विघटन प्रमेय: Difference between revisions
No edit summary |
No edit summary |
||
Line 36: | Line 36: | ||
और | और | ||
<math display=block>\mu(A \times B) = \int_A \mu\left(B|x_1\right) \, \mu\left( \pi_1^{-1}(\mathrm{d} x_{1})\right).</math> | <math display=block>\mu(A \times B) = \int_A \mu\left(B|x_1\right) \, \mu\left( \pi_1^{-1}(\mathrm{d} x_{1})\right).</math> | ||
[[सशर्त अपेक्षा]] का संबंध पहचानों द्वारा दिया गया है | [[सशर्त अपेक्षा|नियमित अपेक्षा]] का संबंध पहचानों द्वारा दिया गया है | ||
<math display=block>\operatorname E(f|\pi_1)(x_1)= \int_{X_2} f(x_1,x_2) \mu(\mathrm d x_2|x_1),</math><math display=block>\mu(A\times B|\pi_1)(x_1)= 1_A(x_1) \cdot \mu(B| x_1).</math> | <math display=block>\operatorname E(f|\pi_1)(x_1)= \int_{X_2} f(x_1,x_2) \mu(\mathrm d x_2|x_1),</math><math display=block>\mu(A\times B|\pi_1)(x_1)= 1_A(x_1) \cdot \mu(B| x_1).</math> | ||
===[[वेक्टर कैलकुलस|सदिश गणना]] === | ===[[वेक्टर कैलकुलस|सदिश गणना]] === | ||
विघटन प्रमेय को सदिश गणना में प्रतिबंधित माप के उपयोग को उचित ठहराने के रूप में भी देखा जा सकता है। उदाहरण के लिए, स्टोक्स के प्रमेय में जैसा कि कॉम्पैक्ट स्पेस [[सतह (गणित)]] के माध्यम से बहने वाले सदिश क्षेत्र {{nowrap|Σ ⊂ '''R'''<sup>3</sup>}} पर प्रयुक्त होता है , यह अंतर्निहित है कि Σ पर सही माप त्रि-आयामी लेबेस्ग माप λ<sup>3</sup>Σ पर, विघटन है और यह कि ∂Σ पर इस माप का विघटन λ<sup>3</sup> पर ∂Σ के विघटन के समान है.<ref name=Ambrosio_Gigli_Savare>{{cite book | author=Ambrosio, L., Gigli, N. & Savaré, G. | title=मीट्रिक रिक्त स्थान और संभाव्यता माप के स्थान में क्रमिक प्रवाह| publisher=ETH Zürich, Birkhäuser Verlag, Basel | year=2005 | isbn=978-3-7643-2428-5 }}</ref> | विघटन प्रमेय को सदिश गणना में प्रतिबंधित माप के उपयोग को उचित ठहराने के रूप में भी देखा जा सकता है। उदाहरण के लिए, स्टोक्स के प्रमेय में जैसा कि कॉम्पैक्ट स्पेस [[सतह (गणित)]] के माध्यम से बहने वाले सदिश क्षेत्र {{nowrap|Σ ⊂ '''R'''<sup>3</sup>}} पर प्रयुक्त होता है , यह अंतर्निहित है कि Σ पर सही माप त्रि-आयामी लेबेस्ग माप λ<sup>3</sup>Σ पर, विघटन है और यह कि ∂Σ पर इस माप का विघटन λ<sup>3</sup> पर ∂Σ के विघटन के समान है.<ref name=Ambrosio_Gigli_Savare>{{cite book | author=Ambrosio, L., Gigli, N. & Savaré, G. | title=मीट्रिक रिक्त स्थान और संभाव्यता माप के स्थान में क्रमिक प्रवाह| publisher=ETH Zürich, Birkhäuser Verlag, Basel | year=2005 | isbn=978-3-7643-2428-5 }}</ref> | ||
=== | ===नियमित वितरण=== | ||
विघटन प्रमेय को आंकड़ों में | विघटन प्रमेय को आंकड़ों में नियमित संभाव्यता वितरण का कठोर उपचार देने के लिए प्रयुक्त किया जा सकता है, जबकि नियमित संभाव्यता के विशुद्ध रूप से एब्स्ट्रेक्ट सूत्र से बचा जा सकता है।<ref name=Chang_Pollard>{{cite journal|last=Chang|first=J.T.|author2=Pollard, D.|title=विघटन के रूप में कंडीशनिंग|journal=Statistica Neerlandica| year=1997 | volume=51|issue=3|url=http://www.stat.yale.edu/~jtc5/papers/ConditioningAsDisintegration.pdf|doi=10.1111/1467-9574.00056|pages=287|citeseerx=10.1.1.55.7544|s2cid=16749932 }}</ref> | ||
==यह भी देखें == | ==यह भी देखें == | ||
Line 49: | Line 49: | ||
* {{annotated link|संयुक्त संभाव्यता वितरण}} | * {{annotated link|संयुक्त संभाव्यता वितरण}} | ||
* {{annotated link|कोपुला (सांख्यिकी)}} | * {{annotated link|कोपुला (सांख्यिकी)}} | ||
* {{annotated link| | * {{annotated link|नियमित अपेक्षा}} | ||
* {{annotated link|बोरेल-कोलमोगोरोव विरोधाभास}} | * {{annotated link|बोरेल-कोलमोगोरोव विरोधाभास}} | ||
* [[नियमित सशर्त संभाव्यता]] | * [[नियमित सशर्त संभाव्यता|नियमित संभाव्यता]] | ||
==संदर्भ == | ==संदर्भ == |
Revision as of 11:23, 12 July 2023
गणित में, विघटन प्रमेय माप सिद्धांत और संभाव्यता सिद्धांत का परिणाम है। यह प्रश्न में माप स्पेस के शून्य उपसमुच्चय के माप (गणित) के गैर-सामान्य प्रतिबंध के विचार को कठोरता से परिभाषित करता है। यह कंडीशनिंग (संभावना) के अस्तित्व से संबंधित है। इस प्रकार अर्थ में, विघटन किसी उत्पाद माप के निर्माण की विपरीत प्रक्रिया है।
प्रेरणा
यूक्लिडियन विमान R2, S = [0, 1] × [0, 1]. में इकाई वर्ग पर विचार करें। S पर द्वि-आयामी लेब्सेग माप λ2 के प्रतिबंध द्वारा एस पर परिभाषित संभाव्यता माप μ पर विचार करें . अर्थात, किसी घटना E ⊆ S की संभावना बस E का क्षेत्रफल है। हम मानते हैं कि E, S का मापने योग्य उपसमुच्चय है।
S के एक-आयामी उपसमुच्चय पर विचार करें जैसे कि रेखा खंड Lx = {x} × [0, 1]. Lx μ-माप शून्य है; Lx का प्रत्येक उपसमुच्चय μ-शून्य सेट है; चूँकि लेबेस्ग्यू माप स्पेस पूर्ण माप है,
प्रमेय का कथन
(इसके बाद, p(x) टोपोलॉजिकल स्पेस (x, T) पर बोरेल माप संभाव्यता उपायों के संग्रह को निरूपित करेगा।)
प्रमेय की मान्यताएँ इस प्रकार हैं:
- मान लें कि Y और X दो पोलिश स्पेस रेडॉन स्पेस हैं (अर्थात टोपोलॉजिकल स्पेस जैसे कि M पर प्रत्येक बोरेल माप संभाव्यता माप आंतरिक नियमित माप है उदाहरण के लिए अलग-अलग स्पेस मीट्रिक रिक्त स्पेस जिस पर प्रत्येक संभाव्यता माप रेडॉन माप है)।
- मान लीजिए μ ∈ P(Y)।
- मान लीजिए π : Y → X बोरेल-मापने योग्य फलन है। यहां किसी को π को Y को विघटित करने के फलन के रूप में सोचना चाहिए, Y को विभाजित करने के अर्थ में . उदाहरण के लिए, उपरोक्त प्रेरक उदाहरण के लिए, कोई परिभाषित कर सकता है , , जो वह देता है , टुकड़ा जिसे हम पकड़ना चाहते हैं।
- माना ∈ P(X) पुशफॉरवर्ड माप ν = π∗(μ) = μ ∘ π−1. हो यह माप x का वितरण प्रदान करता है (जो घटनाओं से मेल खाता है ).
प्रमेय का निष्कर्ष: वहाँ उपस्थित है -लगभग प्रत्येक स्पेस संभाव्यता उपायों का विशिष्ट रूप से निर्धारित वर्ग {μx}x∈X ⊆ P(Y), जो में , का विघटन प्रदान करता है ऐसा है कि:
- फलन बोरेल मापने योग्य है, इस अर्थ में प्रत्येक बोरेल-मापने योग्य सेट B ⊆ Y के लिए बोरेल-मापने योग्य फलन है;
- μx फाइबर (गणित) π−1(x) के लिए -लगभग सभी x ∈ x, पर रहता है: और इसलिए μx(E) = mx(E ∩ p−1(x));
- प्रत्येक बोरेल-मापने योग्य फलन के लिए f : Y → [0, ∞], विशेष रूप से, किसी भी घटना E ⊆ Y के लिए, f को E का सूचक फलन मानते हुए,[1]
अनुप्रयोग
उत्पाद स्पेस
मूल उदाहरण उत्पाद रिक्त स्पेस की समस्या का विशेष स्थिति थी, जिस पर विघटन प्रमेय प्रयुक्त होता है।
जब Y को कार्तीय गुणनफल Y = X1 × x2 और πi : Y → xi के रूप में लिखा जाता है प्राकृतिक प्रक्षेपण (गणित) है, तो प्रत्येक फाइबर π1−1(x1) X2 के साथ विहित रूप में पहचाना जा सकता है और संभाव्यता मापों का बोरेल वर्ग उपस्थित है p(x2) जो (π1)∗(μ) है लगभग प्रत्येक स्पेस विशिष्ट रूप से निर्धारित) जैसे कि
सदिश गणना
विघटन प्रमेय को सदिश गणना में प्रतिबंधित माप के उपयोग को उचित ठहराने के रूप में भी देखा जा सकता है। उदाहरण के लिए, स्टोक्स के प्रमेय में जैसा कि कॉम्पैक्ट स्पेस सतह (गणित) के माध्यम से बहने वाले सदिश क्षेत्र Σ ⊂ R3 पर प्रयुक्त होता है , यह अंतर्निहित है कि Σ पर सही माप त्रि-आयामी लेबेस्ग माप λ3Σ पर, विघटन है और यह कि ∂Σ पर इस माप का विघटन λ3 पर ∂Σ के विघटन के समान है.[2]
नियमित वितरण
विघटन प्रमेय को आंकड़ों में नियमित संभाव्यता वितरण का कठोर उपचार देने के लिए प्रयुक्त किया जा सकता है, जबकि नियमित संभाव्यता के विशुद्ध रूप से एब्स्ट्रेक्ट सूत्र से बचा जा सकता है।[3]
यह भी देखें
- इओनेस्कु-तुलसीया प्रमेय
- संयुक्त संभाव्यता वितरण – Type of probability distribution
- कोपुला (सांख्यिकी)
- नियमित अपेक्षा
- बोरेल-कोलमोगोरोव विरोधाभास
- नियमित संभाव्यता
संदर्भ
- ↑ Dellacherie, C.; Meyer, P.-A. (1978). संभावनाएँ और संभावनाएँ. North-Holland Mathematics Studies. Amsterdam: North-Holland. ISBN 0-7204-0701-X.
- ↑ Ambrosio, L., Gigli, N. & Savaré, G. (2005). मीट्रिक रिक्त स्थान और संभाव्यता माप के स्थान में क्रमिक प्रवाह. ETH Zürich, Birkhäuser Verlag, Basel. ISBN 978-3-7643-2428-5.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ↑ Chang, J.T.; Pollard, D. (1997). "विघटन के रूप में कंडीशनिंग" (PDF). Statistica Neerlandica. 51 (3): 287. CiteSeerX 10.1.1.55.7544. doi:10.1111/1467-9574.00056. S2CID 16749932.