हॉसडॉर्फ समष्टि: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 122: | Line 122: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 30/06/2023]] | [[Category:Created On 30/06/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 15:38, 13 July 2023
Separation axioms in topological spaces | |
---|---|
Kolmogorov classification | |
T0 | (Kolmogorov) |
T1 | (Fréchet) |
T2 | (Hausdorff) |
T2½ | (Urysohn) |
completely T2 | (completely Hausdorff) |
T3 | (regular Hausdorff) |
T3½ | (Tychonoff) |
T4 | (normal Hausdorff) |
T5 | (completely normal Hausdorff) |
T6 | (perfectly normal Hausdorff) |
टोपोलॉजी और गणित की संबंधित शाखाओं में, हॉसडॉर्फ स्पेस (/ˈhaʊsdɔːrf/ HOWS-dorf, /ˈhaʊzdɔːrf/ HOWZ-dorf[1]), अलग किया गया स्पेस या T2 स्पेस टोपोलॉजिकल स्पेस है, जहां किन्हीं दो अलग-अलग बिंदुओं के लिए, प्रत्येक के समीप (गणित) उपस्तिथ होते हैं जो दूसरे से असंयुक्त समुच्चय होते हैं। कई पृथक्करण सिद्धांतों में से जो टोपोलॉजिकल स्पेस पर लगाए जा सकते हैं, हॉसडॉर्फ स्पेश (T2) सबसे अधिक बार उपयोग और चर्चा की जाती है। इसका तात्पर्य अनुक्रमों, नेट्स (टोपोलॉजी) और फ़िल्टर (टोपोलॉजी) की सीमा के अनुक्रम की विशिष्टता से होता है।[2]
इस प्रकार से हॉसडॉर्फ़ रिक्त स्पेस का नाम टोपोलॉजी के संस्थापकों में से फ़ेलिक्स हॉसडॉर्फ़ के नाम पर रखा गया है। और हॉसडॉर्फ़ की टोपोलॉजिकल स्पेस की मूल परिभाषा (1914 में) में हॉसडॉर्फ़ स्पेश को स्वयंसिद्ध के रूप में सम्मिलित किया गया था।
परिभाषाएँ
अंक और टोपोलॉजिकल स्पेस में अस्तित्वगत परिमाणीकरण के समीप से समीप (टोपोलॉजी) को अलग किया जा सकता है का और समीप का ऐसा है कि और असंयुक्त समुच्चय हैं . यदि कोई दो अलग-अलग बिंदु हों तो यह हॉसडॉर्फ़ स्पेस है समीप से अलग हो गए हैं। यह स्पेश तीसरी पृथक्करण स्वयंसिद्ध है (T0 के बाद और T1), यही कारण है कि हॉसडॉर्फ रिक्त स्पेस को T2 भी कहा जाता है रिक्त स्पेस पृथक स्पेस नाम का भी प्रयोग किया जाता है।
एक संबंधित, जिससे निःशक्त , धारणा पूर्व-नियमित स्पेस की है। यदि किन्हीं दो स्थलाकृतिक रूप से भिन्न बिंदुओं को असंयुक्त समीप द्वारा अलग किया जा सकता है, तो यह पूर्व-नियमित स्पेस है। पूर्व-नियमित स्पेस को R1 भी कहा जाता है अंतरिक्ष।
इन दोनों स्थितियों के मध्य संबंध इस प्रकार से होते है। जैसे टोपोलॉजिकल स्पेस हॉसडॉर्फ है यदि और केवल यदि यह पूर्व-नियमित (अर्थात टोपोलॉजिकल रूप से अलग-अलग बिंदु समीप से अलग हो जाते हैं) और कोलमोगोरोव स्पेस (अर्थात अलग-अलग बिंदु टोपोलॉजिकल रूप से अलग-अलग होते हैं) दोनों हैं। टोपोलॉजिकल स्पेस पूर्व-नियमित होते है यदि और केवल तभी जब इसका कोलमोगोरोव भागफल हॉसडॉर्फ हो।
समतुल्य
टोपोलॉजिकल स्पेस , के लिए निम्नलिखित समतुल्य हैं:[3]
- हॉसडॉर्फ़ स्पेस है।
- में नेट की सीमाएं विशिष्ट हैं।[4]
- फिल्टर (टोपोलॉजी) की सीमाएं प्रारंभ विशिष्ट हैं।[4]
- कोई भी सिंगलटन समुच्चय के सभी समीप (गणित) के प्रतिच्छेदन के समान है.[5] (का संवृत समीप एक संवृत समुच्चय है जिसमें युक्त विवृत समुच्चय होता है।)
- विकर्ण उत्पाद स्पेस के उपसमुच्चय के रूप में संवृत समुच्चय है.
- दो बिंदुओं के साथ असतत स्पेस से कोई भी इंजेक्शन मानचित्र के संबंध में दो विवृत बिंदुओं और संवृत बिंदु से बिंदु तक सीमित टोपोलॉजिकल स्पेस से उठाने की संपत्ति है।
हॉसडॉर्फ़ और गैर-हॉसडॉर्फ़ स्पेस के उदाहरण
गणितीय विश्लेषण में आने वाले लगभग सभी स्पेस हॉसडॉर्फ हैं; सबसे महत्वपूर्ण संवाद यह है कि वास्तविक संख्याएँ (वास्तविक संख्याओं पर मानक मीट्रिक टोपोलॉजी के तहत) हॉसडॉर्फ़ स्पेस हैं। अधिक सामान्यतः, सभी मीट्रिक स्पेस हॉसडॉर्फ हैं। वास्तव में, विश्लेषण में उपयोग के कई स्पेस , जैसे कि टोपोलॉजिकल समूह और टोपोलॉजिकल मैनिफ़ोल्ड , की परिभाषाओं में हॉसडॉर्फ स्पेश स्पष्ट रूप से बताया गया है।
टोपोलॉजी का सरल उदाहरण जो T1 स्पेस है जिससे हॉसडॉर्फ़ अनंत समुच्चय पर परिभाषित सहपरिमित टोपोलॉजी नहीं है, जैसा कि असंख्य समुच्चय पर परिभाषित सहगणनीय टोपोलॉजी है
स्यूडोमेट्रिक स्पेस सामान्यतः हॉसडॉर्फ़ नहीं होते हैं, जिससे वे पूर्व-नियमित हैं, और विश्लेषण में उनका उपयोग सामान्यतः केवल हॉसडॉर्फ़ गेज रिक्त स्पेस के निर्माण में होता है। वास्तव में, जब विश्लेषक गैर-हॉसडॉर्फ़ स्पेस पर आगे की ओर बढ़ता हैं, तो यह अभी भी संभवतः कम से कम पूर्व-नियमित होता है, और फिर वे इसे इसके कोलमोगोरोव भागफल से परिवर्तित देते हैं, जो कि हॉसडॉर्फ़ है।[6]
इसके विपरीत, अमूर्त बीजगणित और बीजगणितीय ज्यामिति में गैर-पूर्व-नियमित रिक्त स्पेस अधिक बार पाए जाते हैं, विशेष रूप से बीजगणितीय विविधता या रिंग के स्पेक्ट्रम पर ज़ारिस्की टोपोलॉजी के रूप में। वे अंतर्ज्ञानवादी तर्क के मॉडल सिद्धांत में भी उत्पन्न होते हैं: प्रत्येक संपूर्ण हेयटिंग बीजगणित कुछ टोपोलॉजिकल स्पेस के विवृत समुच्चय का बीजगणित है, जिससे इस स्पेस को पूर्व-नियमित होने की आवश्यकता नहीं है, हॉसडॉर्फ तो बिल्कुल भी नहीं, और वास्तव में सामान्यतः दोनों में से कोई भी नहीं है। स्कॉट डोमेन की संबंधित अवधारणा में गैर-पूर्व-नियमित रिक्त स्पेस भी सम्मिलित होते हैं।
जबकि अभिसरण जाल और फिल्टर के लिए अद्वितीय सीमाओं के अस्तित्व का तात्पर्य है कि स्पेस हॉसडॉर्फ है, गैर-हॉसडॉर्फ T1 भी हैं वे स्पेस जिनमें प्रत्येक अभिसरण अनुक्रम की अद्वितीय सीमा होती है।[7] ऐसे स्पेस को यूएस स्पेस कहा जाता है।[8]
गुण
हॉसडॉर्फ़ रिक्त स्पेस के उप-स्पेस (टोपोलॉजी) और उत्पाद टोपोलॉजी हॉसडॉर्फ़ हैं, जिससे हॉसडॉर्फ़ रिक्त स्पेस के भागफल स्पेस (टोपोलॉजी) को हॉसडॉर्फ़ होने की आवश्यकता नहीं है। वास्तव में, प्रत्येक टोपोलॉजिकल स्पेस को कुछ हॉसडॉर्फ स्पेस के भागफल के रूप में अनुभूत किया जा सकता है।[9]
हॉसडॉर्फ़ रिक्त स्थान T1 हैं, जिसका अर्थ है कि प्रत्येक सिंगलटन (गणित) संवृत समुच्चय है। इसी प्रकार, पूर्व-नियमित स्थान R0. हैं। प्रत्येक हॉसडॉर्फ़ स्थान एक सोबर स्पेस है, चूँकि इसका विपरीत सामान्यतः सत्य नहीं है।
हॉसडॉर्फ़ रिक्त स्पेस की अन्य संपत्ति यह है कि प्रत्येक कॉम्पैक्ट समुच्चय संवृत समुच्चय है। गैर-हॉसडॉर्फ़ रिक्त स्पेस के लिए, यह हो सकता है कि प्रत्येक कॉम्पैक्ट समुच्चय संवृत समुच्चय हो (उदाहरण के लिए, असंख्य समुच्चय पर सह-गणनीय टोपोलॉजी) या नहीं (उदाहरण के लिए, अनंत समुच्चय पर कोफिनिट टोपोलॉजी और सिएरपिंस्की स्पेस)।
इस प्रकार से हॉसडॉर्फ़ स्पेस की परिभाषा में व्यक्त किया गया है कि बिंदुओं को समीप द्वारा अलग किया जा सकता है। यह पता चला है कि इसका तात्पर्य कुछ ऐसा है जोकी प्रतीत होता है कि अधिक कठोर है: हॉसडॉर्फ अंतरिक्ष में असंयुक्त कॉम्पैक्ट समुच्चय की प्रत्येक जोड़ी को समीप द्वारा भी अलग किया जा सकता है,[10] दूसरे शब्दों में, समुच्चय का समीप और दूसरे समुच्चय का समीप होता है, जैसे कि दोनों समीप असंयुक्त होते हैं। यह सामान्य नियम का उदाहरण माना जाता है कि कॉम्पैक्ट समुच्चय सदैव बिंदुओं की तरह व्यवहार करते हैं।
किन्तु स्पेस रूप से सघन स्पेस पूर्व-नियमित स्पेस पूर्ण रूप से नियमित स्पेस होते है।[11][12] और सघन स्पेस पूर्व-नियमित स्पेस सामान्य स्पेस हैं,[13] जिसका अर्थ है कि वे उरीसोहन की लेम्मा और टिट्ज़ विस्तार प्रमेय को संतुष्ट करते हैं और स्पेस रूप से सीमित विवृत आवरणों के अधीन एकता का विभाजन करते हैं। इन कथनों के हॉसडॉर्फ़ संस्करण हैं: प्रत्येक स्पेस रूप से कॉम्पैक्ट हॉसडॉर्फ़ स्पेस टाइकोनोफ़ स्पेस है, और प्रत्येक कॉम्पैक्ट हॉसडॉर्फ़ स्पेस सामान्य हॉसडॉर्फ़ है।
इस प्रकार से निम्नलिखित परिणाम हॉसडॉर्फ स्पेस से आने-जाने वाले मानचित्रों (निरंतर (टोपोलॉजी) और अन्यथा) के संबंध में कुछ विधियों में गुण सम्मिलित किये जाते हैं।
मान लीजिये एक सतत फलन बनें और मान लें हॉसडॉर्फ है. फिर किसी फ़ंक्शन का ग्राफ़, , इसके कर्नेल को का उपसमुच्चय माना जाता है.
मान लीजिये एक फलन हो और चलो किसी फ़ंक्शन का उसका कर्नेल को जिसे उप-स्पेस के रूप में माना जाता है.
- यदि निरंतर है और तो हॉसडॉर्फ है एक संवृत समुच्चय है.
- यदि एक विवृत मानचित्र प्रक्षेपण है और तो यह संवृत समुच्चय है हॉसडॉर्फ है.
- यदि तो सतत, विवृत प्रक्षेपण (अर्थात विवृत भागफल मानचित्र) है हॉसडॉर्फ़ है यदि और केवल यदि एक संवृत समुच्चय है.
यदि सतत मानचित्र हैं और हॉसडॉर्फ़ तो तुल्यकारक (गणित) है संवृत समुच्चय है. यह इस प्रकार है कि यदि हॉसडॉर्फ़ है और और के सघन (टोपोलॉजी) उपसमुच्चय पर सहमत हों तो . दूसरे शब्दों में, हॉसडॉर्फ़ स्पेस में निरंतर फलन घने उपसमुच्चय पर उनके मूल्यों द्वारा निर्धारित किए जाते हैं।
मान लीजिये एक संवृत मानचित्र प्रक्षेपण इस प्रकार हो सभी के लिए कॉम्पैक्ट जगह है . तो यदि हॉसडॉर्फ़ वैसा ही है .
मान लीजिये भागफल मानचित्र (टोपोलॉजी) के साथ बनें एक कॉम्पैक्ट हॉसडॉर्फ़ स्पेस । इसके अतिरिक्त निम्न समान हैं:
- हॉसडॉर्फ है.
- एक संवृत मानचित्र है.
- एक संवृत समुच्चय है.
पूर्वनियमितता बनाम नियमितता
सभी नियमित स्पेस पूर्व-नियमित हैं, जैसे सभी हॉसडॉर्फ़ स्पेस होते हैं। और टोपोलॉजिकल रिक्त स्पेस के लिए कई परिणाम होते हैं जो नियमित और हॉसडॉर्फ रिक्त स्पेस दोनों के लिए मान्य हैं।
किन्तु अधिकांश समय, ये परिणाम सभी पूर्व-नियमित स्पेस के लिए मान्य होते हैं; उन्हें नियमित और हॉसडॉर्फ़ स्पेस के लिए अलग से सूचीबद्ध किया गया था क्योंकि पूर्व-नियमित रिक्त स्पेस का विचार बाद में आया था।
इस प्रकार से दूसरी ओर, वे परिणाम जो वास्तव में नियमितता के बारे में हैं, सामान्यतः गैर-नियमित हॉसडॉर्फ स्पेस पर भी प्रयुक्त नहीं होते हैं।
किन्तु ऐसी कई स्थितियाँ होती हैं जहाँ टोपोलॉजिकल स्पेस की और संकेत (जैसे स्पेस सघनता या स्पेस कॉम्पैक्टनेस) नियमितता का अर्थ प्रस्तुत करेगी यदि पूर्व-नियमितता संतुष्ट होते है। तो ऐसी स्थितियाँ सदैव दो संस्करणों में पाई जाती हैं: नियमित संस्करण और हॉसडॉर्फ संस्करण। चूँकि हॉसडॉर्फ़ स्पेस , सामान्य तौर पर, नियमित नहीं हैं, हॉसडॉर्फ़ स्पेस जो स्पेस रूप से कॉम्पैक्ट भी है (कहते हैं) नियमित होगा, क्योंकि कोई भी हॉसडॉर्फ़ स्पेस पूर्व-नियमित है। इस प्रकार निश्चित दृष्टिकोण से, यह वास्तव में नियमितताके अतिरिक्त पूर्व-नियमितता है, जो इन स्थितियों में महत्वपुर्ण होती है। चूँकि , परिभाषाएँ सामान्यतः अभी भी नियमितता के संदर्भ में व्यक्त की जाती हैं, क्योंकि यह स्पेश पूर्व-नियमितता से श्रेष्ठ जानी जाती है।
इस प्रकार से इस मुद्दे पर अधिक जानकारी के लिए पृथक्करण सिद्धांतों के इतिहास देखे गए है।
प्रकार
हॉसडॉर्फ़, अलग, और पूर्व-नियमित शब्द को समान रिक्त स्पेस , कॉची रिक्त स्पेस और अभिसरण रिक्त स्पेस जैसे टोपोलॉजिकल रिक्त स्पेस पर ऐसे प्रकार पर भी प्रयुक्त किया जा सकता है। इन सभी उदाहरणों में अवधारणा को एकत्रित करने वाली विशेषता यह है किनेट्स और फिल्टर (जब वे उपस्तिथ होते हैं) की सीमाएं अद्वितीय होती हैं (अलग-अलग स्पेस के लिए) या टोपोलॉजिकल अविभाज्यता तक (पूर्व नियमित स्पेस के लिए) अद्वितीय होती हैं।
जैसा कि यह पता चला है, समान स्पेस , और अधिक सामान्यतः कॉची स्पेस , सदैव अनियमित होते हैं, इसलिए इन स्तिथियों में हॉसडॉर्फ स्पेश T0 तक कम हो जाती है और ये वे स्पेस भी हैं जिनमें पूर्णता (टोपोलॉजी) समझ में आती है, और हॉसडॉर्फनेस इन स्तिथियों में पूर्णता का प्राकृतिक साथी है। विशेष रूप से, स्पेस तभी पूर्ण होता है जब प्रत्येक कॉचीनेट्स में कम से कम सीमा होती है, जबकि स्पेस हॉसडॉर्फ होता है यदि और केवल यदि प्रत्येक कॉचीनेट्स में अधिकतम सीमा होती है (क्योंकि केवल कॉचीनेट्स में पहले स्पेस पर सीमाएं हो सकती हैं)।
फलन के बीजगणित
कॉम्पैक्ट हॉसडॉर्फ स्पेस पर निरंतर (वास्तविक या जटिल) फलन का बीजगणित क्रमविनिमेय C*-बीजगणित है, और इसके विपरीत बानाच-स्टोन प्रमेय द्वारा कोई व्यक्ति निरंतर फलन के बीजगणित के बीजगणितीय गुणों से अंतरिक्ष की टोपोलॉजी को पुनर्प्राप्त कर सकता है। यह गैर-अनुवांशिक ज्यामिति की ओर ले जाता है, जहां कोई गैर-अनुवांशिक C*-बीजगणित को गैर-अनुवांशिक स्पेस पर फलन के बीजगणित का प्रतिनिधित्व करने वाला माना जाता है।
अकादमिक हियूमर
- हॉसडॉर्फ़ की स्पेश को इस वाक्य से दर्शाया गया है कि हॉसडॉर्फ़ स्पेस में किन्हीं दो बिंदुओं को विवृत समुच्चय द्वारा दूसरे से दूर रखा जा सकता है।[14]
- यूनिवर्सिटी बॉन के गणित संस्पेस में, जिसमें फेलिक्स हॉसडॉर्फ़ ने शोध किया और व्याख्यान दिया, निश्चित कमरा है जिसे हॉसडॉर्फ़-राउम नामित किया गया है। यह वाक्य है, क्योंकि जर्मन में राउम का अर्थ कमरा और स्पेस दोनों होता है।
यह भी देखें
- टोपोलॉजिकल स्पेस जैसे कि प्रत्येक एंडोमोर्फिज्म का एक निश्चित-बिंदु स्पेश , होता है, एक हॉसडॉर्फ स्पेस X जैसे कि प्रत्येक निरंतर फलन f : X → X का एक निश्चित बिंदु होता है।
- स्थानीय रूप से हॉसडॉर्फ़ स्पेश
- गैर-हॉसडॉर्फ़ मैनिफोल्ड
- क्वासिटोपोलॉजिकल स्पेस
- पृथक्करण स्वयंसिद्ध – Axioms in topology defining notions of "separation"
- दुर्बल हॉसडॉर्फ स्पेस
टिप्पणियाँ
- ↑ "हॉसडॉर्फ़ अंतरिक्ष परिभाषा और अर्थ". Retrieved 15 June 2022.
- ↑ "Separation axioms in nLab".
- ↑ "nLab में पृथक्करण अभिगृहीत". ncatlab.org. Retrieved 2020-01-01.
- ↑ 4.0 4.1 Willard 2004, pp. 86–87
- ↑ Bourbaki 1966, p. 75
- ↑ See for instance Lp space#Lp spaces and Lebesgue integrals, Banach–Mazur compactum etc.
- ↑ van Douwen, Eric K. (1993). "An anti-Hausdorff Fréchet space in which convergent sequences have unique limits". Topology and Its Applications. 51 (2): 147–158. doi:10.1016/0166-8641(93)90147-6.
- ↑ Wilansky, Albert (1967). "Between T1 and T2". The American Mathematical Monthly. 74 (3): 261–266. doi:10.2307/2316017. JSTOR 2316017.
- ↑ Shimrat, M. (1956). "अपघटन स्थान और पृथक्करण गुण". Quart. J. Math. 2: 128–129. doi:10.1093/qmath/7.1.128.
- ↑ Willard 2004, pp. 124
- ↑ Schechter 1996, 17.14(d), p. 460.
- ↑ "स्थानीय रूप से कॉम्पैक्ट प्रो रेगुलर स्पेस पूरी तरह से नियमित है". Mathematics Stack Exchange.
- ↑ Schechter 1996, 17.7(g), p. 457.
- ↑ Adams, Colin; Franzosa, Robert (2008). Introduction to Topology: Pure and Applied. Pearson Prentice Hall. p. 42. ISBN 978-0-13-184869-6.
संदर्भ
- Arkhangelskii, A.V.; Pontryagin, L.S. (1990). General Topology I. Springer. ISBN 3-540-18178-4.
- Bourbaki (1966). Elements of Mathematics: General Topology. Addison-Wesley.
- "Hausdorff space", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Schechter, Eric (1996). Handbook of Analysis and Its Foundations. San Diego, CA: Academic Press. ISBN 978-0-12-622760-4. OCLC 175294365.
- Willard, Stephen (2004). General Topology. Dover. ISBN 0-486-43479-6.