स्क्वीज़ प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 58: Line 58:


<math display="block">\lim_{x \to 0}x^2 \sin(\tfrac{1}{x})</math>
<math display="block">\lim_{x \to 0}x^2 \sin(\tfrac{1}{x})</math>
सीमा कानून के माध्यम से निर्धारित नहीं किया जा सकता
को सीमा नियम


<math display="block">\lim_{x \to a}(f(x)\cdot g(x)) =  
<math display="block">\lim_{x \to a}(f(x)\cdot g(x)) =  
\lim_{x \to a}f(x)\cdot \lim_{x \to a}g(x),</math>
\lim_{x \to a}f(x)\cdot \lim_{x \to a}g(x),</math>
के माध्यम से निर्धारित नहीं किया जा सकता हैं
क्योंकि
क्योंकि


<math display="block">\lim_{x\to 0}\sin(\tfrac{1}{x})</math>
<math display="block">\lim_{x\to 0}\sin(\tfrac{1}{x})</math>
उपस्थित नहीं होना।
उपस्थित नहीं है।


हालाँकि, [[साइन फ़ंक्शन|साइन फलन]] की परिभाषा के अनुसार,
चूँकि, [[साइन फ़ंक्शन|साइन फलन]] की परिभाषा के अनुसार,


<math display="block">-1 \le \sin(\tfrac{1}{x}) \le 1. </math>
<math display="block">-1 \le \sin(\tfrac{1}{x}) \le 1. </math>
यह इस प्रकार है कि
यह इस प्रकार है कि


<math display="block">-x^2 \le x^2 \sin(\tfrac{1}{x}) \le x^2 </math>
<math display="block">-x^2 \le x^2 \sin(\tfrac{1}{x}) \le x^2 </math>चूंकि स्क्वीज़ प्रमेय द्वारा <math>\lim_{x\to 0}-x^2 = \lim_{x\to 0}x^2 = 0</math> है, इसलिए, <math>\lim_{x\to 0} x^2 \sin(\tfrac{1}{x})</math> भी 0 होना चाहिए।
तब से <math>\lim_{x\to 0}-x^2 = \lim_{x\to 0}x^2 = 0</math>, स्क्वीज़ प्रमेय द्वारा, <math>\lim_{x\to 0} x^2 \sin(\tfrac{1}{x})</math> भी 0 होना चाहिए.
 
=== दूसरा उदाहरण ===
=== दूसरा उदाहरण ===
[[File:Limit_sin_x_x.svg|thumb|upright=1.5|क्षेत्रों की तुलना:<br/><math>\begin{align}&\, A(\triangle ADF) \geq A(\text{sector}\, ADB) \geq A(\triangle ADB)\\ \Rightarrow &\, \frac{1}{2}\cdot \tan(x)\cdot 1 \geq \frac{x}{2\pi}\cdot \pi \geq \frac{1}{2}\cdot \sin(x)\cdot 1\\ \Rightarrow &\, \frac{\sin(x)}{\cos(x)} \geq x \geq \sin(x)\\ \Rightarrow &\, \frac{\cos(x)}{\sin(x)} \leq \frac{1}{x} \leq \frac{1}{\sin(x)} \\ \Rightarrow &\, \cos(x) \leq \frac{\sin(x)}{x} \leq 1 \end{align} </math>]]संभवतः स्क्वीज़कर सीमा खोजने के सबसे प्रसिद्ध उदाहरण समानता के प्रमाण हैं
[[File:Limit_sin_x_x.svg|thumb|upright=1.5|क्षेत्रों की तुलना:<br/><math>\begin{align}&\, A(\triangle ADF) \geq A(\text{sector}\, ADB) \geq A(\triangle ADB)\\ \Rightarrow &\, \frac{1}{2}\cdot \tan(x)\cdot 1 \geq \frac{x}{2\pi}\cdot \pi \geq \frac{1}{2}\cdot \sin(x)\cdot 1\\ \Rightarrow &\, \frac{\sin(x)}{\cos(x)} \geq x \geq \sin(x)\\ \Rightarrow &\, \frac{\cos(x)}{\sin(x)} \leq \frac{1}{x} \leq \frac{1}{\sin(x)} \\ \Rightarrow &\, \cos(x) \leq \frac{\sin(x)}{x} \leq 1 \end{align} </math>]]संभवतः स्क्वीज़कर सीमा खोजने के सबसे प्रसिद्ध उदाहरण समानता के प्रमाण हैं

Revision as of 08:20, 10 July 2023

जब कोई अनुक्रम समान सीमा वाले दो अन्य अभिसरण अनुक्रमों के बीच स्थित होता है, तो वह इस सीमा तक भी परिवर्तित हो जाता है।

कैलकुलस में, स्क्वीज़ प्रमेय (इसे अन्य नामों के साथ-साथ सैंडविच प्रमेय के रूप में भी जाना जाता है[lower-alpha 1]) एक फलन की सीमा के बारे में एक प्रमेय है जो दो अन्य फलनों के बीच फंसा हुआ है।

स्क्वीज़ प्रमेय का उपयोग कैलकुलस और गणितीय विश्लेषण में किया जाता है, सामान्यतः दो अन्य फलनों के साथ तुलना के माध्यम से फलन की सीमा की पुष्टि करने के लिए जिनकी सीमाएं ज्ञात होती हैं। इसका पहली बार ज्यामितीय रूप से उपयोग गणितज्ञ आर्किमिडीज़ और कनिडस के यूडोक्सस द्वारा π की गणना करने के प्रयास में किया गया था, और कार्ल फ्रेडरिक गॉस द्वारा आधुनिक शब्दों में तैयार किया गया था।

कथन

स्क्वीज़ प्रमेय औपचारिक रूप से इस प्रकार बताया गया है।[1]

Theorem —  मान लीजिए I एक अंतराल है जिसमें बिंदु a है। मान लीजिए कि g, f, और h, संभवतः a को छोड़कर, I पर परिभाषित फ़ंक्शन हैं। मान लीजिए कि I में प्रत्येक x के लिए a के बराबर नहीं है, हमारे पास है

और यह भी मान लीजिये

तब

  • फलन और को क्रमशः की निचली और ऊपरी सीमा कहा जाता है।
  • यहां, का के आंतरिक (टोपोलॉजी) भाग में स्थित होना आवश्यक नहीं है। वास्तविक में, यदि का एक समापन बिंदु है, तो उपरोक्त सीमाएँ बाएँ या दाएँ हाथ की सीमाएँ हैं।
  • एक समान कथन अनंत अंतरालों के लिए लागू होता है: उदाहरण के लिए, यदि , तो निष्कर्ष के रूप में सीमा लेता है।

यह प्रमेय अनुक्रमों के लिए भी मान्य है। मान लीजिए दो अनुक्रम हैं जो और अनुक्रम में परिवर्तित हो रहे हैं। यदि हमारे पास है, तो भी में परिवर्तित हो जाता है।

प्रमाण

उपरोक्त परिकल्पनाओं के अनुसार, हम निम्न और श्रेष्ठ की सीमा लेते हैं:

इसलिए सभी असमानताएँ वास्तव में समानताएँ हैं, और थीसिस तुरंत अनुसरण करती है।

एक प्रत्यक्ष प्रमाण, सीमा की -परिभाषा का उपयोग करते हुए, यह सिद्ध करना होगा कि सभी वास्तविक के लिए एक वास्तविक उपस्थित है जैसे कि वाले सभी के लिए हमारे पास है। प्रतीकात्मक रूप से,

जैसा

अर्थात्

 

 

 

 

(1)

और

अर्थात्

 

 

 

 

(2)

तो हमारे पास हैं

हम चुन सकते हैं। फिर, यदि , (1) और (2) को मिलाकर, हमारे पास है

जो प्रमाण को पूरा करता है। क्यू.ई.डी

किसी अनुक्रम की सीमा की -परिभाषा का उपयोग करते हुए, अनुक्रमों के लिए प्रमाण बहुत समान है।

उदाहरण

पहला उदाहरण

x2 sin(1/x) को x के 0 पर जाने पर सीमा में दबाया जा रहा है

सीमा

को सीमा नियम

के माध्यम से निर्धारित नहीं किया जा सकता हैं

क्योंकि

उपस्थित नहीं है।

चूँकि, साइन फलन की परिभाषा के अनुसार,

यह इस प्रकार है कि

चूंकि स्क्वीज़ प्रमेय द्वारा है, इसलिए, भी 0 होना चाहिए।

दूसरा उदाहरण

क्षेत्रों की तुलना:

संभवतः स्क्वीज़कर सीमा खोजने के सबसे प्रसिद्ध उदाहरण समानता के प्रमाण हैं

पहली सीमा इस तथ्य से स्क्वीज़ प्रमेय के माध्यम से अनुसरण करती है[2]

x के लिए 0 के काफी करीब है। सकारात्मक x के लिए इसकी शुद्धता को सरल ज्यामितीय तर्क (ड्राइंग देखें) द्वारा देखा जा सकता है जिसे नकारात्मक x तक भी बढ़ाया जा सकता है। दूसरी सीमा स्क्वीज़ प्रमेय और इस तथ्य से अनुसरण करती है

x के लिए 0 के काफी करीब है। इसे प्रतिस्थापित करके प्राप्त किया जा सकता है द्वारा पहले तथ्य में और परिणामी असमानता का वर्ग करना।

इन दो सीमाओं का उपयोग इस तथ्य के प्रमाण में किया जाता है कि साइन फलन का व्युत्पन्न कोसाइन फलन है। त्रिकोणमितीय फलनों के व्युत्पन्नों के अन्य प्रमाणों में उस तथ्य पर भरोसा किया जाता है।

तीसरा उदाहरण

यह दिखाना संभव है

स्क्वीज़कर, इस प्रकार।

Tangent.squeeze.svg

दाईं ओर के चित्रण में, वृत्त के दो छायांकित क्षेत्रों में से छोटे का क्षेत्रफल है

चूंकि त्रिज्या सेकंड θ है और इकाई वृत्त पर चाप की लंबाई Δθ है। इसी प्रकार, दो छायांकित क्षेत्रों में से बड़े का क्षेत्रफल है

उनके बीच जो दबाया गया है वह त्रिभुज है जिसका आधार ऊर्ध्वाधर खंड है जिसके अंत बिंदु दो बिंदु हैं। त्रिभुज के आधार की लंबाई tan(θ + Δθ) - tan(θ) है, और ऊंचाई 1 है। इसलिए त्रिभुज का क्षेत्रफल है

असमानताओं से

हम उसका निष्कर्ष निकालते हैं

प्रदान किया गया Δθ > 0, और यदि Δθ < 0 है तो असमानताएं उलट जाती हैं। चूँकि पहली और तीसरी अभिव्यक्तियाँ सेकंड के करीब आती हैं2θ जैसे Δθ → 0, और मध्य अभिव्यक्ति निकट आती है d/ टैन θ, वांछित परिणाम निम्नानुसार है।

चौथा उदाहरण

स्क्वीज़ प्रमेय का उपयोग अभी भी बहुपरिवर्तनीय कैलकुलस में किया जा सकता है, लेकिन निचला (और ऊपरी फलन) लक्ष्य फलन के नीचे (और ऊपर) होना चाहिए, न कि केवल पथ के साथ, बल्कि रुचि के बिंदु के पूरे पड़ोस के आसपास और यह केवल तभी काम करता है जब फलन वास्तव में वहां सीमा है। इसलिए, इसका उपयोग यह साबित करने के लिए किया जा सकता है कि किसी फलन की बिंदु पर सीमा होती है, लेकिन इसका उपयोग यह साबित करने के लिए कभी नहीं किया जा सकता है कि किसी फलन की किसी बिंदु पर कोई सीमा नहीं होती है।[3]

बिंदु से गुजरने वाले रास्तों पर किसी भी संख्या में सीमाएँ लेकर इसे नहीं पाया जा सकता है, लेकिन तब से

इसलिए, स्क्वीज़ प्रमेय द्वारा,


संदर्भ

टिप्पणियाँ

  1. Also known as the pinching theorem, the sandwich rule, the police theorem, the between theorem and sometimes the squeeze lemma. In Italy, the theorem is also known as the theorem of carabinieri.


संदर्भ

  1. Sohrab, Houshang H. (2003). बुनियादी वास्तविक विश्लेषण (2nd ed.). Birkhäuser. p. 104. ISBN 978-1-4939-1840-9.
  2. Selim G. Krejn, V.N. Uschakowa: Vorstufe zur höheren Mathematik. Springer, 2013, ISBN 9783322986283, pp. 80-81 (German). See also Sal Khan: Proof: limit of (sin x)/x at x=0 (video, Khan Academy)
  3. Stewart, James (2008). "Chapter 15.2 Limits and Continuity". बहुपरिवर्तनीय कलन (6th ed.). pp. 909–910. ISBN 978-0495011637.


बाहरी संबंध