स्क्वीज़ प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
{{Redirect|सैंडविच प्रमेय|माप सिद्धांत में परिणाम|हैम सैंडविच प्रमेय}}
{{Redirect|सैंडविच प्रमेय|माप सिद्धांत में परिणाम|हैम सैंडविच प्रमेय}}


[[File:Sandwich lemma.svg|thumb|300px|जब कोई अनुक्रम समान सीमा वाले दो अन्य अभिसरण अनुक्रमों के बीच स्थित होता है, तो वह इस सीमा तक भी परिवर्तित हो जाता है।]][[ गणना ]] में, निचोड़ प्रमेय (जिसे अन्य नामों के साथ सैंडविच प्रमेय भी कहा जाता है{{efn|Also known as the ''pinching theorem'', the ''sandwich rule'', the ''police theorem'', the ''between theorem'' and sometimes the ''squeeze lemma''. In Italy, the theorem is also known as the ''theorem of carabinieri''.}}) फ़ंक्शन के फ़ंक्शन की सीमा के संबंध में [[प्रमेय]] है जो दो अन्य कार्यों के बीच फंसा हुआ है।
[[File:Sandwich lemma.svg|thumb|300px|जब कोई अनुक्रम समान सीमा वाले दो अन्य अभिसरण अनुक्रमों के बीच स्थित होता है, तो वह इस सीमा तक भी परिवर्तित हो जाता है।]][[ गणना | कैलकुलस]] में, '''स्क्वीज़ प्रमेय''' (इसे अन्य नामों के साथ-साथ '''सैंडविच प्रमेय''' के रूप में भी जाना जाता है{{efn|Also known as the ''pinching theorem'', the ''sandwich rule'', the ''police theorem'', the ''between theorem'' and sometimes the ''squeeze lemma''. In Italy, the theorem is also known as the ''theorem of carabinieri''.}}) एक फलन की सीमा के बारे में एक [[प्रमेय]] है जो दो अन्य फलनों के बीच फंसा हुआ है।


निचोड़ प्रमेय का उपयोग कैलकुलस और [[गणितीय विश्लेषण]] में किया जाता है, आमतौर पर दो अन्य कार्यों के साथ तुलना के माध्यम से फ़ंक्शन की सीमा की पुष्टि करने के लिए जिनकी सीमाएं ज्ञात होती हैं। इसका पहली बार ज्यामितीय रूप से उपयोग गणितज्ञ [[आर्किमिडीज]]और कनिडस के यूडोक्सस द्वारा पाई की गणना करने के प्रयास में किया गया था।{{pi}}, और [[कार्ल फ्रेडरिक गॉस]] द्वारा आधुनिक शब्दों में तैयार किया गया था।
स्क्वीज़ प्रमेय का उपयोग कैलकुलस और [[गणितीय विश्लेषण]] में किया जाता है, सामान्यतः दो अन्य फलनों के साथ तुलना के माध्यम से फलन की सीमा की पुष्टि करने के लिए जिनकी सीमाएं ज्ञात होती हैं। इसका पहली बार ज्यामितीय रूप से उपयोग गणितज्ञ [[आर्किमिडीज|आर्किमिडीज़]] और कनिडस के यूडोक्सस द्वारा {{pi}} की गणना करने के प्रयास में किया गया था, और [[कार्ल फ्रेडरिक गॉस]] द्वारा आधुनिक शब्दों में तैयार किया गया था।


== कथन ==
== कथन ==
निचोड़ प्रमेय औपचारिक रूप से इस प्रकार बताया गया है।<ref>{{cite book|last1=Sohrab|first1=Houshang H.|title=बुनियादी वास्तविक विश्लेषण| date=2003|publisher=[[Birkhäuser]]|isbn=978-1-4939-1840-9|page=104|edition=2nd|url=https://books.google.com/books?id=QnpqBQAAQBAJ&pg=PA104}}</ref>
स्क्वीज़ प्रमेय औपचारिक रूप से इस प्रकार बताया गया है।<ref>{{cite book|last1=Sohrab|first1=Houshang H.|title=बुनियादी वास्तविक विश्लेषण| date=2003|publisher=[[Birkhäuser]]|isbn=978-1-4939-1840-9|page=104|edition=2nd|url=https://books.google.com/books?id=QnpqBQAAQBAJ&pg=PA104}}</ref>
{{math theorem|
{{math theorem|
Let ''I'' be an [[interval (mathematics)|interval]] containing the point ''a''.  Let ''g'', ''f'', and ''h'' be [[function (mathematics)|functions]] defined on ''I'', except possibly at ''a'' itself. Suppose that for every ''x'' in ''I'' not equal to ''a'', we have
Let ''I'' be an [[interval (mathematics)|interval]] containing the point ''a''.  Let ''g'', ''f'', and ''h'' be [[function (mathematics)|functions]] defined on ''I'', except possibly at ''a'' itself. Suppose that for every ''x'' in ''I'' not equal to ''a'', we have
Line 69: Line 69:
मौजूद नहीं होना।
मौजूद नहीं होना।


हालाँकि, [[साइन फ़ंक्शन]] की परिभाषा के अनुसार,
हालाँकि, [[साइन फ़ंक्शन|साइन फलन]] की परिभाषा के अनुसार,


<math display="block">-1 \le \sin(\tfrac{1}{x}) \le 1. </math>
<math display="block">-1 \le \sin(\tfrac{1}{x}) \le 1. </math>
Line 75: Line 75:


<math display="block">-x^2 \le x^2 \sin(\tfrac{1}{x}) \le x^2 </math>
<math display="block">-x^2 \le x^2 \sin(\tfrac{1}{x}) \le x^2 </math>
तब से <math>\lim_{x\to 0}-x^2 = \lim_{x\to 0}x^2 = 0</math>, निचोड़ प्रमेय द्वारा, <math>\lim_{x\to 0} x^2 \sin(\tfrac{1}{x})</math> भी 0 होना चाहिए.
तब से <math>\lim_{x\to 0}-x^2 = \lim_{x\to 0}x^2 = 0</math>, स्क्वीज़ प्रमेय द्वारा, <math>\lim_{x\to 0} x^2 \sin(\tfrac{1}{x})</math> भी 0 होना चाहिए.


=== दूसरा उदाहरण ===
=== दूसरा उदाहरण ===
[[File:Limit_sin_x_x.svg|thumb|upright=1.5|क्षेत्रों की तुलना:<br/><math>\begin{align}&\, A(\triangle ADF) \geq A(\text{sector}\, ADB) \geq A(\triangle ADB)\\ \Rightarrow &\, \frac{1}{2}\cdot \tan(x)\cdot 1 \geq \frac{x}{2\pi}\cdot \pi \geq \frac{1}{2}\cdot \sin(x)\cdot 1\\ \Rightarrow &\, \frac{\sin(x)}{\cos(x)} \geq x \geq \sin(x)\\ \Rightarrow &\, \frac{\cos(x)}{\sin(x)} \leq \frac{1}{x} \leq \frac{1}{\sin(x)} \\ \Rightarrow &\, \cos(x) \leq \frac{\sin(x)}{x} \leq 1 \end{align} </math>]]संभवतः निचोड़कर सीमा खोजने के सबसे प्रसिद्ध उदाहरण समानता के प्रमाण हैं
[[File:Limit_sin_x_x.svg|thumb|upright=1.5|क्षेत्रों की तुलना:<br/><math>\begin{align}&\, A(\triangle ADF) \geq A(\text{sector}\, ADB) \geq A(\triangle ADB)\\ \Rightarrow &\, \frac{1}{2}\cdot \tan(x)\cdot 1 \geq \frac{x}{2\pi}\cdot \pi \geq \frac{1}{2}\cdot \sin(x)\cdot 1\\ \Rightarrow &\, \frac{\sin(x)}{\cos(x)} \geq x \geq \sin(x)\\ \Rightarrow &\, \frac{\cos(x)}{\sin(x)} \leq \frac{1}{x} \leq \frac{1}{\sin(x)} \\ \Rightarrow &\, \cos(x) \leq \frac{\sin(x)}{x} \leq 1 \end{align} </math>]]संभवतः स्क्वीज़कर सीमा खोजने के सबसे प्रसिद्ध उदाहरण समानता के प्रमाण हैं
<math display="block">
<math display="block">
\begin{align}
\begin{align}
Line 85: Line 85:
\end{align}
\end{align}
</math>
</math>
पहली सीमा इस तथ्य से निचोड़ प्रमेय के माध्यम से अनुसरण करती है<ref>Selim G. Krejn, V.N. Uschakowa: ''Vorstufe zur höheren Mathematik''. Springer, 2013, {{ISBN|9783322986283}}, pp. [https://books.google.com/books?id=-yXMBgAAQBAJ&pg=PA80 80-81] (German). See also [[Sal Khan]]: [https://www.khanacademy.org/math/ap-calculus-ab/limits-from-equations-ab/squeeze-theorem-ab/v/proof-lim-sin-x-x ''Proof: limit of (sin x)/x at x=0''] (video, [[Khan Academy]])</ref>
पहली सीमा इस तथ्य से स्क्वीज़ प्रमेय के माध्यम से अनुसरण करती है<ref>Selim G. Krejn, V.N. Uschakowa: ''Vorstufe zur höheren Mathematik''. Springer, 2013, {{ISBN|9783322986283}}, pp. [https://books.google.com/books?id=-yXMBgAAQBAJ&pg=PA80 80-81] (German). See also [[Sal Khan]]: [https://www.khanacademy.org/math/ap-calculus-ab/limits-from-equations-ab/squeeze-theorem-ab/v/proof-lim-sin-x-x ''Proof: limit of (sin x)/x at x=0''] (video, [[Khan Academy]])</ref>


<math display="block"> \cos x \leq \frac{\sin(x)}{x} \leq 1 </math>
<math display="block"> \cos x \leq \frac{\sin(x)}{x} \leq 1 </math>
x के लिए 0 के काफी करीब है। सकारात्मक x के लिए इसकी शुद्धता को सरल ज्यामितीय तर्क (ड्राइंग देखें) द्वारा देखा जा सकता है जिसे नकारात्मक x तक भी बढ़ाया जा सकता है। दूसरी सीमा निचोड़ प्रमेय और इस तथ्य से अनुसरण करती है
x के लिए 0 के काफी करीब है। सकारात्मक x के लिए इसकी शुद्धता को सरल ज्यामितीय तर्क (ड्राइंग देखें) द्वारा देखा जा सकता है जिसे नकारात्मक x तक भी बढ़ाया जा सकता है। दूसरी सीमा स्क्वीज़ प्रमेय और इस तथ्य से अनुसरण करती है


<math display="block"> 0 \leq  \frac{1 - \cos(x)}{x}  \leq  x </math>
<math display="block"> 0 \leq  \frac{1 - \cos(x)}{x}  \leq  x </math>
x के लिए 0 के काफी करीब है। इसे प्रतिस्थापित करके प्राप्त किया जा सकता है <math>\sin(x)</math> द्वारा पहले तथ्य में <math display="inline"> \sqrt{1-\cos^2(x)}</math> और परिणामी असमानता का वर्ग करना।
x के लिए 0 के काफी करीब है। इसे प्रतिस्थापित करके प्राप्त किया जा सकता है <math>\sin(x)</math> द्वारा पहले तथ्य में <math display="inline"> \sqrt{1-\cos^2(x)}</math> और परिणामी असमानता का वर्ग करना।


इन दो सीमाओं का उपयोग इस तथ्य के प्रमाण में किया जाता है कि साइन फ़ंक्शन का व्युत्पन्न कोसाइन फ़ंक्शन है। त्रिकोणमितीय फलनों के व्युत्पन्नों के अन्य प्रमाणों में उस तथ्य पर भरोसा किया जाता है।
इन दो सीमाओं का उपयोग इस तथ्य के प्रमाण में किया जाता है कि साइन फलन का व्युत्पन्न कोसाइन फलन है। त्रिकोणमितीय फलनों के व्युत्पन्नों के अन्य प्रमाणों में उस तथ्य पर भरोसा किया जाता है।


=== तीसरा उदाहरण ===
=== तीसरा उदाहरण ===
Line 99: Line 99:
यह दिखाना संभव है
यह दिखाना संभव है
<math display="block"> \frac{d}{d\theta} \tan\theta = \sec^2\theta </math>
<math display="block"> \frac{d}{d\theta} \tan\theta = \sec^2\theta </math>
निचोड़कर, इस प्रकार।
स्क्वीज़कर, इस प्रकार।


[[File:Tangent.squeeze.svg|thumb|upright=1.5|right]]दाईं ओर के चित्रण में, वृत्त के दो छायांकित क्षेत्रों में से छोटे का क्षेत्रफल है
[[File:Tangent.squeeze.svg|thumb|upright=1.5|right]]दाईं ओर के चित्रण में, वृत्त के दो छायांकित क्षेत्रों में से छोटे का क्षेत्रफल है
Line 120: Line 120:
=== चौथा उदाहरण ===
=== चौथा उदाहरण ===


निचोड़ प्रमेय का उपयोग अभी भी बहुपरिवर्तनीय कैलकुलस में किया जा सकता है, लेकिन निचला (और ऊपरी फ़ंक्शन) लक्ष्य फ़ंक्शन के नीचे (और ऊपर) होना चाहिए, न कि केवल पथ के साथ, बल्कि रुचि के बिंदु के पूरे पड़ोस के आसपास और यह केवल तभी काम करता है जब फ़ंक्शन वास्तव में वहां सीमा है। इसलिए, इसका उपयोग यह साबित करने के लिए किया जा सकता है कि किसी फ़ंक्शन की बिंदु पर सीमा होती है, लेकिन इसका उपयोग यह साबित करने के लिए कभी नहीं किया जा सकता है कि किसी फ़ंक्शन की किसी बिंदु पर कोई सीमा नहीं होती है।<ref>{{cite book|chapter=Chapter 15.2 Limits and Continuity| pages=909–910|title=बहुपरिवर्तनीय कलन|year=2008|last1=Stewart|first1=James| author-link1=James Stewart (mathematician)| edition=6th|isbn=978-0495011637}}</ref>
स्क्वीज़ प्रमेय का उपयोग अभी भी बहुपरिवर्तनीय कैलकुलस में किया जा सकता है, लेकिन निचला (और ऊपरी फलन) लक्ष्य फलन के नीचे (और ऊपर) होना चाहिए, न कि केवल पथ के साथ, बल्कि रुचि के बिंदु के पूरे पड़ोस के आसपास और यह केवल तभी काम करता है जब फलन वास्तव में वहां सीमा है। इसलिए, इसका उपयोग यह साबित करने के लिए किया जा सकता है कि किसी फलन की बिंदु पर सीमा होती है, लेकिन इसका उपयोग यह साबित करने के लिए कभी नहीं किया जा सकता है कि किसी फलन की किसी बिंदु पर कोई सीमा नहीं होती है।<ref>{{cite book|chapter=Chapter 15.2 Limits and Continuity| pages=909–910|title=बहुपरिवर्तनीय कलन|year=2008|last1=Stewart|first1=James| author-link1=James Stewart (mathematician)| edition=6th|isbn=978-0495011637}}</ref>


<math display="block">\lim_{(x,y) \to (0, 0)} \frac{x^2 y}{x^2+y^2}</math>
<math display="block">\lim_{(x,y) \to (0, 0)} \frac{x^2 y}{x^2+y^2}</math>
Line 131: Line 131:
<math display="block">\lim_{(x,y) \to (0, 0)} \left |y \right \vert = 0</math>
<math display="block">\lim_{(x,y) \to (0, 0)} \left |y \right \vert = 0</math>
<math display="block">0  \leq  \lim_{(x,y) \to (0, 0)} \frac{x^2 y}{x^2+y^2}  \leq  0</math>
<math display="block">0  \leq  \lim_{(x,y) \to (0, 0)} \frac{x^2 y}{x^2+y^2}  \leq  0</math>
इसलिए, निचोड़ प्रमेय द्वारा,
इसलिए, स्क्वीज़ प्रमेय द्वारा,


<math display="block">\lim_{(x,y) \to (0, 0)} \frac{x^2 y}{x^2+y^2} = 0</math>
<math display="block">\lim_{(x,y) \to (0, 0)} \frac{x^2 y}{x^2+y^2} = 0</math>

Revision as of 07:07, 10 July 2023

जब कोई अनुक्रम समान सीमा वाले दो अन्य अभिसरण अनुक्रमों के बीच स्थित होता है, तो वह इस सीमा तक भी परिवर्तित हो जाता है।

कैलकुलस में, स्क्वीज़ प्रमेय (इसे अन्य नामों के साथ-साथ सैंडविच प्रमेय के रूप में भी जाना जाता है[lower-alpha 1]) एक फलन की सीमा के बारे में एक प्रमेय है जो दो अन्य फलनों के बीच फंसा हुआ है।

स्क्वीज़ प्रमेय का उपयोग कैलकुलस और गणितीय विश्लेषण में किया जाता है, सामान्यतः दो अन्य फलनों के साथ तुलना के माध्यम से फलन की सीमा की पुष्टि करने के लिए जिनकी सीमाएं ज्ञात होती हैं। इसका पहली बार ज्यामितीय रूप से उपयोग गणितज्ञ आर्किमिडीज़ और कनिडस के यूडोक्सस द्वारा π की गणना करने के प्रयास में किया गया था, और कार्ल फ्रेडरिक गॉस द्वारा आधुनिक शब्दों में तैयार किया गया था।

कथन

स्क्वीज़ प्रमेय औपचारिक रूप से इस प्रकार बताया गया है।[1]

Theorem —  Let I be an interval containing the point a. Let g, f, and h be functions defined on I, except possibly at a itself. Suppose that for every x in I not equal to a, we have

and also suppose that

Then

  • कार्य और की ऊपरी सीमा (क्रमशः) कही जाती है .
  • यहाँ, के आंतरिक (टोपोलॉजी) में स्थित होने की आवश्यकता नहीं है . वास्तव में, यदि का समापन बिंदु है , तो उपरोक्त सीमाएँ बाएँ या दाएँ हाथ की सीमाएँ हैं।
  • समान कथन अनंत अंतरालों के लिए लागू होता है: उदाहरण के लिए, यदि , तो निष्कर्ष मान्य है, सीमाओं को मानते हुए .

यह प्रमेय अनुक्रमों के लिए भी मान्य है। होने देना दो अनुक्रमों का अभिसरण हो , और क्रम। अगर अपने पास , तब भी जुट जाता है .

प्रमाण

उपरोक्त परिकल्पनाओं के अनुसार, हम निम्न और श्रेष्ठ की सीमा लेते हैं:

इसलिए सभी असमानताएँ वास्तव में समानताएँ हैं, और थीसिस तुरंत अनुसरण करती है।

का उपयोग करते हुए प्रत्यक्ष प्रमाण -सीमा की परिभाषा, इसे वास्तविक रूप से सिद्ध करना होगा वहाँ वास्तविकता मौजूद है ऐसा कि सभी के लिए साथ , अपने पास . प्रतीकात्मक रूप से,

जैसा

मतलब कि

 

 

 

 

(1)

और

मतलब कि

 

 

 

 

(2)

तो हमारे पास हैं

हम चुन सकते हैं . तो अगर , संयोजन (1) और (2), अपने पास

जो प्रमाण को पूरा करता है। क्यू.ई.डी

अनुक्रमों के लिए प्रमाण बहुत समान है, का उपयोग करते हुए -किसी अनुक्रम की सीमा की परिभाषा.

उदाहरण

पहला उदाहरण

x2 sin(1/x) को x के 0 पर जाने पर सीमा में दबाया जा रहा है

सीमा

सीमा कानून के माध्यम से निर्धारित नहीं किया जा सकता

क्योंकि

मौजूद नहीं होना।

हालाँकि, साइन फलन की परिभाषा के अनुसार,

यह इस प्रकार है कि

तब से , स्क्वीज़ प्रमेय द्वारा, भी 0 होना चाहिए.

दूसरा उदाहरण

क्षेत्रों की तुलना:

संभवतः स्क्वीज़कर सीमा खोजने के सबसे प्रसिद्ध उदाहरण समानता के प्रमाण हैं

पहली सीमा इस तथ्य से स्क्वीज़ प्रमेय के माध्यम से अनुसरण करती है[2]

x के लिए 0 के काफी करीब है। सकारात्मक x के लिए इसकी शुद्धता को सरल ज्यामितीय तर्क (ड्राइंग देखें) द्वारा देखा जा सकता है जिसे नकारात्मक x तक भी बढ़ाया जा सकता है। दूसरी सीमा स्क्वीज़ प्रमेय और इस तथ्य से अनुसरण करती है

x के लिए 0 के काफी करीब है। इसे प्रतिस्थापित करके प्राप्त किया जा सकता है द्वारा पहले तथ्य में और परिणामी असमानता का वर्ग करना।

इन दो सीमाओं का उपयोग इस तथ्य के प्रमाण में किया जाता है कि साइन फलन का व्युत्पन्न कोसाइन फलन है। त्रिकोणमितीय फलनों के व्युत्पन्नों के अन्य प्रमाणों में उस तथ्य पर भरोसा किया जाता है।

तीसरा उदाहरण

यह दिखाना संभव है

स्क्वीज़कर, इस प्रकार।

Tangent.squeeze.svg

दाईं ओर के चित्रण में, वृत्त के दो छायांकित क्षेत्रों में से छोटे का क्षेत्रफल है

चूंकि त्रिज्या सेकंड θ है और इकाई वृत्त पर चाप की लंबाई Δθ है। इसी प्रकार, दो छायांकित क्षेत्रों में से बड़े का क्षेत्रफल है

उनके बीच जो दबाया गया है वह त्रिभुज है जिसका आधार ऊर्ध्वाधर खंड है जिसके अंत बिंदु दो बिंदु हैं। त्रिभुज के आधार की लंबाई tan(θ + Δθ) - tan(θ) है, और ऊंचाई 1 है। इसलिए त्रिभुज का क्षेत्रफल है

असमानताओं से

हम उसका निष्कर्ष निकालते हैं

प्रदान किया गया Δθ > 0, और यदि Δθ < 0 है तो असमानताएं उलट जाती हैं। चूँकि पहली और तीसरी अभिव्यक्तियाँ सेकंड के करीब आती हैं2θ जैसे Δθ → 0, और मध्य अभिव्यक्ति निकट आती है d/ टैन θ, वांछित परिणाम निम्नानुसार है।

चौथा उदाहरण

स्क्वीज़ प्रमेय का उपयोग अभी भी बहुपरिवर्तनीय कैलकुलस में किया जा सकता है, लेकिन निचला (और ऊपरी फलन) लक्ष्य फलन के नीचे (और ऊपर) होना चाहिए, न कि केवल पथ के साथ, बल्कि रुचि के बिंदु के पूरे पड़ोस के आसपास और यह केवल तभी काम करता है जब फलन वास्तव में वहां सीमा है। इसलिए, इसका उपयोग यह साबित करने के लिए किया जा सकता है कि किसी फलन की बिंदु पर सीमा होती है, लेकिन इसका उपयोग यह साबित करने के लिए कभी नहीं किया जा सकता है कि किसी फलन की किसी बिंदु पर कोई सीमा नहीं होती है।[3]

बिंदु से गुजरने वाले रास्तों पर किसी भी संख्या में सीमाएँ लेकर इसे नहीं पाया जा सकता है, लेकिन तब से

इसलिए, स्क्वीज़ प्रमेय द्वारा,


संदर्भ

टिप्पणियाँ

  1. Also known as the pinching theorem, the sandwich rule, the police theorem, the between theorem and sometimes the squeeze lemma. In Italy, the theorem is also known as the theorem of carabinieri.


संदर्भ

  1. Sohrab, Houshang H. (2003). बुनियादी वास्तविक विश्लेषण (2nd ed.). Birkhäuser. p. 104. ISBN 978-1-4939-1840-9.
  2. Selim G. Krejn, V.N. Uschakowa: Vorstufe zur höheren Mathematik. Springer, 2013, ISBN 9783322986283, pp. 80-81 (German). See also Sal Khan: Proof: limit of (sin x)/x at x=0 (video, Khan Academy)
  3. Stewart, James (2008). "Chapter 15.2 Limits and Continuity". बहुपरिवर्तनीय कलन (6th ed.). pp. 909–910. ISBN 978-0495011637.


बाहरी संबंध