सतत तरंगिका परिवर्तन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Integral transform}}
{{Short description|Integral transform}}


[[File:Continuous wavelet transform.svg|thumb|320px|right|आवृति ब्रेकडाउन सिग्नल का निरंतर तरंगिका परिवर्तन। 5 लुप्त क्षणों के साथ प्रयुक्त [[सिम्लेट]]।]]गणित में निरंतर तरंगिका परिवर्तन (सीडब्ल्यूटी) एक औपचारिक (अथार्त, गैर-संख्यात्मक) उपकरण है जो तरंगिकाओं के अनुवाद और स्केल पैरामीटर को निरन्तर भिन्न होने देकर सिग्नल का एक पूर्ण प्रतिनिधित्व प्रदान करता है।
[[File:Continuous wavelet transform.svg|thumb|320px|right|आवृति ब्रेकडाउन संकेत का सतत तरंगिका परिवर्तन 5 लुप्त क्षणों के साथ प्रयुक्त [[सिम्लेट]]।]]गणित में '''सतत तरंगिका परिवर्तन''' (सीडब्ल्यूटी) एक औपचारिक (अथार्त, गैर-संख्यात्मक) उपकरण है जो तरंगिकाओं के अनुवाद और मापदंड पैरामीटर को निरन्तर भिन्न होने देकर संकेत का एक पूर्ण प्रतिनिधित्व प्रदान करता है।
 
किसी फलन <math>x(t)</math> का स्केल (a>0) <math>a\in\mathbb{R^{+*}}</math> और ट्रांसलेशनल वैल्यू <math>b\in\mathbb{R}</math> पर निरंतर तरंगिका रूपांतरण है निम्नलिखित अभिन्न द्वारा व्यक्त किया गया है
 
'''लना में उच्च संपीड़न अनुपात पर चित्र गुणवत्ता में महत्वपूर्ण सुधार प्रदान करता है। चूंकि तरंगिका परिवर्तन में जटिल जानकारी और पैटर्न को प्राथमिक रूपों में विघटित करने की क्षमता होती है                                                                      ,'''


किसी फलन <math>x(t)</math> का मापदंड (a>0) <math>a\in\mathbb{R^{+*}}</math> और अनुवादात्मक मान  <math>b\in\mathbb{R}</math> पर सतत तरंगिका रूपांतरण है निम्नलिखित अभिन्न द्वारा व्यक्त किया गया है
:<math display="block">X_w(a,b)=\frac{1}{|a|^{1/2}} \int_{-\infty}^\infty x(t)\overline\psi\left(\frac{t-b}{a}\right)\, dt</math>
:<math display="block">X_w(a,b)=\frac{1}{|a|^{1/2}} \int_{-\infty}^\infty x(t)\overline\psi\left(\frac{t-b}{a}\right)\, dt</math>
जहाँ <math>\psi(t)</math> समय डोमेन और आवृत्ति डोमेन दोनों में एक सतत कार्य है जिसे मदर वेवलेट कहा जाता है और ओवरलाइन जटिल संयुग्म के संचालन का प्रतिनिधित्व करता है। मदर वेवलेट का मुख्य उद्देश्य डॉटर वेवलेट उत्पन्न करने के लिए एक स्रोत फलन प्रदान करना है जो कि केवल मदर वेवलेट के अनुवादित और स्केल किए गए संस्करण हैं। मूल सिग्नल को पुनः प्राप्त करने के लिए <math>x(t)</math>, पहले व्युत्क्रम निरंतर तरंगिका परिवर्तन का लाभ उठाया जा सकता है।
जहाँ <math>\psi(t)</math> समय डोमेन और आवृत्ति डोमेन दोनों में एक सतत कार्य है जिसे मदर वेवलेट कहा जाता है और ओवरलाइन जटिल संयुग्म के संचालन का प्रतिनिधित्व करता है। मदर वेवलेट का मुख्य उद्देश्य डॉटर वेवलेट उत्पन्न करने के लिए एक स्रोत फलन प्रदान करना है जो कि केवल मदर वेवलेट के अनुवादित और मापदंड किए गए संस्करण हैं। मूल संकेत को पुनः प्राप्त करने के लिए <math>x(t)</math>, पहले व्युत्क्रम सतत तरंगिका परिवर्तन का लाभ उठाया जा सकता है।


:<math>x(t)=C_\psi^{-1}\int_{0}^{\infty}\int_{-\infty}^{\infty} X_w(a,b)\frac{1}{|a|^{1/2}}\tilde\psi\left(\frac{t-b}{a}\right)\, db\ \frac{da}{a^2}</math>
:<math>x(t)=C_\psi^{-1}\int_{0}^{\infty}\int_{-\infty}^{\infty} X_w(a,b)\frac{1}{|a|^{1/2}}\tilde\psi\left(\frac{t-b}{a}\right)\, db\ \frac{da}{a^2}</math>
Line 20: Line 17:
परंपरागत रूप से, इस स्थिरांक को तरंगिका स्वीकार्य स्थिरांक कहा जाता है। एक तरंगिका जिसका स्वीकार्य स्थिरांक संतुष्ट करता है
परंपरागत रूप से, इस स्थिरांक को तरंगिका स्वीकार्य स्थिरांक कहा जाता है। एक तरंगिका जिसका स्वीकार्य स्थिरांक संतुष्ट करता है
:<math>0<C_\psi <\infty</math>
:<math>0<C_\psi <\infty</math>
स्वीकार्य तरंगिका कहलाती है। एक स्वीकार्य तरंगिका का तात्पर्य है कि <math>\hat{\psi}(0) = 0</math> जिससे एक स्वीकार्य तरंगिका को शून्य में एकीकृत होना चाहिए। मूल सिग्नल <math>x(t)</math> को पुनर्प्राप्त करने के लिए, दूसरे व्युत्क्रम निरंतर तरंगिका परिवर्तन का उपयोग किया जा सकता है।
स्वीकार्य तरंगिका कहलाती है। एक स्वीकार्य तरंगिका का तात्पर्य है कि <math>\hat{\psi}(0) = 0</math> जिससे एक स्वीकार्य तरंगिका को शून्य में एकीकृत होना चाहिए। मूल संकेत <math>x(t)</math> को पुनर्प्राप्त करने के लिए, दूसरे व्युत्क्रम सतत तरंगिका परिवर्तन का उपयोग किया जा सकता है।
:<math>x(t)=\frac{1}{2\pi\overline\hat{\psi}(1)}\int_{0}^{\infty}\int_{-\infty}^{\infty} \frac{1}{a^2}X_w(a,b)\exp\left(i\frac{t-b}{a}\right)\, db\ da</math>
:<math>x(t)=\frac{1}{2\pi\overline\hat{\psi}(1)}\int_{0}^{\infty}\int_{-\infty}^{\infty} \frac{1}{a^2}X_w(a,b)\exp\left(i\frac{t-b}{a}\right)\, db\ da</math>
यह व्युत्क्रम परिवर्तन बताता है कि एक तरंगिका को इस प्रकार परिभाषित किया जाना चाहिए
यह व्युत्क्रम परिवर्तन बताता है कि एक तरंगिका को इस प्रकार परिभाषित किया जाना चाहिए
:<math>\psi(t)=w(t)\exp(it) </math>
:<math>\psi(t)=w(t)\exp(it) </math>
जहाँ <math>w(t)</math> एक खिड़की है. ऐसी परिभाषित तरंगिका को विश्लेषण तरंगिका कहा जा सकता है, क्योंकि यह समय-आवृत्ति विश्लेषण को स्वीकार करती है। एक विश्लेषणात्मक तरंगिका का स्वीकार्य होना अनावश्यक है।
जहाँ <math>w(t)</math> एक विंडो है. ऐसी परिभाषित तरंगिका को विश्लेषण तरंगिका कहा जा सकता है, क्योंकि यह समय-आवृत्ति विश्लेषण को स्वीकार करती है। एक विश्लेषणात्मक तरंगिका का स्वीकार्य होना अनावश्यक है।


==पैमाना कारक==
==मापदंड  कारक==
[[File:Continuous wavelet transform.gif|thumb|300px|right]]स्केल कारक <math>a</math> सिग्नल को या तो फैलाता है या संपीड़ित करता है। जब स्केल कारक अपेक्षाकृत कम होता है, तो सिग्नल अधिक सिकुड़ जाता है जिसके परिणामस्वरूप परिणामी ग्राफ अधिक विस्तृत होता है। चूँकि कमी यह है कि लो स्केल कारक सिग्नल की पूरी अवधि तक नहीं रहता है। दूसरी ओर जब स्केल कारक अधिक होता है, तो सिग्नल खिंच जाता है जिसका अर्थ है कि परिणामी ग्राफ़ कम विवरण में प्रस्तुत किया जाएगा। फिर भी, यह सामान्यतः सिग्नल की पूरी अवधि तक रहता है।
[[File:Continuous wavelet transform.gif|thumb|300px|right]]मापदंड कारक <math>a</math> संकेत को या तो फैलाता है या संपीड़ित करता है। जब मापदंड कारक अपेक्षाकृत कम होता है, तो संकेत अधिक सिकुड़ जाता है जिसके परिणामस्वरूप परिणामी ग्राफ अधिक विस्तृत होता है। चूँकि कमी यह है कि निम्न परिमाण  कारक संकेत की पूरी अवधि तक नहीं रहता है। दूसरी ओर जब मापदंड कारक अधिक होता है, तो संकेत खिंच जाता है जिसका अर्थ है कि परिणामी ग्राफ़ कम विवरण में प्रस्तुत किया जाएगा। फिर भी, यह सामान्यतः संकेत की पूरी अवधि तक रहता है।


==निरंतर तरंगिका परिवर्तन गुण==
==सतत तरंगिका परिवर्तन गुण==
परिभाषा में, निरंतर तरंगिका परिवर्तन, मदर तरंगिका द्वारा उत्पन्न कार्यों के एक सेट के साथ इनपुट डेटा अनुक्रम का एक कनवल्शन है। तीव्र फूरियर रूपांतरण (एफएफटी) एल्गोरिदम का उपयोग करके कनवल्शन की गणना की जा सकती है। सामान्यतः आउटपुट <math>X_w(a,b)</math> एक वास्तविक मूल्यवान फलन होता है, सिवाय इसके कि जब मदर वेवलेट जटिल हो। एक जटिल मातृ तरंगिका निरंतर तरंगिका परिवर्तन को एक जटिल मूल्यवान फलन में परिवर्तित कर देगी। निरंतर तरंगिका परिवर्तन के पावर स्पेक्ट्रम को <math>\frac{1}{a}\cdot|X_w(a,b)|^2</math> द्वारा दर्शाया जा सकता है।<ref>{{cite journal |last1=Torrence |first1=Christopher |last2=Compo |first2=Gilbert |title=वेवलेट विश्लेषण के लिए एक व्यावहारिक मार्गदर्शिका|journal=Bulletin of the American Meteorological Society |date=1998 |volume=79 |issue=1 |pages=61–78|doi=10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 |bibcode=1998BAMS...79...61T |s2cid=14928780 |doi-access=free }}</ref><ref>{{cite journal |last1=Liu |first1=Yonggang |title=वेवलेट पावर स्पेक्ट्रम में पूर्वाग्रह का सुधार|journal=Journal of Atmospheric and Oceanic Technology |date=December 2007 |volume=24 |issue=12 |pages=2093–2102|doi=10.1175/2007JTECHO511.1 |bibcode=2007JAtOT..24.2093L |doi-access=free }}</ref>
परिभाषा में, सतत तरंगिका परिवर्तन, मदर तरंगिका द्वारा उत्पन्न कार्यों के एक सेट के साथ इनपुट डेटा अनुक्रम का एक कनवल्शन है। तीव्र फूरियर रूपांतरण (एफएफटी) एल्गोरिदम का उपयोग करके कनवल्शन की गणना की जा सकती है। सामान्यतः आउटपुट <math>X_w(a,b)</math> एक वास्तविक मूल्यवान फलन होता है, सिवाय इसके कि जब मदर वेवलेट जटिल होता है। एक जटिल मातृ तरंगिका सतत तरंगिका परिवर्तन को एक जटिल मूल्यवान फलन में परिवर्तित कर देगी। सतत तरंगिका परिवर्तन के पावर स्पेक्ट्रम को <math>\frac{1}{a}\cdot|X_w(a,b)|^2</math> द्वारा दर्शाया जा सकता है।<ref>{{cite journal |last1=Torrence |first1=Christopher |last2=Compo |first2=Gilbert |title=वेवलेट विश्लेषण के लिए एक व्यावहारिक मार्गदर्शिका|journal=Bulletin of the American Meteorological Society |date=1998 |volume=79 |issue=1 |pages=61–78|doi=10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 |bibcode=1998BAMS...79...61T |s2cid=14928780 |doi-access=free }}</ref><ref>{{cite journal |last1=Liu |first1=Yonggang |title=वेवलेट पावर स्पेक्ट्रम में पूर्वाग्रह का सुधार|journal=Journal of Atmospheric and Oceanic Technology |date=December 2007 |volume=24 |issue=12 |pages=2093–2102|doi=10.1175/2007JTECHO511.1 |bibcode=2007JAtOT..24.2093L |doi-access=free }}</ref>
[[File:Wavelet scale sweep for FM signal.gif|thumb|300px|मॉरलेट वेवलेट|मॉरलेट वेवलेट को बदलने के प्रभाव की कल्पना करना <math>\sigma</math> पैरामीटर, जो मूल समय-श्रृंखला और [[फूरियर रूपांतरण]] के बीच अंतरण करता है। यहां, एक [[आवृति का उतार - चढ़ाव]]|फ़्रीक्वेंसी-मॉड्यूलेटेड टोन (प्लस शोर) का विश्लेषण किया जाता है; <math>1/\sigma</math> एकता के चरणों में 1 से 200 तक समायोजित किया जाता है।]]
[[File:Wavelet scale sweep for FM signal.gif|thumb|300px|मॉरलेट वेवलेट|मॉरलेट वेवलेट को बदलने के प्रभाव की कल्पना करना <math>\sigma</math> पैरामीटर, जो मूल समय-श्रृंखला और [[फूरियर रूपांतरण]] के बीच अंतरण करता है। यहां, एक [[आवृति का उतार - चढ़ाव]]|फ़्रीक्वेंसी-मॉड्यूलेटेड टोन (प्लस शोर) का विश्लेषण किया जाता है; <math>1/\sigma</math> एकता के चरणों में 1 से 200 तक समायोजित किया जाता है।]]


==तरंगिका परिवर्तन के अनुप्रयोग==
==तरंगिका परिवर्तन के अनुप्रयोग==
तरंगिका परिवर्तन के सबसे लोकप्रिय अनुप्रयोगों में से एक छवि संपीड़न है। छवि संपीड़न में वेवलेट-आधारित कोडिंग का उपयोग करने का लाभ यह है कि यह पारंपरिक तकनीकों की तुलना में उच्च संपीड़न अनुपात पर चित्र गुणवत्ता में महत्वपूर्ण सुधार प्रदान करता है। चूंकि तरंगिका परिवर्तन में जटिल जानकारी और पैटर्न को प्राथमिक रूपों में विघटित करने की क्षमता होती है, इसलिए इसका उपयोग सामान्यतः ध्वनिकी प्रसंस्करण और पैटर्न पहचान में किया जाता है, किंतु इसे तात्कालिक आवृत्ति अनुमानक के रूप में भी प्रस्तावित किया गया है।<ref>{{Cite journal|last1=Sejdic|first1=E.|last2=Djurovic|first2=I.|last3=Stankovic|first3=L.|date=August 2008|title=तात्कालिक आवृत्ति अनुमानक के रूप में स्कैलोग्राम का मात्रात्मक प्रदर्शन विश्लेषण|journal=IEEE Transactions on Signal Processing|volume=56|issue=8|pages=3837–3845|doi=10.1109/TSP.2008.924856|bibcode=2008ITSP...56.3837S|s2cid=16396084|issn=1053-587X}}</ref> इसके अतिरिक्त, तरंगिका परिवर्तन को निम्नलिखित वैज्ञानिक अनुसंधान क्षेत्रों में प्रयुक्त किया जा सकता है: किनारे और कोने का पता लगाना है और आंशिक अंतर समीकरण समाधान, क्षणिक पता लगाना, फिल्टर डिजाइन, [[इलेक्ट्रोकार्डियोग्राम]] (ईसीजी) विश्लेषण बनावट विश्लेषण, व्यापार सूचना विश्लेषण और चाल विश्लेषण।<ref>[https://www.youtube.com/watch?v=DTpEVQSEBBk "Novel method for stride length estimation with body area network accelerometers"], ''IEEE BioWireless 2011'', pp. 79–82</ref> मिर्गी के परिणामस्वरूप होने वाली मिर्गी की स्पाइक्स की पहचान करने के लिए [[इलेक्ट्रोएन्सेफलोग्राफी]] (ईईजी) डेटा विश्लेषण में वेवलेट रूपांतरण का भी उपयोग किया जा सकता है।<ref>{{Cite journal|last1=Iranmanesh|first1=Saam|last2=Rodriguez-Villegas|first2=Esther|author-link2=Esther Rodriguez-Villegas|year=2017|title=A 950 nW Analog-Based Data Reduction Chip for Wearable EEG Systems in Epilepsy|journal=IEEE Journal of Solid-State Circuits|volume=52|issue=9|pages=2362–2373|doi=10.1109/JSSC.2017.2720636|bibcode=2017IJSSC..52.2362I|hdl-access=free|hdl=10044/1/48764|s2cid=24852887}}</ref> भूस्खलन की समय श्रृंखला की व्याख्या के लिए वेवलेट रूपांतरण का भी सफलतापूर्वक उपयोग किया गया है<ref>{{Cite journal|last1=Tomás|first1=R.|last2=Li|first2=Z.|last3=Lopez-Sanchez|first3=J. M.|last4=Liu|first4=P.|last5=Singleton|first5=A.|date=2016-06-01|title=Using wavelet tools to analyse seasonal variations from InSAR time-series data: a case study of the Huangtupo landslide|journal=Landslides|language=en|volume=13|issue=3|pages=437–450|doi=10.1007/s10346-015-0589-y|issn=1612-510X|hdl=10045/62160|s2cid=129736286|url=http://rua.ua.es/dspace/bitstream/10045/62160/5/2016_Tomas_etal_Landslides_rev.pdf|hdl-access=free}}</ref> और महामारी की बदलती आवधिकता की गणना के लिए उपयोग किया जाता है।<ref>{{Citation |last=von Csefalvay |first=Chris |title=Temporal dynamics of epidemics |date=2023 |url=https://linkinghub.elsevier.com/retrieve/pii/B9780323953894000165 |work=Computational Modeling of Infectious Disease |pages=217–255 |publisher=Elsevier |language=en |doi=10.1016/b978-0-32-395389-4.00016-5 |isbn=978-0-323-95389-4 |access-date=2023-02-27}}</ref>
तरंगिका परिवर्तन के सबसे लोकप्रिय अनुप्रयोगों में से एक छवि संपीड़न है। छवि संपीड़न में वेवलेट-आधारित कोडिंग का उपयोग करने का लाभ यह है कि यह पारंपरिक तकनीकों की तुलना में उच्च संपीड़न अनुपात पर चित्र गुणवत्ता में महत्वपूर्ण सुधार प्रदान करता है। चूंकि तरंगिका परिवर्तन में जटिल जानकारी और पैटर्न को प्राथमिक रूपों में विघटित करने की क्षमता होती है, इसलिए इसका उपयोग सामान्यतः ध्वनिकी प्रसंस्करण और पैटर्न पहचान में किया जाता है, किंतु इसे तात्कालिक आवृत्ति अनुमानक के रूप में भी प्रस्तावित किया गया है।<ref>{{Cite journal|last1=Sejdic|first1=E.|last2=Djurovic|first2=I.|last3=Stankovic|first3=L.|date=August 2008|title=तात्कालिक आवृत्ति अनुमानक के रूप में स्कैलोग्राम का मात्रात्मक प्रदर्शन विश्लेषण|journal=IEEE Transactions on Signal Processing|volume=56|issue=8|pages=3837–3845|doi=10.1109/TSP.2008.924856|bibcode=2008ITSP...56.3837S|s2cid=16396084|issn=1053-587X}}</ref> इसके अतिरिक्त तरंगिका परिवर्तन को निम्नलिखित वैज्ञानिक अनुसंधान क्षेत्रों में प्रयुक्त किया जा सकता है: किनारे और कोने का पता लगाना है और आंशिक अंतर समीकरण समाधान, क्षणिक पता लगाना, फिल्टर डिजाइन, [[इलेक्ट्रोकार्डियोग्राम]] (ईसीजी) विश्लेषण बनावट विश्लेषण, व्यापार सूचना विश्लेषण और चाल विश्लेषण<ref>[https://www.youtube.com/watch?v=DTpEVQSEBBk "Novel method for stride length estimation with body area network accelerometers"], ''IEEE BioWireless 2011'', pp. 79–82</ref> एपिलेप्टिक के परिणामस्वरूप होने वाली एपिलेप्टिक की स्पाइक्स की पहचान करने के लिए [[इलेक्ट्रोएन्सेफलोग्राफी]] (ईईजी) डेटा विश्लेषण में वेवलेट रूपांतरण का भी उपयोग किया जा सकता है।<ref>{{Cite journal|last1=Iranmanesh|first1=Saam|last2=Rodriguez-Villegas|first2=Esther|author-link2=Esther Rodriguez-Villegas|year=2017|title=A 950 nW Analog-Based Data Reduction Chip for Wearable EEG Systems in Epilepsy|journal=IEEE Journal of Solid-State Circuits|volume=52|issue=9|pages=2362–2373|doi=10.1109/JSSC.2017.2720636|bibcode=2017IJSSC..52.2362I|hdl-access=free|hdl=10044/1/48764|s2cid=24852887}}</ref> भूस्खलन की समय श्रृंखला की व्याख्या के लिए वेवलेट रूपांतरण का भी सफलतापूर्वक उपयोग किया गया है<ref>{{Cite journal|last1=Tomás|first1=R.|last2=Li|first2=Z.|last3=Lopez-Sanchez|first3=J. M.|last4=Liu|first4=P.|last5=Singleton|first5=A.|date=2016-06-01|title=Using wavelet tools to analyse seasonal variations from InSAR time-series data: a case study of the Huangtupo landslide|journal=Landslides|language=en|volume=13|issue=3|pages=437–450|doi=10.1007/s10346-015-0589-y|issn=1612-510X|hdl=10045/62160|s2cid=129736286|url=http://rua.ua.es/dspace/bitstream/10045/62160/5/2016_Tomas_etal_Landslides_rev.pdf|hdl-access=free}}</ref> और महामारी की बदलती आवधिकता की गणना के लिए उपयोग किया जाता है।<ref>{{Citation |last=von Csefalvay |first=Chris |title=Temporal dynamics of epidemics |date=2023 |url=https://linkinghub.elsevier.com/retrieve/pii/B9780323953894000165 |work=Computational Modeling of Infectious Disease |pages=217–255 |publisher=Elsevier |language=en |doi=10.1016/b978-0-32-395389-4.00016-5 |isbn=978-0-323-95389-4 |access-date=2023-02-27}}</ref>


सतत तरंगिका रूपांतरण (सीडब्ल्यूटी) दोलन संकेतों के अवमंदन अनुपात (उदाहरण के लिए गतिशील प्रणालियों में अवमंदन की पहचान) को निर्धारित करने में बहुत कुशल है। सीडब्ल्यूटी सिग्नल में शोर के प्रति भी बहुत प्रतिरोधी है।<ref>Slavic, J and Simonovski, I and M. Boltezar, [http://lab.fs.uni-lj.si/ladisk/?what=abstract&ID=11 Damping identification using a continuous wavelet transform: application to real data]</ref>
सतत तरंगिका रूपांतरण (सीडब्ल्यूटी) दोलन संकेतों के अवमंदन अनुपात (उदाहरण के लिए गतिशील प्रणालियों में अवमंदन की पहचान) को निर्धारित करने में बहुत कुशल है। सीडब्ल्यूटी संकेत में ध्वनि के प्रति भी बहुत प्रतिरोधी है।<ref>Slavic, J and Simonovski, I and M. Boltezar, [http://lab.fs.uni-lj.si/ladisk/?what=abstract&ID=11 Damping identification using a continuous wavelet transform: application to real data]</ref>




Line 64: Line 61:
* {{YouTube|jnxqHcObNK4|Wavelets: a mathematical microscope}}
* {{YouTube|jnxqHcObNK4|Wavelets: a mathematical microscope}}


{{DEFAULTSORT:Continuous Wavelet Transform}}[[Category: सतत कार्यों का सिद्धांत]] [[Category: अभिन्न परिवर्तन]]
{{DEFAULTSORT:Continuous Wavelet Transform}}


[[fr:Ondelette#Transformée en ondelettes continue]]
[[fr:Ondelette#Transformée en ondelettes continue]]


 
[[Category:All articles with dead external links|Continuous Wavelet Transform]]
 
[[Category:Articles with dead external links from August 2017|Continuous Wavelet Transform]]
[[Category: Machine Translated Page]]
[[Category:Articles with permanently dead external links|Continuous Wavelet Transform]]
[[Category:Created On 03/07/2023]]
[[Category:CS1 English-language sources (en)]]
[[Category:Created On 03/07/2023|Continuous Wavelet Transform]]
[[Category:Lua-based templates|Continuous Wavelet Transform]]
[[Category:Machine Translated Page|Continuous Wavelet Transform]]
[[Category:Pages with script errors|Continuous Wavelet Transform]]
[[Category:Templates Vigyan Ready|Continuous Wavelet Transform]]
[[Category:Templates that add a tracking category|Continuous Wavelet Transform]]
[[Category:Templates that generate short descriptions|Continuous Wavelet Transform]]
[[Category:Templates using TemplateData|Continuous Wavelet Transform]]
[[Category:अभिन्न परिवर्तन|Continuous Wavelet Transform]]
[[Category:सतत कार्यों का सिद्धांत|Continuous Wavelet Transform]]

Latest revision as of 18:59, 13 July 2023

आवृति ब्रेकडाउन संकेत का सतत तरंगिका परिवर्तन 5 लुप्त क्षणों के साथ प्रयुक्त सिम्लेट

गणित में सतत तरंगिका परिवर्तन (सीडब्ल्यूटी) एक औपचारिक (अथार्त, गैर-संख्यात्मक) उपकरण है जो तरंगिकाओं के अनुवाद और मापदंड पैरामीटर को निरन्तर भिन्न होने देकर संकेत का एक पूर्ण प्रतिनिधित्व प्रदान करता है।

किसी फलन का मापदंड (a>0) और अनुवादात्मक मान पर सतत तरंगिका रूपांतरण है निम्नलिखित अभिन्न द्वारा व्यक्त किया गया है

जहाँ समय डोमेन और आवृत्ति डोमेन दोनों में एक सतत कार्य है जिसे मदर वेवलेट कहा जाता है और ओवरलाइन जटिल संयुग्म के संचालन का प्रतिनिधित्व करता है। मदर वेवलेट का मुख्य उद्देश्य डॉटर वेवलेट उत्पन्न करने के लिए एक स्रोत फलन प्रदान करना है जो कि केवल मदर वेवलेट के अनुवादित और मापदंड किए गए संस्करण हैं। मूल संकेत को पुनः प्राप्त करने के लिए , पहले व्युत्क्रम सतत तरंगिका परिवर्तन का लाभ उठाया जा सकता है।

और का दोहरा कार्य है

स्वीकार्य स्थिरांक है, जहां हैट का अर्थ फूरियर रूपांतरण ऑपरेटर है। कभी-कभी तो स्वीकार्य स्थिरांक बन जाता है

परंपरागत रूप से, इस स्थिरांक को तरंगिका स्वीकार्य स्थिरांक कहा जाता है। एक तरंगिका जिसका स्वीकार्य स्थिरांक संतुष्ट करता है

स्वीकार्य तरंगिका कहलाती है। एक स्वीकार्य तरंगिका का तात्पर्य है कि जिससे एक स्वीकार्य तरंगिका को शून्य में एकीकृत होना चाहिए। मूल संकेत को पुनर्प्राप्त करने के लिए, दूसरे व्युत्क्रम सतत तरंगिका परिवर्तन का उपयोग किया जा सकता है।

यह व्युत्क्रम परिवर्तन बताता है कि एक तरंगिका को इस प्रकार परिभाषित किया जाना चाहिए

जहाँ एक विंडो है. ऐसी परिभाषित तरंगिका को विश्लेषण तरंगिका कहा जा सकता है, क्योंकि यह समय-आवृत्ति विश्लेषण को स्वीकार करती है। एक विश्लेषणात्मक तरंगिका का स्वीकार्य होना अनावश्यक है।

मापदंड कारक

Continuous wavelet transform.gif

मापदंड कारक संकेत को या तो फैलाता है या संपीड़ित करता है। जब मापदंड कारक अपेक्षाकृत कम होता है, तो संकेत अधिक सिकुड़ जाता है जिसके परिणामस्वरूप परिणामी ग्राफ अधिक विस्तृत होता है। चूँकि कमी यह है कि निम्न परिमाण कारक संकेत की पूरी अवधि तक नहीं रहता है। दूसरी ओर जब मापदंड कारक अधिक होता है, तो संकेत खिंच जाता है जिसका अर्थ है कि परिणामी ग्राफ़ कम विवरण में प्रस्तुत किया जाएगा। फिर भी, यह सामान्यतः संकेत की पूरी अवधि तक रहता है।

सतत तरंगिका परिवर्तन गुण

परिभाषा में, सतत तरंगिका परिवर्तन, मदर तरंगिका द्वारा उत्पन्न कार्यों के एक सेट के साथ इनपुट डेटा अनुक्रम का एक कनवल्शन है। तीव्र फूरियर रूपांतरण (एफएफटी) एल्गोरिदम का उपयोग करके कनवल्शन की गणना की जा सकती है। सामान्यतः आउटपुट एक वास्तविक मूल्यवान फलन होता है, सिवाय इसके कि जब मदर वेवलेट जटिल होता है। एक जटिल मातृ तरंगिका सतत तरंगिका परिवर्तन को एक जटिल मूल्यवान फलन में परिवर्तित कर देगी। सतत तरंगिका परिवर्तन के पावर स्पेक्ट्रम को द्वारा दर्शाया जा सकता है।[1][2]

फ़्रीक्वेंसी-मॉड्यूलेटेड टोन (प्लस शोर) का विश्लेषण किया जाता है; एकता के चरणों में 1 से 200 तक समायोजित किया जाता है।

तरंगिका परिवर्तन के अनुप्रयोग

तरंगिका परिवर्तन के सबसे लोकप्रिय अनुप्रयोगों में से एक छवि संपीड़न है। छवि संपीड़न में वेवलेट-आधारित कोडिंग का उपयोग करने का लाभ यह है कि यह पारंपरिक तकनीकों की तुलना में उच्च संपीड़न अनुपात पर चित्र गुणवत्ता में महत्वपूर्ण सुधार प्रदान करता है। चूंकि तरंगिका परिवर्तन में जटिल जानकारी और पैटर्न को प्राथमिक रूपों में विघटित करने की क्षमता होती है, इसलिए इसका उपयोग सामान्यतः ध्वनिकी प्रसंस्करण और पैटर्न पहचान में किया जाता है, किंतु इसे तात्कालिक आवृत्ति अनुमानक के रूप में भी प्रस्तावित किया गया है।[3] इसके अतिरिक्त तरंगिका परिवर्तन को निम्नलिखित वैज्ञानिक अनुसंधान क्षेत्रों में प्रयुक्त किया जा सकता है: किनारे और कोने का पता लगाना है और आंशिक अंतर समीकरण समाधान, क्षणिक पता लगाना, फिल्टर डिजाइन, इलेक्ट्रोकार्डियोग्राम (ईसीजी) विश्लेषण बनावट विश्लेषण, व्यापार सूचना विश्लेषण और चाल विश्लेषण[4] एपिलेप्टिक के परिणामस्वरूप होने वाली एपिलेप्टिक की स्पाइक्स की पहचान करने के लिए इलेक्ट्रोएन्सेफलोग्राफी (ईईजी) डेटा विश्लेषण में वेवलेट रूपांतरण का भी उपयोग किया जा सकता है।[5] भूस्खलन की समय श्रृंखला की व्याख्या के लिए वेवलेट रूपांतरण का भी सफलतापूर्वक उपयोग किया गया है[6] और महामारी की बदलती आवधिकता की गणना के लिए उपयोग किया जाता है।[7]

सतत तरंगिका रूपांतरण (सीडब्ल्यूटी) दोलन संकेतों के अवमंदन अनुपात (उदाहरण के लिए गतिशील प्रणालियों में अवमंदन की पहचान) को निर्धारित करने में बहुत कुशल है। सीडब्ल्यूटी संकेत में ध्वनि के प्रति भी बहुत प्रतिरोधी है।[8]


यह भी देखें

संदर्भ

  • [9]
  • A. Grossmann & J. Morlet, 1984, Decomposition of Hardy functions into square integrable wavelets of constant shape, Soc. Int. Am. Math. (SIAM), J. Math. Analys., 15, 723–736.
  • Lintao Liu and Houtse Hsu (2012) "Inversion and normalization of time-frequency transform" AMIS 6 No. 1S pp. 67S-74S.
  • Stéphane Mallat, "A wavelet tour of signal processing" 2nd Edition, Academic Press, 1999, ISBN 0-12-466606-X
  • Ding, Jian-Jiun (2008), Time-Frequency Analysis and Wavelet Transform, viewed 19 January 2008
  • Polikar, Robi (2001), The Wavelet Tutorial, viewed 19 January 2008
  • WaveMetrics (2004), Time Frequency Analysis, viewed 18 January 2008
  • Valens, Clemens (2004), A Really Friendly Guide to Wavelets, viewed 18 September 2018]
  • Mathematica Continuous Wavelet Transform
  • Lewalle, Jacques: Continuous wavelet transform[permanent dead link], viewed 6 February 2010
  1. Torrence, Christopher; Compo, Gilbert (1998). "वेवलेट विश्लेषण के लिए एक व्यावहारिक मार्गदर्शिका". Bulletin of the American Meteorological Society. 79 (1): 61–78. Bibcode:1998BAMS...79...61T. doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2. S2CID 14928780.
  2. Liu, Yonggang (December 2007). "वेवलेट पावर स्पेक्ट्रम में पूर्वाग्रह का सुधार". Journal of Atmospheric and Oceanic Technology. 24 (12): 2093–2102. Bibcode:2007JAtOT..24.2093L. doi:10.1175/2007JTECHO511.1.
  3. Sejdic, E.; Djurovic, I.; Stankovic, L. (August 2008). "तात्कालिक आवृत्ति अनुमानक के रूप में स्कैलोग्राम का मात्रात्मक प्रदर्शन विश्लेषण". IEEE Transactions on Signal Processing. 56 (8): 3837–3845. Bibcode:2008ITSP...56.3837S. doi:10.1109/TSP.2008.924856. ISSN 1053-587X. S2CID 16396084.
  4. "Novel method for stride length estimation with body area network accelerometers", IEEE BioWireless 2011, pp. 79–82
  5. Iranmanesh, Saam; Rodriguez-Villegas, Esther (2017). "A 950 nW Analog-Based Data Reduction Chip for Wearable EEG Systems in Epilepsy". IEEE Journal of Solid-State Circuits. 52 (9): 2362–2373. Bibcode:2017IJSSC..52.2362I. doi:10.1109/JSSC.2017.2720636. hdl:10044/1/48764. S2CID 24852887.
  6. Tomás, R.; Li, Z.; Lopez-Sanchez, J. M.; Liu, P.; Singleton, A. (2016-06-01). "Using wavelet tools to analyse seasonal variations from InSAR time-series data: a case study of the Huangtupo landslide" (PDF). Landslides (in English). 13 (3): 437–450. doi:10.1007/s10346-015-0589-y. hdl:10045/62160. ISSN 1612-510X. S2CID 129736286.
  7. von Csefalvay, Chris (2023), "Temporal dynamics of epidemics", Computational Modeling of Infectious Disease (in English), Elsevier, pp. 217–255, doi:10.1016/b978-0-32-395389-4.00016-5, ISBN 978-0-323-95389-4, retrieved 2023-02-27
  8. Slavic, J and Simonovski, I and M. Boltezar, Damping identification using a continuous wavelet transform: application to real data
  9. Prasad, Akhilesh; Maan, Jeetendrasingh; Verma, Sandeep Kumar (2021). "Wavelet transforms associated with the index Whittaker transform". Mathematical Methods in the Applied Sciences (in English). 44 (13): 10734–10752. Bibcode:2021MMAS...4410734P. doi:10.1002/mma.7440. ISSN 1099-1476. S2CID 235556542.


बाहरी संबंध