केमिकल-मैकेनिकल पॉलिशिंग: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Polishing technique used during semiconductor fabrication}} केमिकल मैकेनिकल पॉलिशिंग (सीएमपी) य...")
 
No edit summary
 
(9 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{short description|Polishing technique used during semiconductor fabrication}}
{{short description|Polishing technique used during semiconductor fabrication}}
केमिकल मैकेनिकल पॉलिशिंग (सीएमपी) या प्लेनरीकरण रासायनिक और यांत्रिक बलों के संयोजन के साथ सतहों को चिकना करने की एक प्रक्रिया है। इसे एक विक्ट के रूप में सोचा जा सकता है: रासायनिक नक़्क़ाशी और मुक्त [[अपघर्षक]] पॉलिशिंग का संकर।<ref>Mahadevaiyer Krishnan, Jakub W. Nalaskowsk, and Lee M. Cook,
 
केमिकल मैकेनिकल पॉलिशिंग (सीएमपी) या प्लेनरीकरण रासायनिक और यांत्रिक बलों के संयोजन के साथ सतहों को चिकना करने की एक प्रक्रिया है। इसे रासायनिक नक़्क़ाशी और मुक्त अपघर्षक पॉलिशिंग के संकर के रूप में माना जा सकता है।<ref>Mahadevaiyer Krishnan, Jakub W. Nalaskowsk, and Lee M. Cook,
  "Chemical Mechanical Planarization: Slurry Chemistry, Materials, and Mechanisms" Chem. Rev., 2010, vol. 110, pp 178–204. {{doi|10.1021/cr900170z}}</ref>
  "Chemical Mechanical Planarization: Slurry Chemistry, Materials, and Mechanisms" Chem. Rev., 2010, vol. 110, pp 178–204. {{doi|10.1021/cr900170z}}</ref>
== विवरण ==
== विवरण ==
[[File:Cmp prinzip.jpg|thumb|250px|सीएमपी का कार्यात्मक सिद्धांत]]यह प्रक्रिया एक [[ घर्षण ]] पैड और रिटेनिंग रिंग के संयोजन में एक अपघर्षक और संक्षारक रासायनिक घोल (आमतौर पर एक [[कोलाइड]]) का उपयोग करती है, आमतौर पर वेफर की तुलना में अधिक व्यास की होती है। पैड और वेफर को गतिशील पॉलिशिंग हेड द्वारा एक साथ दबाया जाता है और प्लास्टिक रिटेनिंग रिंग द्वारा जगह में रखा जाता है। डायनेमिक पॉलिशिंग हेड को रोटेशन के विभिन्न अक्षों के साथ घुमाया जाता है (यानी, विक्षनरी नहीं: संकेंद्रित)यह सामग्री को हटाता है और किसी भी अनियमित स्थलाकृति को समतल करता है, जिससे वेफर फ्लैट या प्लेनर बन जाता है। अतिरिक्त सर्किट तत्वों के गठन के लिए वेफर को स्थापित करना आवश्यक हो सकता है। उदाहरण के लिए, सीएमपी पूरी सतह को एक [[फोटोलिथोग्राफी]] प्रणाली के [[क्षेत्र की गहराई]] के भीतर ला सकता है, या इसकी स्थिति के आधार पर सामग्री को चुनिंदा रूप से हटा सकता है। नवीनतम 22 एनएम तकनीक के लिए विशिष्ट डेप्थ-ऑफ-फील्ड आवश्यकताएं [[एंगस्ट्रॉम]] स्तर तक नीचे हैं।
[[File:Cmp prinzip.jpg|thumb|250px|सीएमपी का कार्यात्मक सिद्धांत]]यह प्रक्रिया एक [[ घर्षण |घर्षण]] पैड और रिटेनिंग वलय के संयोजन में एक अपघर्षक और संक्षारक रासायनिक घोल (सामान्यतः एक [[कोलाइड]]) का उपयोग करती है सामान्यतः वेफर की तुलना में अधिक व्यास की होती है। पैड और वेफर को गतिशील पॉलिशिंग हेड द्वारा एक साथ दबाया जाता है और प्लास्टिक रिटेनिंग वलय द्वारा जगह में रखा जाता है। डायनेमिक पॉलिशिंग हेड को घूर्णन के विभिन्न अक्षों के साथ घुमाया जाता है (जिससे विक्षनरी नहीं: संकेंद्रित) यह सामग्री को हटाता है और किसी भी अनियमित स्थलाकृति को समतल करता है जिससे वेफर फ्लैट या प्लेनर बन जाता है। अतिरिक्त परिपथ तत्वों के गठन के लिए वेफर को स्थापित करना आवश्यक हो सकता है। उदाहरण के लिए, सीएमपी पूरी सतह को एक [[फोटोलिथोग्राफी]] प्रणाली के [[क्षेत्र की गहराई]] के अंदर ला सकता है, या इसकी स्थिति के आधार पर सामग्री को चुनिंदा रूप से हटा सकता है। नवीनतम 22 एनएम विधि के लिए विशिष्ट क्षेत्र की गहराई आवश्यकताएं [[एंगस्ट्रॉम]] स्तर तक नीचे हैं।


== कार्य सिद्धांत ==
== कार्य सिद्धांत ==


===शारीरिक क्रिया===
===दैहिक क्रिया===
विशिष्ट सीएमपी उपकरण, जैसे कि दाईं ओर देखे गए, एक अत्यंत सपाट प्लेट को घुमाते हैं जो एक पैड द्वारा कवर किया जाता है। जिस [[ वफ़र ]] को पॉलिश किया जा रहा है, उसे एक बैकिंग फिल्म पर कैरियर/स्पिंडल में उल्टा लगाया जाता है। रिटेनिंग रिंग (चित्र 1) वेफर को सही क्षैतिज स्थिति में रखता है। उपकरण पर वेफर को लोड करने और उतारने की प्रक्रिया के दौरान, वेफर सतह पर अवांछित कणों को बनने से रोकने के लिए वाहक द्वारा वैक्यूम द्वारा आयोजित किया जाता है। एक गारा परिचय तंत्र पैड पर गारा जमा करता है, चित्र 1 में गारा आपूर्ति द्वारा दर्शाया गया है। प्लेट और वाहक दोनों को घुमाया जाता है और वाहक को दोलन किया जाता है; इसे चित्र 2 के शीर्ष दृश्य में बेहतर तरीके से देखा जा सकता है। वाहक पर नीचे की ओर दबाव/नीचे बल लगाया जाता है, इसे पैड के विरुद्ध धकेला जाता है; आम तौर पर नीचे बल एक औसत बल होता है, लेकिन हटाने के तंत्र के लिए स्थानीय दबाव की आवश्यकता होती है। डाउन बल संपर्क क्षेत्र पर निर्भर करता है, जो बदले में, वेफर और पैड दोनों की संरचनाओं पर निर्भर होता है। आमतौर पर पैड में 50 माइक्रोन का खुरदरापन होता है; संपर्क विषमताओं द्वारा किया जाता है (जो आमतौर पर वेफर पर उच्च बिंदु होते हैं) और, परिणामस्वरूप, संपर्क क्षेत्र वेफर क्षेत्र का केवल एक अंश होता है। सीएमपी में, वेफर के यांत्रिक गुणों पर भी विचार किया जाना चाहिए। यदि वेफर में थोड़ा झुकी हुई संरचना है, तो केंद्र की तुलना में किनारों पर दबाव अधिक होगा, जो गैर-समान पॉलिशिंग का कारण बनता है। वेफर बो की भरपाई करने के लिए, वेफर के बैकसाइड पर दबाव लगाया जा सकता है, जो बदले में, केंद्र-किनारे के अंतर को बराबर करेगा। वेफर सतह को समान रूप से चमकाने के लिए सीएमपी उपकरण में उपयोग किए जाने वाले पैड कठोर होने चाहिए। हालाँकि, इन कठोर पैडों को हर समय वेफर के साथ संरेखण में रखा जाना चाहिए। इसलिए, असली पैड अक्सर नरम और कठोर सामग्री के ढेर होते हैं जो कुछ हद तक वेफर स्थलाकृति के अनुरूप होते हैं। आम तौर पर, ये पैड 30-50 माइक्रोन के बीच छिद्र आकार वाले झरझरा पॉलीमेरिक पदार्थों से बने होते हैं, और क्योंकि वे इस प्रक्रिया में उपयोग किए जाते हैं, उन्हें नियमित रूप से ठीक किया जाना चाहिए। ज्यादातर मामलों में पैड बहुत अधिक स्वामित्व वाले होते हैं, और आमतौर पर उनके रासायनिक या अन्य गुणों के बजाय उनके ट्रेडमार्क नामों से संदर्भित होते हैं।
विशिष्ट सीएमपी उपकरण जैसे कि दाईं ओर देखे गए, एक अत्यंत सपाट प्लेट को घुमाते हैं जो एक पैड द्वारा आवरण किया जाता है। जिस [[ वफ़र |वफ़र]] को पॉलिश किया जा रहा है, उसे एक बैकिंग फिल्म पर कैरियर/स्पिंडल में विपरीत लगाया जाता है। रिटेनिंग वलय (चित्र 1) वेफर को सही क्षैतिज स्थिति में रखता है। उपकरण पर वेफर को लोड करने और उतारने की प्रक्रिया के समय वेफर सतह पर अवांछित कणों को बनने से रोकने के लिए वाहक द्वारा वैक्यूम द्वारा आयोजित किया जाता है। एक गारा परिचय तंत्र पैड पर गारा जमा करता है, चित्र 1 में गारा आपूर्ति द्वारा दर्शाया गया है। प्लेट और वाहक दोनों को घुमाया जाता है और वाहक को दोलन किया जाता है; इसे चित्र 2 के शीर्ष दृश्य में उत्तम विधि से देखा जा सकता है। वाहक पर नीचे की ओर दबाव/नीचे बल लगाया जाता है, इसे पैड के विरुद्ध धकेला जाता है; सामान्यतः नीचे बल एक औसत बल होता है, किंतु हटाने के तंत्र के लिए स्थानीय दबाव की आवश्यकता होती है। डाउन बल संपर्क क्षेत्र पर निर्भर करता है जो बदले में वेफर और पैड दोनों की संरचनाओं पर निर्भर होता है। सामान्यतः पैड में 50 माइक्रोन का खुरदरापन होता है; संपर्क विषमताओं द्वारा किया जाता है (जो सामान्यतः वेफर पर उच्च बिंदु होते हैं) और परिणामस्वरूप संपर्क क्षेत्र वेफर क्षेत्र का केवल एक अंश होता है। सीएमपी में वेफर के यांत्रिक गुणों पर भी विचार किया जाना चाहिए। यदि वेफर में थोड़ा झुकी हुई संरचना है, तो केंद्र की तुलना में किनारों पर दबाव अधिक होगा, जो गैर-समान पॉलिशिंग का कारण बनता है। वेफर बो की भरपाई करने के लिए, वेफर के बैकसाइड पर दबाव लगाया जा सकता है, जो बदले में, केंद्र-किनारे के अंतर को समान करेगा। वेफर सतह को समान रूप से चमकाने के लिए सीएमपी उपकरण में उपयोग किए जाने वाले पैड कठोर होने चाहिए। चूँकि इन कठोर पैडों को हर समय वेफर के साथ संरेखण में रखा जाना चाहिए। इसलिए असली पैड अधिकांशतः नरम और कठोर सामग्री के ढेर होते हैं जो कुछ सीमा तक वेफर स्थलाकृति के अनुरूप होते हैं। सामान्यतः, ये पैड 30-50 माइक्रोन के बीच छिद्र आकार वाले झरझरा पॉलीमेरिक पदार्थों से बने होते हैं, और क्योंकि वे इस प्रक्रिया में उपयोग किए जाते हैं, उन्हें नियमित रूप से ठीक किया जाना चाहिए। अधिकत्तर स्थितियों में पैड बहुत अधिक स्वामित्व वाले होते हैं, और सामान्यतः उनके रासायनिक या अन्य गुणों के अतिरिक्त उनके ट्रेडमार्क नामों से संदर्भित होते हैं।


===रासायनिक क्रिया===
===रासायनिक क्रिया===
केमिकल मैकेनिकल पॉलिशिंग या प्लानेराइजेशन रासायनिक और यांत्रिक बलों के संयोजन के साथ सतहों को चौरसाई करने की एक प्रक्रिया है। इसे एक विक्ट के रूप में सोचा जा सकता है: रासायनिक नक़्क़ाशी और मुक्त अपघर्षक पॉलिशिंग का संकर।
केमिकल मैकेनिकल पॉलिशिंग या प्लानेराइजेशन रासायनिक और यांत्रिक बलों के संयोजन के साथ सतहों को चौरसाई करने की एक प्रक्रिया है। इसे रासायनिक निक्षारण और मुक्त अपघर्षक पॉलिशिंग के संकर के रूप में माना जा सकता है।
 
== सेमीकंडक्टर निर्माण में उपयोग ==
1990 से पहले सीएमपी को उच्च-परिशुद्धता निर्माण प्रक्रियाओं में शामिल करने के लिए बहुत गंदा माना जाता था, क्योंकि घर्षण से कण बनते हैं और अपघर्षक स्वयं अशुद्धियों के बिना नहीं होते हैं। उस समय से, एकीकृत सर्किट उद्योग एल्यूमीनियम से तांबे के कंडक्टर में स्थानांतरित हो गया है। इसके लिए एक योगात्मक पैटर्निंग प्रक्रिया के विकास की आवश्यकता थी, जो एक प्लानर और समान फैशन में सामग्री को हटाने और तांबे और ऑक्साइड इन्सुलेट परतों के बीच इंटरफेस पर बार-बार रोकने के लिए सीएमपी की अद्वितीय क्षमताओं पर निर्भर करती है (विवरण के लिए [[ [[ ताँबा ]] आपस में जुड़ता है ]] देखें)। इस प्रक्रिया को अपनाने से सीएमपी प्रसंस्करण और अधिक व्यापक हो गया है। एल्यूमीनियम और तांबे के अलावा, टंगस्टन, सिलिकॉन डाइऑक्साइड और (हाल ही में) कार्बन नैनोट्यूब को चमकाने के लिए सीएमपी प्रक्रियाओं का विकास किया गया है।<ref>Awano,Y.: (2006), "Carbon Nanotube (CNT) Via Interconnect Technologies: Low temperature CVD growth and chemical mechanical planarization for vertically aligned CNTs". ''Proc. 2006 ICPT'', 10</ref>
 


== अर्धचालक निर्माण में उपयोग                    ==
1990 से पहले सीएमपी को उच्च-परिशुद्धता निर्माण प्रक्रियाओं में सम्मिलित करने के लिए बहुत गंदा माना जाता था, क्योंकि घर्षण से कण बनते हैं और अपघर्षक स्वयं अशुद्धियों के बिना नहीं होते हैं। उस समय से एकीकृत परिपथ उद्योग एल्यूमीनियम से तांबे के चालक में स्थानांतरित हो गया है। इसके लिए एक योगात्मक पैटर्निंग प्रक्रिया के विकास की आवश्यकता थी, जो एक प्लानर और समान फैशन में सामग्री को हटाने और तांबे और ऑक्साइड इन्सुलेट परतों के बीच इंटरफेस पर बार-बार रोकने के लिए सीएमपी की अद्वितीय क्षमताओं पर निर्भर करती है (विवरण के लिए [[ ताँबा |ताँबा]] आपस में जुड़ता है देखें)। इस प्रक्रिया को अपनाने से सीएमपी प्रसंस्करण और अधिक व्यापक हो गया है। एल्यूमीनियम और तांबे के अतिरिक्त टंगस्टन, सिलिकॉन डाइऑक्साइड और (हाल ही में) कार्बन नैनोट्यूब को चमकाने के लिए सीएमपी प्रक्रियाओं का विकास किया गया है।<ref>Awano,Y.: (2006), "Carbon Nanotube (CNT) Via Interconnect Technologies: Low temperature CVD growth and chemical mechanical planarization for vertically aligned CNTs". ''Proc. 2006 ICPT'', 10</ref>
== सीमाएं ==
== सीमाएं ==
वर्तमान में सीएमपी की कई सीमाएँ हैं जो एक नई तकनीक के अनुकूलन की आवश्यकता वाली पॉलिशिंग प्रक्रिया के दौरान दिखाई देती हैं। विशेष रूप से, वेफर मैट्रोलोजी में सुधार की आवश्यकता है। इसके अलावा, यह पता चला कि सीएमपी प्रक्रिया में तनाव [[ भंग ]], कमजोर इंटरफेस पर delaminating, और घोल रसायनों से संक्षारक हमलों सहित कई संभावित दोष हैं। ऑक्साइड पॉलिशिंग प्रक्रिया, जो आज के उद्योग में सबसे पुरानी और सबसे अधिक उपयोग की जाती है, में एक समस्या है: अंत बिंदुओं की कमी के लिए ब्लाइंड पॉलिशिंग की आवश्यकता होती है, जिससे यह निर्धारित करना कठिन हो जाता है कि कब सामग्री की वांछित मात्रा को हटा दिया गया है या प्लानरीकरण की वांछित डिग्री है प्राप्त किया गया। यदि इस प्रक्रिया के दौरान ऑक्साइड परत को पर्याप्त रूप से पतला नहीं किया गया है और/या वांछित स्तर की ग्रहीयता हासिल नहीं की गई है, तो (सैद्धांतिक रूप से) वेफर को फिर से पॉलिश किया जा सकता है, लेकिन व्यावहारिक अर्थ में यह उत्पादन में अनाकर्षक है और इससे बचा जाना चाहिए अगर यह सब संभव है। यदि ऑक्साइड की मोटाई बहुत पतली या बहुत गैर-समान है, तो वेफर पर फिर से काम किया जाना चाहिए, एक कम आकर्षक प्रक्रिया और एक जो विफल होने की संभावना है। जाहिर है, यह विधि समय लेने वाली और महंगी है क्योंकि इस प्रक्रिया को करते समय तकनीशियनों को अधिक चौकस रहना पड़ता है।
वर्तमान में सीएमपी की कई सीमाएँ हैं जो एक नई विधि के अनुकूलन की आवश्यकता वाली पॉलिशिंग प्रक्रिया के समय दिखाई देती हैं। विशेष रूप से, वेफर मैट्रोलोजी में सुधार की आवश्यकता है। इसके अतिरिक्त यह पता चला कि सीएमपी प्रक्रिया में तनाव [[ भंग |भंग]] , अशक्त इंटरफेस पर परिशोधन और घोल रसायनों से संक्षारक हमलों सहित कई संभावित दोष हैं। ऑक्साइड पॉलिशिंग प्रक्रिया जो आज के उद्योग में सबसे पुरानी और सबसे अधिक उपयोग की जाती है में एक समस्या है: अंत बिंदुओं की कमी के लिए ब्लाइंड पॉलिशिंग की आवश्यकता होती है, जिससे यह निर्धारित करना कठिन हो जाता है कि कब सामग्री की वांछित मात्रा को हटा दिया गया है या प्लानरीकरण की वांछित डिग्री है प्राप्त किया गया। यदि इस प्रक्रिया के समय ऑक्साइड परत को पर्याप्त रूप से पतला नहीं किया गया है और/या वांछित स्तर की ग्रहीयता प्राप्त नहीं की गई है तो (सैद्धांतिक रूप से) वेफर को फिर से पॉलिश किया जा सकता है, किंतु व्यावहारिक अर्थ में यह उत्पादन में अनाकर्षक है और इससे बचा जाना चाहिए यदि यह सब संभव है। यदि ऑक्साइड की मोटाई बहुत पतली या बहुत गैर-समान है, तो वेफर पर फिर से काम किया जाना चाहिए, एक कम आकर्षक प्रक्रिया और एक जो विफल होने की संभावना है। स्पष्ट है यह विधि समय लेने वाली और मूल्यवान है क्योंकि इस प्रक्रिया को करते समय तकनीशियनों को अधिक सावधान रहना पड़ता है।


== आवेदन ==
== आवेदन ==


[[उथला खाई अलगाव]] (STI), सेमीकंडक्टर उपकरणों को बनाने के लिए इस्तेमाल की जाने वाली प्रक्रिया, एक ऐसी तकनीक है जिसका इस्तेमाल उपकरणों और सक्रिय क्षेत्रों के बीच अलगाव को बढ़ाने के लिए किया जाता है। इसके अलावा, एसटीआई में उच्च स्तर की प्लेनेरिटी है, जो इसे फोटोलिथोग्राफी अनुप्रयोगों में आवश्यक बनाती है, न्यूनतम लाइन चौड़ाई को कम करके फोकस बजट की गहराई। उथली खाइयों को समतल करने के लिए, एक सामान्य विधि का उपयोग किया जाना चाहिए जैसे प्रतिरोध नक़्क़ाशी-वापस (आरईबी) और रासायनिक यांत्रिक पॉलिशिंग (सीएमपी) का संयोजन। यह प्रक्रिया निम्नानुसार अनुक्रम पैटर्न में आती है। सबसे पहले, आइसोलेशन ट्रेंच पैटर्न को सिलिकॉन वेफर में स्थानांतरित किया जाता है। ऑक्साइड खाइयों के रूप में वेफर पर जमा होता है। इस बलिदान ऑक्साइड के शीर्ष पर [[सिलिकॉन नाइट्राइड]] से बना एक फोटो मास्क बनाया गया है। प्लानर सतह बनाने के लिए वेफर में एक दूसरी परत जोड़ी जाती है। उसके बाद, सिलिकॉन को ऊष्मीय रूप से ऑक्सीकृत किया जाता है, इसलिए ऑक्साइड उन क्षेत्रों में बढ़ता है जहां कोई सी नहीं है<sub>3</sub>N<sub>4</sub> और वृद्धि 0.5 और 1.0 माइक्रोमीटर के बीच मोटी होती है। चूँकि ऑक्सीकरण करने वाली प्रजातियाँ जैसे पानी या ऑक्सीजन मास्क के माध्यम से फैलने में असमर्थ होती हैं, नाइट्राइड ऑक्सीकरण को रोकता है। इसके बाद, नक़्क़ाशी प्रक्रिया का उपयोग वेफर को उकेरने और सक्रिय क्षेत्रों में थोड़ी मात्रा में ऑक्साइड छोड़ने के लिए किया जाता है। अंत में, सीएमपी का उपयोग SiO को चमकाने के लिए किया जाता है<sub>2</sub> सक्रिय क्षेत्र पर एक ऑक्साइड के साथ ओवरबर्डन।
[[उथला खाई अलगाव]] (एसटीआई), अर्धचालक उपकरणों को बनाने के लिए उपयोग की जाने वाली प्रक्रिया, एक ऐसी विधि है जिसका उपयोग उपकरणों और सक्रिय क्षेत्रों के बीच अलगाव को बढ़ाने के लिए किया जाता है। इसके अतिरिक्त एसटीआई में उच्च स्तर की प्लेनेरिटी है जो इसे फोटोलिथोग्राफी अनुप्रयोगों में आवश्यक बनाती है, न्यूनतम लाइन चौड़ाई को कम करके फोकस बजट की गहराई उथली खाइयों को समतल करने के लिए, एक सामान्य विधि का उपयोग किया जाना चाहिए जैसे प्रतिरोध नक़्क़ाशी-वापस (आरईबी) और रासायनिक यांत्रिक पॉलिशिंग (सीएमपी) का संयोजन यह प्रक्रिया निम्नानुसार अनुक्रम प्रतिरूप में आती है। सबसे पहले, आइसोलेशन ट्रेंच प्रतिरूप को सिलिकॉन वेफर में स्थानांतरित किया जाता है। ऑक्साइड खाइयों के रूप में वेफर पर जमा होता है। इस बलिदान ऑक्साइड के शीर्ष पर [[सिलिकॉन नाइट्राइड]] से बना एक फोटो मास्क बनाया गया है। प्लानर सतह बनाने के लिए वेफर में एक दूसरी परत जोड़ी जाती है। उसके बाद, सिलिकॉन को ऊष्मीय रूप से ऑक्सीकृत किया जाता है, इसलिए ऑक्साइड उन क्षेत्रों में बढ़ता है जहां कोई Si<sub>3</sub>N<sub>4</sub> नहीं है और वृद्धि 0.5 और 1.0 माइक्रोमीटर के बीच मोटी होती है। चूँकि ऑक्सीकरण करने वाली प्रजातियाँ जैसे पानी या ऑक्सीजन मास्क के माध्यम से फैलने में असमर्थ होती हैं, नाइट्राइड ऑक्सीकरण को रोकता है। इसके बाद, नक़्क़ाशी प्रक्रिया का उपयोग वेफर को उकेरने और सक्रिय क्षेत्रों में थोड़ी मात्रा में ऑक्साइड छोड़ने के लिए किया जाता है।अंत में, सक्रिय क्षेत्र पर ऑक्साइड के साथ SiO<sub>2</sub> ओवरबर्डन को पॉलिश के लिए सीएमपी का उपयोग किया जाता है।
 
== यह भी देखें               ==
== यह भी देखें ==
* [[नक़्क़ाशी (माइक्रोफैब्रिकेशन)]]
* [[नक़्क़ाशी (माइक्रोफैब्रिकेशन)]]
* [[आरसीए साफ]]
* [[आरसीए साफ]]
Line 32: Line 28:
==संदर्भ==
==संदर्भ==
{{reflist}}
{{reflist}}


=== किताबें ===
=== किताबें ===
Line 42: Line 35:
* "CMP, chemical mechanical planarization, polishing equipment", by Crystec Technology Trading GmbH obtained from: http://www.crystec.com/alpovere.htm
* "CMP, chemical mechanical planarization, polishing equipment", by Crystec Technology Trading GmbH obtained from: http://www.crystec.com/alpovere.htm
* "Chemical Mechanical Planarization", by Dr. Wang Zengfeng, Dr. Yin Ling, Ng Sum Huan, and Teo Phaik Luan obtained from: http://maltiel-consulting.com/CMP-Chemical-mechanical_planarization_maltiel_semiconductor.pdf
* "Chemical Mechanical Planarization", by Dr. Wang Zengfeng, Dr. Yin Ling, Ng Sum Huan, and Teo Phaik Luan obtained from: http://maltiel-consulting.com/CMP-Chemical-mechanical_planarization_maltiel_semiconductor.pdf
[[Category: सेमीकंडक्टर डिवाइस का निर्माण]]


[[Category: Machine Translated Page]]
[[Category:Created On 11/06/2023]]
[[Category:Created On 11/06/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:सेमीकंडक्टर डिवाइस का निर्माण]]

Latest revision as of 17:31, 13 July 2023

केमिकल मैकेनिकल पॉलिशिंग (सीएमपी) या प्लेनरीकरण रासायनिक और यांत्रिक बलों के संयोजन के साथ सतहों को चिकना करने की एक प्रक्रिया है। इसे रासायनिक नक़्क़ाशी और मुक्त अपघर्षक पॉलिशिंग के संकर के रूप में माना जा सकता है।[1]

विवरण

सीएमपी का कार्यात्मक सिद्धांत

यह प्रक्रिया एक घर्षण पैड और रिटेनिंग वलय के संयोजन में एक अपघर्षक और संक्षारक रासायनिक घोल (सामान्यतः एक कोलाइड) का उपयोग करती है सामान्यतः वेफर की तुलना में अधिक व्यास की होती है। पैड और वेफर को गतिशील पॉलिशिंग हेड द्वारा एक साथ दबाया जाता है और प्लास्टिक रिटेनिंग वलय द्वारा जगह में रखा जाता है। डायनेमिक पॉलिशिंग हेड को घूर्णन के विभिन्न अक्षों के साथ घुमाया जाता है (जिससे विक्षनरी नहीं: संकेंद्रित) यह सामग्री को हटाता है और किसी भी अनियमित स्थलाकृति को समतल करता है जिससे वेफर फ्लैट या प्लेनर बन जाता है। अतिरिक्त परिपथ तत्वों के गठन के लिए वेफर को स्थापित करना आवश्यक हो सकता है। उदाहरण के लिए, सीएमपी पूरी सतह को एक फोटोलिथोग्राफी प्रणाली के क्षेत्र की गहराई के अंदर ला सकता है, या इसकी स्थिति के आधार पर सामग्री को चुनिंदा रूप से हटा सकता है। नवीनतम 22 एनएम विधि के लिए विशिष्ट क्षेत्र की गहराई आवश्यकताएं एंगस्ट्रॉम स्तर तक नीचे हैं।

कार्य सिद्धांत

दैहिक क्रिया

विशिष्ट सीएमपी उपकरण जैसे कि दाईं ओर देखे गए, एक अत्यंत सपाट प्लेट को घुमाते हैं जो एक पैड द्वारा आवरण किया जाता है। जिस वफ़र को पॉलिश किया जा रहा है, उसे एक बैकिंग फिल्म पर कैरियर/स्पिंडल में विपरीत लगाया जाता है। रिटेनिंग वलय (चित्र 1) वेफर को सही क्षैतिज स्थिति में रखता है। उपकरण पर वेफर को लोड करने और उतारने की प्रक्रिया के समय वेफर सतह पर अवांछित कणों को बनने से रोकने के लिए वाहक द्वारा वैक्यूम द्वारा आयोजित किया जाता है। एक गारा परिचय तंत्र पैड पर गारा जमा करता है, चित्र 1 में गारा आपूर्ति द्वारा दर्शाया गया है। प्लेट और वाहक दोनों को घुमाया जाता है और वाहक को दोलन किया जाता है; इसे चित्र 2 के शीर्ष दृश्य में उत्तम विधि से देखा जा सकता है। वाहक पर नीचे की ओर दबाव/नीचे बल लगाया जाता है, इसे पैड के विरुद्ध धकेला जाता है; सामान्यतः नीचे बल एक औसत बल होता है, किंतु हटाने के तंत्र के लिए स्थानीय दबाव की आवश्यकता होती है। डाउन बल संपर्क क्षेत्र पर निर्भर करता है जो बदले में वेफर और पैड दोनों की संरचनाओं पर निर्भर होता है। सामान्यतः पैड में 50 माइक्रोन का खुरदरापन होता है; संपर्क विषमताओं द्वारा किया जाता है (जो सामान्यतः वेफर पर उच्च बिंदु होते हैं) और परिणामस्वरूप संपर्क क्षेत्र वेफर क्षेत्र का केवल एक अंश होता है। सीएमपी में वेफर के यांत्रिक गुणों पर भी विचार किया जाना चाहिए। यदि वेफर में थोड़ा झुकी हुई संरचना है, तो केंद्र की तुलना में किनारों पर दबाव अधिक होगा, जो गैर-समान पॉलिशिंग का कारण बनता है। वेफर बो की भरपाई करने के लिए, वेफर के बैकसाइड पर दबाव लगाया जा सकता है, जो बदले में, केंद्र-किनारे के अंतर को समान करेगा। वेफर सतह को समान रूप से चमकाने के लिए सीएमपी उपकरण में उपयोग किए जाने वाले पैड कठोर होने चाहिए। चूँकि इन कठोर पैडों को हर समय वेफर के साथ संरेखण में रखा जाना चाहिए। इसलिए असली पैड अधिकांशतः नरम और कठोर सामग्री के ढेर होते हैं जो कुछ सीमा तक वेफर स्थलाकृति के अनुरूप होते हैं। सामान्यतः, ये पैड 30-50 माइक्रोन के बीच छिद्र आकार वाले झरझरा पॉलीमेरिक पदार्थों से बने होते हैं, और क्योंकि वे इस प्रक्रिया में उपयोग किए जाते हैं, उन्हें नियमित रूप से ठीक किया जाना चाहिए। अधिकत्तर स्थितियों में पैड बहुत अधिक स्वामित्व वाले होते हैं, और सामान्यतः उनके रासायनिक या अन्य गुणों के अतिरिक्त उनके ट्रेडमार्क नामों से संदर्भित होते हैं।

रासायनिक क्रिया

केमिकल मैकेनिकल पॉलिशिंग या प्लानेराइजेशन रासायनिक और यांत्रिक बलों के संयोजन के साथ सतहों को चौरसाई करने की एक प्रक्रिया है। इसे रासायनिक निक्षारण और मुक्त अपघर्षक पॉलिशिंग के संकर के रूप में माना जा सकता है।

अर्धचालक निर्माण में उपयोग

1990 से पहले सीएमपी को उच्च-परिशुद्धता निर्माण प्रक्रियाओं में सम्मिलित करने के लिए बहुत गंदा माना जाता था, क्योंकि घर्षण से कण बनते हैं और अपघर्षक स्वयं अशुद्धियों के बिना नहीं होते हैं। उस समय से एकीकृत परिपथ उद्योग एल्यूमीनियम से तांबे के चालक में स्थानांतरित हो गया है। इसके लिए एक योगात्मक पैटर्निंग प्रक्रिया के विकास की आवश्यकता थी, जो एक प्लानर और समान फैशन में सामग्री को हटाने और तांबे और ऑक्साइड इन्सुलेट परतों के बीच इंटरफेस पर बार-बार रोकने के लिए सीएमपी की अद्वितीय क्षमताओं पर निर्भर करती है (विवरण के लिए ताँबा आपस में जुड़ता है देखें)। इस प्रक्रिया को अपनाने से सीएमपी प्रसंस्करण और अधिक व्यापक हो गया है। एल्यूमीनियम और तांबे के अतिरिक्त टंगस्टन, सिलिकॉन डाइऑक्साइड और (हाल ही में) कार्बन नैनोट्यूब को चमकाने के लिए सीएमपी प्रक्रियाओं का विकास किया गया है।[2]

सीमाएं

वर्तमान में सीएमपी की कई सीमाएँ हैं जो एक नई विधि के अनुकूलन की आवश्यकता वाली पॉलिशिंग प्रक्रिया के समय दिखाई देती हैं। विशेष रूप से, वेफर मैट्रोलोजी में सुधार की आवश्यकता है। इसके अतिरिक्त यह पता चला कि सीएमपी प्रक्रिया में तनाव भंग , अशक्त इंटरफेस पर परिशोधन और घोल रसायनों से संक्षारक हमलों सहित कई संभावित दोष हैं। ऑक्साइड पॉलिशिंग प्रक्रिया जो आज के उद्योग में सबसे पुरानी और सबसे अधिक उपयोग की जाती है में एक समस्या है: अंत बिंदुओं की कमी के लिए ब्लाइंड पॉलिशिंग की आवश्यकता होती है, जिससे यह निर्धारित करना कठिन हो जाता है कि कब सामग्री की वांछित मात्रा को हटा दिया गया है या प्लानरीकरण की वांछित डिग्री है प्राप्त किया गया। यदि इस प्रक्रिया के समय ऑक्साइड परत को पर्याप्त रूप से पतला नहीं किया गया है और/या वांछित स्तर की ग्रहीयता प्राप्त नहीं की गई है तो (सैद्धांतिक रूप से) वेफर को फिर से पॉलिश किया जा सकता है, किंतु व्यावहारिक अर्थ में यह उत्पादन में अनाकर्षक है और इससे बचा जाना चाहिए यदि यह सब संभव है। यदि ऑक्साइड की मोटाई बहुत पतली या बहुत गैर-समान है, तो वेफर पर फिर से काम किया जाना चाहिए, एक कम आकर्षक प्रक्रिया और एक जो विफल होने की संभावना है। स्पष्ट है यह विधि समय लेने वाली और मूल्यवान है क्योंकि इस प्रक्रिया को करते समय तकनीशियनों को अधिक सावधान रहना पड़ता है।

आवेदन

उथला खाई अलगाव (एसटीआई), अर्धचालक उपकरणों को बनाने के लिए उपयोग की जाने वाली प्रक्रिया, एक ऐसी विधि है जिसका उपयोग उपकरणों और सक्रिय क्षेत्रों के बीच अलगाव को बढ़ाने के लिए किया जाता है। इसके अतिरिक्त एसटीआई में उच्च स्तर की प्लेनेरिटी है जो इसे फोटोलिथोग्राफी अनुप्रयोगों में आवश्यक बनाती है, न्यूनतम लाइन चौड़ाई को कम करके फोकस बजट की गहराई उथली खाइयों को समतल करने के लिए, एक सामान्य विधि का उपयोग किया जाना चाहिए जैसे प्रतिरोध नक़्क़ाशी-वापस (आरईबी) और रासायनिक यांत्रिक पॉलिशिंग (सीएमपी) का संयोजन यह प्रक्रिया निम्नानुसार अनुक्रम प्रतिरूप में आती है। सबसे पहले, आइसोलेशन ट्रेंच प्रतिरूप को सिलिकॉन वेफर में स्थानांतरित किया जाता है। ऑक्साइड खाइयों के रूप में वेफर पर जमा होता है। इस बलिदान ऑक्साइड के शीर्ष पर सिलिकॉन नाइट्राइड से बना एक फोटो मास्क बनाया गया है। प्लानर सतह बनाने के लिए वेफर में एक दूसरी परत जोड़ी जाती है। उसके बाद, सिलिकॉन को ऊष्मीय रूप से ऑक्सीकृत किया जाता है, इसलिए ऑक्साइड उन क्षेत्रों में बढ़ता है जहां कोई Si3N4 नहीं है और वृद्धि 0.5 और 1.0 माइक्रोमीटर के बीच मोटी होती है। चूँकि ऑक्सीकरण करने वाली प्रजातियाँ जैसे पानी या ऑक्सीजन मास्क के माध्यम से फैलने में असमर्थ होती हैं, नाइट्राइड ऑक्सीकरण को रोकता है। इसके बाद, नक़्क़ाशी प्रक्रिया का उपयोग वेफर को उकेरने और सक्रिय क्षेत्रों में थोड़ी मात्रा में ऑक्साइड छोड़ने के लिए किया जाता है।अंत में, सक्रिय क्षेत्र पर ऑक्साइड के साथ SiO2 ओवरबर्डन को पॉलिश के लिए सीएमपी का उपयोग किया जाता है।

यह भी देखें

संदर्भ

  1. Mahadevaiyer Krishnan, Jakub W. Nalaskowsk, and Lee M. Cook, "Chemical Mechanical Planarization: Slurry Chemistry, Materials, and Mechanisms" Chem. Rev., 2010, vol. 110, pp 178–204. doi:10.1021/cr900170z
  2. Awano,Y.: (2006), "Carbon Nanotube (CNT) Via Interconnect Technologies: Low temperature CVD growth and chemical mechanical planarization for vertically aligned CNTs". Proc. 2006 ICPT, 10

किताबें

  • वीएलएसआई युग के लिए सिलिकॉन प्रसंस्करण - वॉल्यूम। IV डीप-सबमाइक्रोन प्रोसेस टेक्नोलॉजी - एस वुल्फ, 2002, ISBN 978-0-9616721-7-1, अध्याय 8 रासायनिक यांत्रिक पॉलिशिंग पीपी। 313–432

बाहरी संबंध