफोल्ड के विहित बंडल का एक अवयव है।
भौतिकी में
भौतिकी में, एक छद्म अदिश एक अदिश(भौतिकी) के अनुरूप भौतिक मात्रा को दर्शाता है। दोनों भौतिक मात्राएँ हैं जो एक ही मान मानती हैं जो उचित घुमाव के तहत अपरिवर्तनीय है। हालाँकि, समता परिवर्तन के तहत, छद्म अदिश अपने संकेतों को फ़्लिप करते हैं जबकि अदिशऐसा नहीं करते हैं। चूँकि एक समतल के माध्यम से परावर्तन (गणित) समता परिवर्तन के साथ एक घूर्णन का संयोजन है, छद्मअदिशभी परावर्तन के तहत संकेत बदलते हैं।
प्रेरणा
भौतिकी में सबसे शक्तिशाली विचारों में से एक यह है कि जब कोई इन कानूनों का वर्णन करने के लिए उपयोग की जाने वाली समन्वय प्रणाली को बदलता है तो भौतिक कानून नहीं बदलते हैं। जब निर्देशांक अक्ष उलटे होते हैं तो एक छद्म अदिश अपने संकेत को उलट देता है, यह बताता है कि यह भौतिक मात्रा का वर्णन करने के लिए सबसे अच्छी वस्तु नहीं है। 3डी-स्पेस में, छद्म सदिश द्वारा वर्णित मात्राएं क्रम 2 के एंटीसिमेट्रिक टेंसर हैं, जो व्युत्क्रम के तहत अपरिवर्तनीय हैं। छद्म सदिश उस मात्रा का एक सरल प्रतिनिधित्व हो सकता है, लेकिन व्युत्क्रम के तहत संकेत के परिवर्तन से ग्रस्त है। इसी तरह, 3डी-स्पेस में, एक अदिश का हॉज दोहरे 3-आयामी लेवी-सिविटा प्रतीक के स्थिर समय के बराबर होता है|लेवी-सिविटा स्यूडोटेंसर (या क्रमपरिवर्तन स्यूडोटेंसर); जबकि छद्म अदिश का हॉज डुअल क्रम तीन का एक एंटी-सिमेट्रिक (शुद्ध) टेंसर है। लेवी-सिविटा स्यूडोटेंसर एक पूरी तरह से एंटीसिमेट्रिक टेन्सर है | ऑर्डर 3 का एंटी-सिमेट्रिक स्यूडोटेंसर है। चूंकि छद्म अदिश का दोहरा दो छद्म-मात्राओं का उत्पाद है, परिणामी टेन्सर एक सच्चा टेन्सर है, और व्युत्क्रमण पर संकेत नहीं बदलता है कुल्हाड़ियों का. स्थिति स्यूडोसदिश और ऑर्डर 2 के एंटी-सिमेट्रिक टेन्सर की स्थिति के समान है। स्यूडोसदिश का डुअल ऑर्डर 2 (और इसके विपरीत) का एंटी-सिमेट्रिक टेन्सर है। समन्वय व्युत्क्रम के तहत टेंसर एक अपरिवर्तनीय भौतिक मात्रा है, जबकि छद्म सदिश अपरिवर्तनीय नहीं है।
स्थिति को किसी भी आयाम तक बढ़ाया जा सकता है। आम तौर पर एन-डायमेंशनल स्पेस में ऑर्डर आर टेंसर का हॉज डुअल ऑर्डर का एक एंटी-सिमेट्रिक स्यूडोटेंसर होगा (n − r) और इसके विपरीत। विशेष रूप से, विशेष सापेक्षता के चार-आयामी स्पेसटाइम में, एक छद्म अदिश चौथे क्रम के टेंसर का दोहरा होता है और चार-आयामी लेवी-सिविटा प्रतीक | लेवी-सिविटा स्यूडोटेंसर के समानुपाती होता है।
उदाहरण
- स्ट्रीम फ़ंक्शन द्वि-आयामी, असंपीड्य द्रव प्रवाह के लिए .
- चुंबकीय आवेश एक छद्मअदिशहै क्योंकि इसे गणितीय रूप से परिभाषित किया गया है, भले ही यह भौतिक रूप से मौजूद हो या नहीं।
- चुंबकीय प्रवाह एक सदिश (सतह सामान्य) और स्यूडोसदिश (चुंबकीय क्षेत्र) के बीच एक डॉट उत्पाद का परिणाम है।
- हेलिसिटी (कण भौतिकी) एक स्पिन (भौतिकी) स्यूडोसदिश का संवेग की दिशा (एक सच्चा सदिश ) पर प्रक्षेपण (डॉट उत्पाद) है।
- छद्म अदिश कण, यानी स्पिन 0 और विषम समता वाले कण, यानी, तरंग फ़ंक्शन के साथ कोई आंतरिक स्पिन वाला कण जो पैरिटी (भौतिकी) के तहत संकेत बदलता है। उदाहरण छद्म अदिश मेसन हैं।
ज्यामितीय बीजगणित में
ज्यामितीय बीजगणित में एक छद्म अदिश बीजगणित का उच्चतम श्रेणी वाला सदिश स्पेस तत्व है। उदाहरण के लिए, दो आयामों में दो ऑर्थोगोनल आधार सदिश हैं, , और संबंधित उच्चतम श्रेणी का आधार तत्व है
तो एक छद्म अदिश ई का गुणज है12. तत्व ई12 वर्ग -1 तक और सभी सम तत्वों के साथ भ्रमण करता है - इसलिए जटिल संख्याओं में काल्पनिक अदिश i की तरह व्यवहार करता है। ये अदिश-जैसे गुण ही हैं जो इसके नाम को जन्म देते हैं।
इस सेटिंग में, एक छद्म अदिश समता व्युत्क्रम के तहत चिह्न बदलता है, यदि
- (इ1, यह है2) → (में1, में2)
तब, आधार का परिवर्तन एक ऑर्थोगोनल परिवर्तन का प्रतिनिधित्व करता है
- इ1e2 → यू1u2 = ±e1e2,
जहां संकेत परिवर्तन के निर्धारक पर निर्भर करता है। इस प्रकार ज्यामितीय बीजगणित में छद्म अदिश भौतिकी में छद्म अदिश के अनुरूप होते हैं।
संदर्भ
- ↑ Zee, Anthony (2010). "II. Dirac and the Spinor II.1 The Dirac Equation § Parity". संक्षेप में क्वांटम क्षेत्र सिद्धांत (2nd ed.). Princeton University Press. p. 98. ISBN 978-0-691-14034-6.
- ↑ Weinberg, Steven (1995). "5.5 Causal Dirac Fields §5.5.57". क्षेत्रों का क्वांटम सिद्धांत. Vol. 1: Foundations. Cambridge University Press. p. 228. ISBN 9780521550017.